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Abstract

Modern techniques for estimating basal levels of electroactive neurotransmitters rely on the

measurement of oxidative charges. This requires time integration of oxidation currents at

certain intervals. Unfortunately, the selection of integration intervals relies on ad-hoc visual

identification of peaks on the oxidation currents, which introduces sources of error and pre-

cludes the development of automated procedures necessary for analysis and quantification

of neurotransmitter levels in large data sets. In an effort to improve charge quantification

techniques, here we present novel methods for automatic selection of integration bound-

aries. Our results show that these methods allow quantification of oxidation reactions both in

vitro and in vivo and of multiple analytes in vitro.

1 Introduction

Fast scan cyclic voltammetry (FSCV) is a powerful electrochemical sensing technique that

allows quantification of variations in the concentration of electroactive neurochemicals by

measuring redox currents resulting from the application of a periodic triangular waveform at a

high scan rate [1–5]. Traditionally, FSCV has depended on the calculation of maximal oxida-

tion currents, measured from known neurochemical concentrations in a solution, which are

used to build calibration curves by using linear correlation techniques [6–10]. Recent studies

have exploited the catecholamine adsorption properties of carbon fiber microelectrodes

(CFM), to estimate basal concentrations of neurochemicals [11–14]. Techniques including fast

scan cyclic adsorption voltammetry (FSCAV) use oxidation-charge measurements, rather than

maximal currents, which are obtained by time-integrating cyclic voltammograms within inter-

vals containing single oxidation peaks (or “humps”) [11–13]. However, the accuracy and

reproducibility of oxidation-charge measurements are limited by visual selection of integration

bounds of the cyclic voltammogram oxidation peaks. In practice, defining which portion of

the voltammogram constitutes an oxidation peak (where it begins, and where it ends) is
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obscured by the noise floor of the dataset, the electrochemical interferents, the presence of arti-

facts, and background drift. Visual selection leads to ambiguity, introduces additional sources

of error and precludes the development of automated procedures necessary for analysis and

charge quantification in large data sets.

Here, we describe novel charge quantification techniques by performing automatic selec-

tion of integration boundaries. This is achieved by analyzing and identifying voltammogram’s

critical, inflection and maximum curvature points, to allow the automatic selection of integra-

tion intervals. We test these techniques in both in vitro and in vivo experimental scenarios.

2 Methods

2.1 In vitro data collection

The Mayo Clinic Institutional Animal Care and Use Committee (IACUC) has reviewed and

approved this research. Anesthesia and euthanasia were performed per Mayo Clinic IACUC

regulations with urethane and fatal plus, respectively. In vitro data collection was performed

using a FIAlab 3200 flow injection system (FIAlab Instruments, Seattle, WA) and the WINCS

Harmoni device [15]. A CFM of 7μm diameter and110μm in length was placed in a flowing

stream of artificial cerebrospinal fluid (aCSF) buffer solution with a pH value of 7.4 as

described previously [15]. For each measurement, buffered aCSF solutions containing 0.1 μM

to 5 μM of either dopamine, adenosine, epinephrine, or norepinephrine (Millipore Sigma,

Burlington, MA) were injected for 8 s at 2.25 mL/min. The in vitro data was collected using

two electrodes, with 3–15 injections per analyte.

2.2 In vivo data measurements

In vivo measurements were obtained in a rodent model of medial forebrain bundle stimulation

and simul- taneous FSCV recording in the dorsal striatum as described previously [15]. Rats

were sedated prior to surgery with intraperitoneal urethane (1.5 g/kg in a 0.26 g/mL saline

solution, Millipore Sigma, Burling- ton, MA). Analgesia was maintained for rodents with

intramuscular buprenorphine (0.06 mg/kg). Both the stimulation electrode and CFM were ste-

reotactically inserted (KOPF instruments, Tujunga, CA). A scalp incision (1.5–2.0 cm) was

made to expose the skull, and three trephine burr holes (approximately 3 mm in diameter)

were drilled to allow implantation of the stimulating, neurochemical sensing, and reference

electrodes. Dopamine release was evoked with a series 2 s stimulations using a range of ampli-

tudes from 0.05–2.0 mA and pulsewidths from 0.8 and 1.8 ms, presented in a randomized

order such that effects of hysteresis are minimized. Analyte measurements were obtained by

sweeping the CFM potential from a resting potential of -0.4 V to a switching potential of 1.5 V

and back to the resting potential, at a rate of 400 V/s every 100ms.

2.3 Charge quantification

We define the charge resulting from a single oxidation/reduction reaction by

Q ¼ xr
xl
B tð Þdt; ð1Þ

where B(t) is a background subtracted voltammogram, and we assume that the integration

interval [xl xr] contains a single oxidation/reduction peak (Fig 1a). In this study we use four

pairs of integration boundaries (Fig 1) to quantify charge. When there is little or no back-

ground drift, indicating a stable background capacitive current, the faradaic current response

on a background subtracted voltammogram decays towards zero away of the maximum oxida-

tion current [16]. “True” integration boundaries are defined as the points around an oxidation
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Fig 1. a) Background subtracted voltammogram for a bolus of a 0.5 μM dopamine solution. True (“o”, xl = 0.26 V and

xr = 1.5 V), FSCAV (“♦”, xl = 0.4 V and xr = 0.9 V), inflection (“+”, xl = 0.41 V and xr = 0.68 V) and curvature

integration boundaries (“x”, xl = 0.29 V and xr = 0.76 V) are marked on the voltammogram. b) Second derivative of the

voltammogram shown in (a), showing the definition of inflection boundaries (inflection points), and curvature

boundaries (the maxima around the location of the oxidation peak). c) Flow chart demonstrating overview of applied

computational procedures to raw FSCV data.

https://doi.org/10.1371/journal.pone.0254594.g001

PLOS ONE Integral methods for automatic quantification of fast-scan-cyclic-voltammetry detected neurotransmitters

PLOS ONE | https://doi.org/10.1371/journal.pone.0254594 July 26, 2021 3 / 13

https://doi.org/10.1371/journal.pone.0254594.g001
https://doi.org/10.1371/journal.pone.0254594


peak where the current is zero (Fig 1a). Charges computed with true boundaries provide a use-

ful benchmark for comparing quantification methods. However, “True” limits as defined here

are unavoidably confounded by the interplay between the Gaussian dopamine oxidation peak

and the noise levels in the recording; as a Gaussian distribution never decays to zero.

FSCAV limits (Fig 1a), correspond to the ad-hoc voltages (0.4 V and 0.9 V) selected as inte-

gration limits for the quantification of dopamine [13]. Note that all measurements were col-

lected using a traditional FSCV waveform described in section 2.2 as opposed to FSCAV.

Inflection limits are defined as the zeros of the second derivative of a voltammogram, around

an oxidation (or reduction) peak, and curvature points (maximum curvature, or maximum

second derivative) are defined as the maxima/minima of the second derivative around an oxi-

dation/reduction peak, see Fig 1(b).

Computational routines for filtering and smoothing background- subtracted voltammo-

grams, as well as to calculate higher order derivatives, to find, classify, sort and correct curva-

ture and inflection points are implemented in MATLAB (Fig 1). A 1000Hz lowpass 2nd phase

butterworth filter was applied to all data in both forward and reverse directions to reduce spu-

rious signals. Data was also smoothed with a 5-point moving average and a CSAPS Cubic

smoothing spline before background subtraction subsequent charge calculations. Correction

routines require not adding negative areas to the total charge in the case of oxidation reactions,

and have the switching potential as hard limit for xr. Similar considerations are utilized for

reduction-charge calculations (excluding regions with positive areas, and using the switching

potential as hard limit for xl).

3 Results and discussion

3.1 Quantification of in vitro catecholamines

In Fig 2 we show (a) true and (b-c) curvature integration boundaries obtained with our algo-

rithms. As a reference we also show the location of the maximum oxidation currents with

dots, and panels (b- c) show the FSCAV integration limits taken from reference [11], 0.4 V

and 0.9 V with vertical dashed lines. The data for panels (a) and (b) corresponds to back-

ground subtracted voltammograms of a flow cell experiment, where 70 dopamine injections

with 0.1, 0.5 and 1 micromolar were done. The data for panel (c) corresponds to voltammo-

grams of a flow cell experiment, where 15 norepinephrine injections with 0.1, 0.5, 1 and 5

micromolar were done.

Panels (a) and (b) of Fig 2 show that the curvature boundaries select narrower integration

intervals than true boundaries. However, it is interesting to note that curvature boundaries

show less variability than the true boundaries (average voltages and standard deviations are

shown in Fig 2). This is unex- pected given that the computation of curvature boundaries

involves calculating higher-order derivatives of voltammograms, which should amplify noise

[17], and as a consequence curvature boundaries variability.

Because of the visual similarities between typical dopamine and norepinephrine back-

ground subtracted voltammograms [4,11,18], comparisons using norepinephrine data are par-

ticularly useful, because they highlight the limitations of using visual identification to obtain

integration boundaries. Indeed, panels (b) and (c) of Fig 2 indicate that there is a significant

difference between average left curvature boundaries for dopamine and norepinephrine

voltammograms.

Indeed, Fig 3 shows oxidation-charge calculations with the four pairs of integration bound-

aries intro-duced in section 2.3. Panel (a) shows calculations for the dopamine dataset corre-

sponding to (Fig 2a and 2b), and panel (b) shows calculations for the norepinephrine dataset

corresponding to Fig 2(c). Fig 3(a) shows that when quantifying dopamine charge, the ad-hoc

PLOS ONE Integral methods for automatic quantification of fast-scan-cyclic-voltammetry detected neurotransmitters

PLOS ONE | https://doi.org/10.1371/journal.pone.0254594 July 26, 2021 4 / 13

https://doi.org/10.1371/journal.pone.0254594


Fig 2. a) True integration limits (“x”) and maximum oxidation currents (dots) obtained from a flow cell experiment

consisting of 70 dopamine injections at different concentrations. b) Curvature integration boundaries (“+”) for the

experimental data of (a). c) Curvature boundaries for a flow cell experiment with 15 norepinephrine injections at

different concentrations. FSCAV limits are shown with dashed vertical lines. Quantities shown in the figure indicate

averages ± standard deviations.

https://doi.org/10.1371/journal.pone.0254594.g002
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FSCAV limits and curvature are not significantly different at concentrations greater than

0.1μM as demonstrated by a comparison of mean curvature and FSCAV datapoints using an

ANOVA with Holm-Sidak comparison for multiple corrections, P>0.05 n.s. However, despite

shape similarities between dopamine and norepinephrine background subtracted voltammo-

grams (e. g. correlation coefficient > 0.86, see [18,19]), oxidation charges obtained with curva-

ture limits provide a closer approximation to true charges than FSCAV limits at

concentrations of 1μM and greater, as demonstrated by a comparison of mean curvature and

FSCAV datapoints using an ANOVA with Holm-Sidak comparison for multiple corrections

(at 0.5μM, curvature (20.58±0.99) v. FSCAV(19.48±0.88), P = 0.1087 n.s.; at 1μM, curvature

(86.84±2.21) v. FSCAV(75.57±1.76), P<0.0001 ����; at 5μM, curvature (27.23±0.6) v. FSCAV

Fig 3. a) Oxidation charges for the data shown in (Fig 2a and 2b), obtained with different integration boundaries. b)

Oxidation charges for the data shown in Fig 2(c), obtained with different integration boundaries. Averages and

standard deviations for charges using true, FSCAV (in italic) and curvature (bold) integration boundaries are also

shown. Quantities shown in the figure indicate averages ± standard deviations.

https://doi.org/10.1371/journal.pone.0254594.g003
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(24.88±0.0.56), P<0.01 ����) (Fig 3b).” Consequently, all analyses of charge in subsequent fig-

ures are performed using the curvature method in the interest of focus and clarity.

Curvature integration boundaries provide the highest charge among the three methods

considered at concentrations above 0.5 μM as shown by a comparison of curvature and

FSCAV datapoints using an unpaired two-tailed t-test with welch’s correction (0.1μM,

p>0.05; 0.5μM, p = .024; 1μM, p = .0001; 5 μM, p = .0003) (Fig 4).”As illustrated by Fig 4(a),

epinephrine voltammograms have two oxidation peaks [3], and if we try to calculate the oxida-

tion charge due to the primary (or secondary) peak alone, true boundaries produce erroneous

Fig 4. a) A 1 μM epinephrine voltammogram showing primary and secondary oxidation peaks, superimposed with

curvature and true integration limits. b) Primary-peak oxidation charges for a flow cell experiment with 15 injections

of epinephrine at different concentrations, obtained with different pairs of integration limits. Averages and standard

deviations for charges using FSCAV (in italic) and curvature (bold) integration boundaries are also shown. Quantities

shown in the figure indicate averages ± standard deviations.

https://doi.org/10.1371/journal.pone.0254594.g004
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results by selecting a region that contains both oxidation peaks. This issue also arises when

combinations of analytes (like dopamine and adenosine) are being measured.

3.2 Charge quantification of in vivo measurements

Rapid changes in the brain electrochemistry can lead to faster background current drift

[2,20,21], which distorts the voltammograms (an example is shown in Fig 5a). The use of true

charges as a benchmark for charge quantification depends on the stability of the background

current measured with FSCV. Thus, faster in-vivo background-current change can pose a

problem for the use of true boundaries with in-vivo data, as we explain below. Fig 5(a) shows a

stimulation-evoked background-subtracted voltammogram from a rodent striatum dopamine

measurement evoked by systematically varying amplitude and duty cycle applied in a random

order to minimize hysteresis., superimposed with curvature boundaries. A region of positive,

nearly constant current between 1 and 1.5 volts that persists far into the cathodic sweep, is

likely the consequence of background drift. Drift is exacerbated by disruption of Helmholtz

layer or pH changes as a result of electrical stimulation [22]. The integration boundaries can

still be calculated in the presence of background drift, though the exact cutoffs may be affected.

It is generally advisable for the experimenter to minimize any possible sources of background

drift or other redox sources in FSCV recordings for consistent data analysis and interpretation.

The shaded region adds a positive bias to the charge computed with true boundaries. Further-

more, a similar behavior is observed in most voltammograms of the data set of Fig 5. Conse-

quently, in panel (b), which shows true and curvature boundaries for the entire dataset, the

right true boundary xr has been set to the switching potential of the voltage sweep.

We contrast the behavior of true boundaries for the experimental data set of Fig 5(b) with

that of the curvature boundaries, which despite the random variation of the DBS stimulation

parameters of the experiment, show little variability (xl = 0.388 ± 0.007 V and xr = 0.807 ±
0.022 V), demonstrating the robustness of our charge quantification algorithms.

Fig 5. a) Background subtracted voltammogram of a dopamine signal taken from a rat during DBS of the medial forebrain bundle

(0.14mA, 1.43ms pulse width, 180 pulses, 90Hz), superimposed with squares showing the curvature boundaries for the voltammogram.

Charge in the shaded region is likely the result of background current drift. Stimulation amplitude and pulse widths ranging from 0.14–

0.16ms and 1.37–1.57ms, respectively, were systematically applied in a random order to minimize effects of hysteresis. All stimulation

epochs consisted of 180 pulses delivered at 90Hz b) True and curvature boundaries obtained from background subtracted

voltammograms of the entire rat DBS dataset with random combinations stimulation.

https://doi.org/10.1371/journal.pone.0254594.g005
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This robust behavior can be utilized for outlier detection purposes. Values that deviate the

most from the average right curvature boundary of the voltammograms in (xr = 0.807 ± 0.022

V) Fig 5(a) indicate that stimulation artifacts have altered the shape of the voltammograms

and the corresponding curvature boundaries have adapted to the shape of each curve 6(a).

Here, details of the oxidation-hump region of three voltammograms are shown with their cor-

responding curvature boundaries indicated by asterisks, demonstrating that the integration

limits can be objectively determined with varying stimulation parameters, even in the presence

of sources of noise such as a stimulation artifact.

In Fig 6(b) we present the oxidation charges corresponding to the in-vivo experimental

data set of Fig 5, as function of the stimulation duty cycle. This panel shows how the response

measured by the CFM increases as a function of the increasing stimulation duty cycle.

3.3 Quantifying charge produced in reduction reactions

As described in section 2.3, our methods can be used to quantify charged due to reduction

reactions, and our algorithms require minimal alterations to do so (finding minima instead of

maxima, etc).

Fig 7(a) shows the curvature limits for the reduction dips measured in the data set of Fig

3(a). Fig 7(b) we show the corresponding charges obtained with curvature limits, as well as

with inflection limits. We note that for reduction reactions, very often a right true limit is not

existent (see Fig 8(a) for an example). In consequence charges obtained with true limits are not

shown.

3.4 Quantifying charge in voltammograms with multiple oxidation peaks

If multiple electroactive analytes are present in a FSCV measurement, quantifying oxidation

due to different species can be challenging. In this section we illustrate how our quantification

techniques can aid in that task, when used with cyclic voltammograms displaying multiple

humps. Linear charge calibration data for dopamine, adenosine, and a solution of

Fig 6. a) Voltammogram regions enclosing the oxidation peak of selected background subtracted voltammograms taken from the

data set of Fig 5, superimposed with asterisks showing the curvature boundaries for each voltammogram. Stimulation parameters for

the traces X,Y, and Z are as follows X: 0.14mA, 1.46ms pulse width, 180 pulses, 90Hz Y: 0.16mA, 1.57ms pulse width, 180 pulses,

90Hz Z: 0.15mA, 1.45ms pulse width, 180 pulses, 90Hz (b) Oxidation charges corresponding to the data set of Fig 5, obtained with

curvature limits, plotted as function of the duty cycle for the 90 Hz, two-second stimulations.

https://doi.org/10.1371/journal.pone.0254594.g006
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dopamine+adenosine were calculated using true, inflection, and curvature integration bound-

aries (S1 Fig). Indeed, the definitions of curvature limits and inflection limits can be used for

individual oxidation humps, as we show in Fig 8, where two examples of multiple-oxidation-

hump voltammograms, as well as curvature boundaries for each peak are displayed. Notice

that in Fig 8(a) the two peaks appear because of two different species, while the voltammogram

of Fig 8(b) is the result of the oxidation of epinephrine (see also Fig 4(a)).

3.5 Challenges and limitations

While this approach may be helpful for standardizing oxidation charge quantification of elec-

troactive neurochemicals, it is not without limitations. The relationship between charge and

analyte concentration is nonlinear (Fig 3). While linear regressions are regularly used when

creating a calibration curves [6–10], this approach may result in underestimations at the low

and high ends of detectable concentrations while overestimations concentrations at the

Fig 7. a) Curvature integration limits for the reduction dips of the data set of Fig 3(a). Minimum reduction currents

are shown with asterisks. b) Reduction charges (absolute value) for the data set of Fig 3(a), obtained with inflection and

curvature (bold) integration boundaries. Quantities shown in the figure indicate averages ± standard deviations.

https://doi.org/10.1371/journal.pone.0254594.g007
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midpoint of the detectible range. Fitting with a nonlinear regression model may reduce these

errors when converting between charge and concentration for unknown samples. Further-

more, we present a limited analysis of the performance of automated charge calculation meth-

ods in a sample of multiple analytes, but a more exhaustive characterization of charge in the

presence of other electroactive interferents (e.g. DOPAC, Guanine, Serotonin, etc.) is neces-

sary to fully determine performance of this approach. Despite these limitations, computational

approaches such as the one described here are necessary for improving accuracy and consis-

tency of electroactive neurochemical measurements.

4 Conclusions

Here, we propose novel methods to quantify charge from REDOX reactions observed in vol-

tammetric measurements electroactive neurochemicals. While our proposed methods were

applied to a dataset collected with a traditional FSCV waveform, this approach can be gener-

alized to other voltammetric waveforms reliant on charge quantification, including FSCAV.

However, additional studies must be completed to characterize behavior of our approach

with novel voltammetric waveforms. Although a definitive selection of integration bound-

aries is confounded by interferents, background drift, low signal to noise ratio, and other

effects, data shown here suggest that our quantification methods are comparable to compet-

ing methods for quantification of dopamine oxidation charge, and may more closely approx-

imate true charge when applied to other catecholamines. Additionally, unlike existing

charge quantification techniques, our methods can quantify reduction reactions as well as

single oxidation or reduction peaks when multiple analytes are present in a sample. Here,

charge analysis has been performed automatically, improving reproducibility and demon-

strating the feasibility of developing automated routines for charge quantification of multi-

ple analytes.

Fig 8. a) Background subtracted voltammogram showing two oxidation peaks due to 1 μM dopamine plus 1 μM adenosine, along

with the corresponding curvature boundaries for each peak: 0.33 V and 0.79 V for DA, and 1.31 V and 1.5 V for ADO. b)

Background subtracted voltammogram showing two oxidation peaks due to 0.5 μM epinephrine, and the corresponding curvature

boundaries for each peak: 0.38 V and 0.80 V for first peak, and 1.25 V and 1.5 V for the second. Vertical dashed lines indicate the

switching potentials.

https://doi.org/10.1371/journal.pone.0254594.g008
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Supporting information

S1 Fig. Linear charge calibration curve for dopamine, adenosine, and dopamine +adeno-

sine using a)True integration limits b) curvature integration limits, and c) inflection inte-

gration limits at concentrations of 0.1 μM, 0.5 μM, and 1 μM. Data are fit with a linear

regression and R2 values are displayed for each analyte.
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