
RESEARCH ARTICLE

PHOTONAI—A Python API for rapid machine

learning model development

Ramona LeeningsID
1,2☯*, Nils Ralf Winter1☯, Lucas Plagwitz1, Vincent Holstein1,

Jan ErnstingID
1,2, Kelvin SarinkID

1, Lukas Fisch1, Jakob Steenweg1, Leon Kleine-

Vennekate1, Julian Gebker1, Daniel Emden1, Dominik Grotegerd1, Nils Opel1,

Benjamin Risse2, Xiaoyi Jiang2, Udo Dannlowski1, Tim Hahn1

1 Institute for Translational Psychiatry, University of Münster, Münster, Germany, 2 Faculty of Mathematics

and Computer Science, University of Münster, Münster, Germany

☯ These authors contributed equally to this work.

* leenings@uni-muenster.de

Abstract

PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning

model development. It functions as a unifying framework allowing the user to easily access

and combine algorithms from different toolboxes into custom algorithm sequences. It is

especially designed to support the iterative model development process and automates the

repetitive training, hyperparameter optimization and evaluation tasks. Importantly, the work-

flow ensures unbiased performance estimates while still allowing the user to fully customize

the machine learning analysis. PHOTONAI extends existing solutions with a novel pipeline

implementation supporting more complex data streams, feature combinations, and algo-

rithm selection. Metrics and results can be conveniently visualized using the PHOTONAI

Explorer and predictive models are shareable in a standardized format for further external

validation or application. A growing add-on ecosystem allows researchers to offer data

modality specific algorithms to the community and enhance machine learning in the areas of

the life sciences. Its practical utility is demonstrated on an exemplary medical machine

learning problem, achieving a state-of-the-art solution in few lines of code. Source code is

publicly available on Github, while examples and documentation can be found at www.

photon-ai.com.

Introduction

In recent years, the interest in machine learning for medical, biological, and life science

research has significantly increased. Technological advances develop with breathtaking speed.

The basic workflow to construct, optimize and evaluate a machine learning model, however,

has remained virtually unchanged. In essence, it can be framed as the (systematic) search for

the best combination of data processing steps, learning algorithms, and hyperparameter values

under the premise of unbiased performance estimation.

Subject to the iteratively optimized workflow is a machine learning pipeline, which in

this context is defined as the sequence of algorithms subsequently applied to the data. To

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Leenings R, Winter NR, Plagwitz L,

Holstein V, Ernsting J, Sarink K, et al. (2021)

PHOTONAI—A Python API for rapid machine

learning model development. PLoS ONE 16(7):

e0254062. https://doi.org/10.1371/journal.

pone.0254062

Editor: Thippa Reddy Gadekallu, Vellore Institute of

Technology: VIT University, INDIA

Received: March 30, 2021

Accepted: June 20, 2021

Published: July 21, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0254062

Copyright: © 2021 Leenings et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://doi.org/10.

1186/s12911-020-1023-5 Davide Chicco,

Giuseppe Jurman: Machine learning can predict

survival of patients with heart failure from serum

https://orcid.org/0000-0002-9137-7510
https://orcid.org/0000-0003-4649-2111
https://orcid.org/0000-0002-4840-5619
http://www.photon-ai.com
http://www.photon-ai.com
https://doi.org/10.1371/journal.pone.0254062
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254062&domain=pdf&date_stamp=2021-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254062&domain=pdf&date_stamp=2021-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254062&domain=pdf&date_stamp=2021-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254062&domain=pdf&date_stamp=2021-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254062&domain=pdf&date_stamp=2021-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254062&domain=pdf&date_stamp=2021-07-21
https://doi.org/10.1371/journal.pone.0254062
https://doi.org/10.1371/journal.pone.0254062
https://doi.org/10.1371/journal.pone.0254062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s12911-020-1023-5
https://doi.org/10.1186/s12911-020-1023-5


begin with, the data is commonly prepared by successively applying several processing

steps such as normalization, imputation, feature selection, dimensionality reduction,

data augmentation, and others. The altered data is then forwarded to one or more learning

algorithms which internally derive the best fit for the learning task and finally yield

predictions.

In practice, researchers select suitable preprocessing and learning algorithms from

different toolboxes, learn toolbox-specific syntaxes, decide for a training and testing scheme,

manage the data flow and, over time, iteratively optimize their choices. Importantly, all of

this is done while preventing data leakage, calculating performance metrics, adhering to

(nested) cross-validation best practices, and searching for the optimal (hyperparameter-)

configuration.

A multitude of high-quality and well-maintained open-source toolboxes offer specialized

solutions, each for a particular subdomain of machine learning-related (optimization)

problems.

Existing solutions: Specialized open-source toolboxes

In the field of (deep) neural networks, libraries such as Tensorflow, Theano, Caffe and PyTorch
[1–4] offer domain-specific implementations for nodes, layers, optimizers, as well as evalua-

tion and utility functions. On top of that, higher level Application Programming Interfaces

(APIs) such as Keras and fastai [5, 6] offer expressive syntaxes for accelerated and enhanced

development of deep neural network architectures.

In the same manner, the scikit-learn [7] toolbox, has evolved as one of the major resources

of the field, covering a very broad range of regression, classification, clustering, and prepro-

cessing algorithms. It has established the de-facto standard interface for data processing and

learning algorithms, and, in addition, offers a wide range of utility functions, such as cross-val-

idation schemes and model evaluation metrics.

Next to these general frameworks, other libraries in the software landscape offer functional-

ities to address more specialized problems. Prominent examples are the imbalanced-learn tool-

box [8], which provides numerous over- or under-sampling methods, or modality-specific

libraries such as nilearn and nibabel [9, 10] which offer utility functions for accessing and pre-

paring neuroimaging data.

On top of that, the software landscape is complemented by several hyperparameter optimi-

zation packages, each implementing a different strategy to find the most effective hyperpara-

meter combination. Next to Bayesian approaches, such as Scikit-optimize or SMAC [11, 12],

there are packages implementing evolutionary strategies [13] or packages approximating gra-

dient descent within the hyperparameter space [14, 15]. Each package requires specific syntax

and unique hyperparameter space definitions.

Finally, there are approaches uniting all these components into algorithms that automati-

cally derive the best model architecture and hyperparameter settings for a given dataset.

Libraries such as auto-sklearn, TPOT, AutoWeka, Auto-keras, AutoML, Auto-Gluon and others

optimize a specific set of data-processing methods, learning algorithms and their respective

hyperparameters [16–22]. While very intriguing, these libraries aim at full automation—

neglecting the need for customization and foregoing the opportunity to incorporate high-level

domain knowledge in the model architecture search. Especially the complex and often high-

dimensional data structure native to medical and biological research requires the integration

and application of modality-specific processing and often entails the development of novel

algorithms.

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 2 / 19

creatinine and ejection fraction alone. BMC Medical

Informatics and Decision Making 20, 16 (2020)

https://www.kaggle.com/andrewmvd/heart-failure-

clinical-data.

Funding: This work was supported by grants from

the Interdisciplinary Center for Clinical Research

(IZKF, https://www.medizin.uni-muenster.de/izkf.

html) of the medical faculty of Münster (grant MzH

3/020/20 to TH and grant Dan3/012/17 to UD) and

the German Research Foundation (DFG, https://

www.dfg.de/, grants HA7070/2-2, HA7070/3,

HA7070/4 to TH). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0254062
https://www.kaggle.com/andrewmvd/heart-failure-clinical-data
https://www.kaggle.com/andrewmvd/heart-failure-clinical-data
https://www.medizin.uni-muenster.de/izkf.html
https://www.medizin.uni-muenster.de/izkf.html
https://www.dfg.de/
https://www.dfg.de/


Current shortcoming: Manual integration of cross-toolbox algorithm

sequences

Currently, iterative model development approaches across different toolboxes as well as design

and optimization of custom algorithm sequences are barely supported. For a start, scikit-learn
has introduced the concept of pipelines, which successively apply a list of processing methods

(referred to as transformers) and a final learning algorithm (called estimator) to the data. The

pipeline directs the data from one algorithm to another and can be trained and evaluated in

(simple) cross-validation schemes, thereby significantly reducing programmatic overhead. Sci-

kit-learn’s consistent usage of standard interfaces enables the pipeline to be subject to scikit-

learn’s inherent hyperparameter optimization strategies based on random- and grid-search.

While being a simple and effective tool, several limitations still remain. For one, hyperpara-

meter optimization requires a nested cross-validation scheme, which is not inherently

enforced. Second, a standardized solution for easy integration of custom or third-party algo-

rithms is not considered. In addition, several repetitive tasks, such as metric calculations, log-

ging, and visualization lack automation and still need to be handled manually. Finally, the

pipeline can not handle adjustments to the target vector, thereby excluding algorithms for e.g.

data augmentation or handling class imbalance.

Major contributions of PHOTONAI: Supporting a convenient

development workflow

To address these issues, we propose PHOTONAI as a high-level Python API that acts as a

mediator between different toolboxes. Established solutions are conveniently accessible or can

be easily added. It combines an automated supervised machine learning workflow with the

concept of custom machine learning pipelines. Thereby it is able to considerably accelerate

design iterations and simplify the evaluation of novel analysis pipelines. In essence, PHOTO-
NAI’s major contributions are:

Increased accessibility. By pre-registering data processing methods, learning algorithms,

hyperparameter optimization strategies, performance metrics, and other functionalities, the

user can effortlessly access established machine learning implementations via simple key-

words. In addition, by relying on the established scikit-learn object API [23], users can easily

integrate any third-party or custom algorithm implementation.

Extended pipeline functionality. A simple to use class structure allows the user to arrange

selected algorithms into single or parallel pipeline sequences. Extending the pipeline concept

of scikit-learn [7], we add novel functionality such as flexible positioning of learning algo-

rithms, target vector manipulations, callback functions, specialized caching, parallel data-

streams, Or-Operations, and other features as described below.

Automation. PHOTONAI can automatically train, (hyperparameter-) optimize and eval-

uate any custom pipeline. Importantly, the user designs the training and testing procedure by

selecting (nested) cross-validation schemes, hyperparameter optimization strategies, and per-

formance metrics from a range of pre-integrated or custom-built options. Thereby, develop-

ment time is significantly decreased and conceptual errors such as information leakage

between training, validation, and test set are avoided. Training information, baseline perfor-

mances, hyperparameter optimization progress, and test performance evaluations are persisted

and can be visualized via an interactive, browser-based graphical interface (PHOTONAI

Explorer) to facilitate model insight.

Model sharing. A standardized format for saving, loading, and distributing optimized

and trained pipeline architectures enables model sharing and external model validation even

for non-expert users.

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 3 / 19

https://doi.org/10.1371/journal.pone.0254062


Materials and methods

In the following, we will describe the automated supervised machine learning workflow imple-

mented in PHOTONAI. Subsequently, we will outline the class structure, which is the core of

its expressive syntax. At the same time, we will highlight its current functionalities, and finally,

provide a hands-on example to introduce PHOTONAI’s usage. Lastly, we close with discussing

current challenges and future developments.

Software architecture and workflow

PHOTONAI automatizes the supervised machine learning workflow according to user-

defined parameters (see pseudocode in Listing 1). In a nutshell, cross-validation folds are

derived to iteratively train and evaluate a machine learning pipeline following the hyperpara-

meter optimization strategy’s current parameter value suggestions. Performance metrics are

calculated, the progress is logged and finally, the best hyperparameter configuration is selected

to train a final model. The training, testing, and optimization workflow is automated, however,

it is important to note that it is parameterized by user choices and therefore fully customized.

In order to achieve an efficient and expressive customization syntax, PHOTONAI’s class

architecture captures all workflow- and pipeline-related parameters into distinct and combin-

able components (see Fig 1). A central management class called Hyperpipe—short for hyper-

parameter optimization pipeline—handles the setup of the pipeline and executes the training

and test procedure according to user choices. Basis to the data flow is a custom Pipeline

Fig 1. Class architecture. The PHOTONAI framework is built to accelerate and simplify the design of machine

learning models. It adds an abstraction layer to existing solutions and is thereby able to simplify, structure, and

automate the training, optimization, and testing workflow. Importantly, the pipeline and the workflow are subject to

user choices as the user selects a sequence of processing and learning algorithms and parameterizes the optimization

and validation workflow. The here depicted class diagram shows PHOTONAI’s core structure. The central element is

the Hyperpipe class, short for hyperparameter optimization pipeline, which manages a pipeline and the associated

training, optimization, and testing workflow. The Pipeline streams data through a sequence of n PipelineElements.
PHOTONAI relies on the established scikit-learn [7] object API, to integrate established or custom algorithms

(BaseElements) into the workflow. PipelineElements can have n hyperparameters which are subject to optimization by a

hyperparameter optimization strategy.

https://doi.org/10.1371/journal.pone.0254062.g001

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 4 / 19

https://doi.org/10.1371/journal.pone.0254062.g001
https://doi.org/10.1371/journal.pone.0254062


implementation, which streams data through a sequence of PipelineElement objects, the latter

of which represent either established or custom algorithm implementations. In addition, clear

interfaces and several utility classes allow the integration of custom solutions, adjust the train-

ing and test procedure and build parallel data streams. In the following, PHOTONAI’s core

classes and their respective features will be further detailed.

Core framework—The hyperpipe class. PHOTONAI’s core functionality is encapsulated

in a class called Hyperpipe, which controls all workflow and pipeline-related parameters and

manages the cross-validated training and testing procedure (see Listing 1). In particular, it par-

titions the data according to the cross-validation splits, requests hyperparameter configura-

tions, trains and evaluates the pipeline with the given configuration, calculates performance

metrics, and coordinates the logging of all results and metadata such as e.g. computation time.

In addition, the Hyperpipe ranks all tested hyperparameter configurations based on a user-

selected performance metric and yields a final (optimal) model trained with the best perform-

ing hyperparameter configuration. Further, a baseline performance is established by applying

a simple heuristic [24]. This aids in assessing model performance and facilitates interpretation

of the results.

Algorithm 1 Pseudocode for PHOTONAI’s training, hyperparameter optimization and

testing workflow as implements in the Hyperpipe class
Input:
(1) Pipeline, sequence of algorithms, pipeline
(2) Performance metrics, metrics
(3) Hyperparameter Optimization Strategy, hpo
(4) Outer Cross-Validation Strategy, ocv
(5) Inner Cross-Validation Strategy, icv
(6) Features X and Targets y, data
(7) Performance Expectations, performance_constraints

1 for outer_fold = 1, 2, . . . T 2 ocv.split(data) do
2 outer_fold_data = data[outer_foldT]
3 dummy_performance = apply_dummy_heuristic(outer_fold_data)
4
5 hpo.initialize_hyperparameter_space(pipeline)
6 for hp_config in hpo.ask() do
7 for inner_fold = 1, 2, ‥V 2 icv.split(outer_fold_data) do
8 inner_data = outer_fold_data[inner_foldV]
9 hp_performance = train_and_test(pipeline, hp_config,
10 metrics, inner_data)
11 hpo.tell(hp_performance)
12 if performance_constraints then
13 if hp_performance < performance_constraints then
14 break
15 end if
16 end if
17 end for
18 val_performance = mean([hp_performance1, . . ., hp_performanceV])
19 if hp_config_performance < best_performance then
20 best_outer_fold_configT = hp_config
21 end if
22 end for
23 test_performance = train_and_test(pipeline,

best_outer_fold_config,
24 metrics, outer_fold_data)
25 end for
26 overall_best_performance = argmax([test_performance1, . . .,
test_performanceT])

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0254062


27 overall_best_config = [best_outer_configs1, . . .,
28 best_outer_configT][overall_best_performance]
29 pipeline.set_params(overall_best_config)
30 pipeline.fit(X, y)
31 pipeline.save()

Listing 1. Setting the parameters to control the training, hyperparameter optimization and

testing workflow using the Hyperpipe class.
1 pipe = Hyperpipe(‘example_project’,
2 optimizer=‘sk_opt’,
3 optimizer_params={‘n_configurations’: 25},
4 metrics=[‘accuracy’, ‘precision’, ‘recall’],
5 best_config_metric=‘accuracy’,
6 outer_cv=KFold(n_splits=3),
7 inner_cv=KFold(n_splits=3))

The PHOTONAI pipeline—Extended pipeline features. The Hyperpipe relies on a cus-

tom pipeline implementation that is conceptually related to the scikit-learn pipeline [25] but

extends it with four core features. First, it enables the positioning of learning algorithms at an

arbitrary position within the pipeline. In case a PipelineElement is identified that a) provides

no transform method and b) yet is followed by one or more other PipelineElements, it automat-

ically calls predict and delivers the output to the subsequent pipeline elements. Thereby, learn-

ing algorithms can be joined to ensembles, used within sub pipelines, or be part of other

custom pipeline architectures without interrupting the data stream.

Second, it allows for a dynamic transformation of the target vector anywhere within the

data stream. Common use-cases for this scenario include data augmentation approaches—in

which the number of training samples is increased by applying transformations (e.g. rotations

to an image)—or strategies for an imbalanced dataset, in which the number of samples per

class is equalized via e.g. under- or oversampling.

Third, numerous use-cases rely on data not contained in the feature matrix at runtime, e.g.

when aiming to control for the effect of covariates. In PHOTONAI, additional data can be

streamed through the pipeline and is accessible for all pipeline steps while—importantly—

being matched to the (nested) cross-validation splits.

Finally, PHOTONAI implements pipeline callbacks which allow for live inspection of

the data flowing through the pipeline at runtime. Callbacks act as pipeline elements and can

be inserted at any point within the pipeline. They must define a function delegate which is

called with the same data that the next pipeline step will receive. Thereby, a developer may

inspect e.g. the shape and values of the feature matrix after a sequence of transformations

has been applied. Return values from the delegate functions are ignored so that after

returning from the delegate call, the original data is directly passed to the next processing

step.

Listing 2. Algorithms can be accessed via keywords and are represented together with all

potential hyperparameter values.
1 # add two preprocessing algorithms to the data stream
2 pipe += PipelineElement(‘PCA’,
3 hyperparameters={‘n_components’:
4 FloatRange(0.5, 0.8, step = 0.1)},
5 test_disabled = True)
6
7 pipe += PipelineElement(‘ImbalancedDataTransformer’,
8 hyperparameters={‘method_name’:
9 [‘RandomUnderSampler’,‘SMOTE’]},
10 test_disabled = True)

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 6 / 19

https://doi.org/10.1371/journal.pone.0254062


The pipeline element—Conveniently access cross-toolbox algorithms. In order to inte-

grate a particular algorithm into the pipeline’s data stream, PHOTONAI implements the Pipe-
lineElement class. This can either be a data processing algorithm, in reference to the scikit-
learn interface also called transformer, or a learning algorithm, also referred to as estimator.

By selecting and arranging PipelineElements, the user designs the ML pipeline. To facilitate

this process, it enables convenient access to various established implementations from state-

of-the-art machine learning toolboxes: With an internal registration system that instantiates

class objects from a keyword, import, access, and setup of different algorithms is significantly

simplified (see Listing 2). Relying on the established scikit-learn object API [23], users can

integrate any third-party or custom algorithm implementation. Once registered, custom code

fully integrates with all PHOTONAI functionalities thus being compatible with all other algo-

rithms, hyperparameter optimization strategies, PHOTONAI’s pipeline functionality, nested

cross-validation, and model persistence.

Hyperparameter optimization strategies

Hyperparameters directly control the behavior of algorithms and may have a substantial

impact on model performance. Therefore, unlike classic hyperparameter optimization,

PHOTONAI’s hyperparameter optimization encompasses the hyperparameters of the entire

pipeline—not only the learning algorithm’s hyperparameters as is usually done. The PipelineE-
lement provides an expressive syntax for the specification of hyperparameters and their respec-

tive value ranges (see Listing 2). In addition, PHOTONAI conceptually extends the

hyperparameter search by adding an on and off switch (a parameter called test_disabled) to

each PipelineElement, allowing the hyperparameter optimization strategy to check if skipping

an algorithm improves model performance. Representing algorithms together with their

hyperparameter settings enables seamless switching between different hyperparameter optimi-

zation strategies, ranging from (random) grid search to more advanced approaches such as

Bayesian or evolutionary optimization [11–13] Custom hyperparameter optimization strate-

gies can be integrated via an extended an ask- and tell-interface or by accepting an objective

function defined by PHOTONAI.

Parallel data streaming

The Switch element—Optimizing algorithm selection. Building ML pipelines involves

comparing different pipelines with each other. While in most state-of-the-art ML toolboxes

the user has to define and benchmark each pipeline manually, in PHOTONAI it is possible to

evaluate several possibilities at once. Specifically, the Switch object is interchanging several

algorithms at the same pipeline position, representing an OR-Operation (see Fig 2). With data

processing steps, learning algorithms and their hyperparameters intimately entangled, this

enables algorithm selection to be part of the hyperparameter optimization process. For an

example usage of the Switch element see example code on github.

The Stack element—Combining data streams. The Stack object acts as an AND-Opera-

tion. It allows several algorithms to share a particular pipeline position, streams the data to

each element and horizontally concatenates the respective outputs (see Fig 2 and Listing 3 or

demo code on github). Thus, new feature matrices can be created by processing the input in

different ways and likewise, ensembles can be built by training several learning algorithms in

parallel.

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 7 / 19

https://github.com/wwu-mmll/photonai/blob/master/examples/basic/switch.py
https://github.com/wwu-mmll/photonai/blob/master/examples/basic/stack.py
https://doi.org/10.1371/journal.pone.0254062


Listing 3. Using the Stack object, two learning algorithms can be trained in parallel result-

ing in various predictions that can e.g. to be fed into a subsequent meta-learner to create an

ensemble.
1
2 # set up two learning algorithms in an ensemble
3 ensemble = Stack(‘estimators’, use_probabilities = True)
4 ensemble += PipelineElement(‘DecisionTreeClassifier’,
5 criterion=‘gini’,
6 hyperparameters={‘min_samples_split’:
7 IntegerRange(2, 4)})
8 ensemble += PipelineElement(‘LinearSVC’,
9 hyperparameters={‘C’: FloatRange(0.5, 25)})
10
11 pipe += ensemble

The Branch element—Building nested pipelines. Finally, the Branch class constitutes a

parallel sub-pipeline containing a distinct sequence of PipelineElements. It can be used in com-

bination with the Switch and Stack elements enabling the creation of complex pipeline archi-

tectures integrating parallel sub-pipelines in the data flow (see usage example on github). This

could be particularly useful when deriving distinct predictions from several data subdomains,

such as different brain regions, and further apply a voting strategy to the respective outputs.

Increasing workflow efficiency

Accelerated computation. Several computational shortcuts are implemented in order to

most efficiently use available resources. PHOTONAI allows specifying lower or upper bounds

which the performance of a hyperparameter configuration has to exceed. Only then, the con-

figuration is further evaluated in the remaining cross-validation folds, thereby accelerating

hyperparameter search [16]. In addition, PHOTONAI can compute outer cross-validation

folds in parallel relying on the python library dask [26]. It is compatible with any custom paral-

lelized model implementation, e.g. for training a multi GPU model. Finally, PHOTONAI is

able to reuse data already calculated: It implements a caching strategy that is specifically

Fig 2. Parallel pipeline elements. A: The Switch class represents an OR-Operation and can be placed anywhere in the

sequence to interchange and compare different algorithms at the same pipeline position. B: The Stack represents an

AND-Operation and contains several algorithms to share a particular pipeline position. It streams the data to each

element and horizontally concatenates the respective outputs (see Listing 3). Next to generating new feature matrices

through several processing steps at runtime or building classifier ensembles, it can, in addition, be used in combination

with the branch element.

https://doi.org/10.1371/journal.pone.0254062.g002

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 8 / 19

https://github.com/wwu-mmll/photonai/blob/master/examples/basic/data_integration.py
https://doi.org/10.1371/journal.pone.0254062.g002
https://doi.org/10.1371/journal.pone.0254062


adapted to handle the varying datasets evolving from the nested cross-validation data splits as

well as partially overlapping hyperparameter configurations.

Model distribution. After identifying the optimal hyperparameter configuration, the

Hyperpipe trains the pipeline with the best configuration on all available data. The resulting

model including all transformers and estimators is persisted as a single file in a standardized

format, suffixed with ‘.photon’. It can be reloaded to make predictions on new, unseen data.

The .photon format facilitates model distribution, which is crucial for external model valida-

tion and thus at the heart of ML best practice, we also created a dedicated online model

repository to which users can upload their models to make them publicly available. If the

model is persisted in the .photon-format, others can download the file and make predictions

without extensive system setups or the need to share data.

Logging and visualization. PHOTONAI provides extensive result logging including both

performances and metadata generated through the hyperparameter optimization process. Each

hyperparameter configuration tested is archived including all performance metrics and comple-

mentary information such as computation time and the training, validation, and test indices.

Finally, all results can be visualized by uploading the JSON output file to a JavaScript web

application called Explorer. It provides a visualization of the pipeline architecture, analysis design,

and performance metrics. Confusion matrices (for classification problems) and scatter plots (for

regression analyses) with interactive per-fold visualization of true and predicted values are

shown. All evaluated hyperparameter configurations can be sorted and are searchable. In addi-

tion, the course of the hyperparameter optimization strategy over time is visualized (see Fig 3).

Example usage

In the following, we will provide a hands-on example for using PHOTONAI to predict heart

failure from medical data. To run the example, download the data available on kaggle [27] and

install PHOTONAI either by cloning it from Github or installing it via pip using:
1 pip install photonai

The complete example code can be downloaded from Github using this link.

Heart failure data

In the following, we will develop a model to predict mortality in the context of heart failure

based on medical records [27, 28]. The dataset consists of data from 299 patients (105 female,

194 male) in the age between 40 and 95. It provides 13 features per subject: age and gender,

several clinical blood markers, information about body functions as well as the presence of

comorbidities (anemia, diabetes), and lifestyle impacts (smoking). Finally, a boolean value

indicates whether a subject died during the follow-up period, which spans 4 to 285 days. In

approximately 68 percent of cases the patients survived while approximately 32 percent of the

patients die due to heart failure.

Hyperpipe setup

First, we will define the training, optimization, and evaluation workflow in an initial call to the

Hyperpipe class. The python code in Listing 4 shows the PHOTONAI code defining both the

data flow and the training and test procedure. After importing the relevant packages and load-

ing the data, we instantiate a Hyperpipe and choose the workflow parameters as follows:

• For the outer cross-validation loop, we specify 100 shuffled iterations each holding out a test

set of 20 percent. For the inner cross-validation loop, we select a ten-fold cross-validation.

(lines 13-14).

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 9 / 19

https://www.photon-ai.com/repo
https://www.photon-ai.com/repo
https://explorer.photon-ai.com
https://github.com/wwu-mmll/photonai
https://github.com/wwu-mmll/photonai/blob/master/examples/heart_failure/heart_failure_final.py
https://doi.org/10.1371/journal.pone.0254062


• To measure model performance, we specify that f1 score, Matthews correlation coefficient,

balanced accuracy, as well as sensitivity and specificity are to be calculated (lines 16-17).

• We optimize the pipeline for f1 score, as it maximizes both sensitive and specific predictions,

which is particularly important in medical contexts. (line 18).

• To save computational resources and time, we enable caching by specifying a cache folder

(line 22). This is particularly useful in examples where there are a lot of partially overlapping

hyperparameters to be tested.

• Finally, we specify a folder to which the output is written (line 21) and set the verbosity of

the console log to 1. At this verbosity level, information on every tested hyperparameter con-

figuration and its respective performance estimate is printed to the console.

After the hyperpipe has been defined, we can design the flow of the data by adding algo-

rithms and respective hyperparameters to the pipeline.

• First, data is normalized using scikit-learn’s StandardScaler which both centers the data and

scales it to unit variance (line 26).

Fig 3. PHOTONAI explorer. Example plots of PHOTONAI’s result visualization tool called Explorer. A: User-defined performance metrics, here

accuracy, precision and recall, for both training (blue) and test (dark) set. The horizontal line indicates a baseline performance stemming from a simple

heuristic. B: For regression problems, true and predicted values are visualized in a scatter plot on both train (left) and test (right) set. The values are

generated by the best model found in each outer folds, respectively. C: Hyperparameter optimization progress is depicted over time for each outer fold. D:

Pipeline elements and their arrangement is visualized including the best hyperparameter value of each item.

https://doi.org/10.1371/journal.pone.0254062.g003

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 10 / 19

https://explorer.photon-ai.com
https://doi.org/10.1371/journal.pone.0254062.g003
https://doi.org/10.1371/journal.pone.0254062


• Second, we impute missing values with the mean values per feature of the training set by call-

ing scikit-learn’s SimpleImputer (line 27).

Of note, we consider use cases 1 to 3 (see below) to be exploratory analyses. We believe this

simulates a naturalistic workflow of machine learning projects where different algorithms, fea-

ture preprocessing and hyperparameters are tested in a manual fashion. However, if done

incorrectly, this inevitably leads to a manual over-fitting to the data at hand, which is especially

troublesome in high-stake medical problems with small datasets. In this context, manual over-

fitting happens implicitly when data scientists optimize algorithms and hyperparameters by

repeatedly looking at cross-validated test performance. In PHOTONAI, this problem can eas-

ily be avoided by setting the Hyperpipe parameter use_test_set to False. This way, PHOTONAI

will still apply nested cv but will only report validation performances from the inner cv loop,

not the outer cv test data. In the final use case 4, use_test_set is set to True to estimate final

model performance and generalizability on the actual test sets.

Use case 1—Estimator selection

Although some rules of thumb for selecting the correct algorithm do exist, knowing the opti-

mal learning algorithm for a specific task a priori is impossible (no free lunch theorems [29]).

Therefore, the possibility to automatically evaluate multiple algorithms within nested cross-

validation is crucial to efficient and unbiased machine learning analyses. In this example, we

first train a machine learning pipeline and consider three different learning algorithms that we

find appropriate for this learning problem. These algorithms are added to the PHOTONAI

Hyperpipe in addition to the scaling and imputing preprocessing steps defined above.

Setup.

• To compare different learning algorithms, an Or-Element called Switch is added to the pipe-

line that toggles between several learning algorithms (see Listing 5). Here, we compare a ran-

dom forest (RF), gradient boosting (GB), and a support vector machine (SVM) against each

other. Again, all algorithms are imported from scikit-learn, and for every element we specify

algorithm-specific hyperparameters that are automatically optimized.

• To efficiently optimize hyperparameters of different learning algorithms, the switch opti-

mizer in PHOTONAI can be used which optimizes each learning algorithm in an individual

hyperparameter space (line 19 in Listing 4). We apply Bayesian optimization to each space

respectively and limit the number of tested configurations to 10 (line 20 in Listing 4).

Finally, we can start the training, optimization, and test procedure by calling Hyperpipe.fit().
After the pipeline optimization has finished, we extract not only the overall best hyperpara-

meter configuration and its respective performance, but also the best configuration perfor-

mance per learning algorithm (RF, GB, SVM, see line 21 in Listing 5).

Listing 4. PHOTONAI code to define an initial training, optimization and test proecdure

for the heart failure dataset. The pipeline normalizes the data and imputes missing values.
1 import pandas as pd
2 from sklearn.model_selection import KFold, ShuffleSplit
3 from photonai.base import Hyperpipe, PipelineElement, Switch
4 from photonai.optimization import FloatRange, IntegerRange,
MinimumPerformanceConstraint
5
6 # load data
7 df = pd.read_csv(‘./heart_failure_clinical_records_dataset.csv’)
8 X = df.iloc[:, 0:12]
9 y = df.iloc[:, 12]

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 11 / 19

https://doi.org/10.1371/journal.pone.0254062


10
11 # setup training and test workflow
12 pipe = Hyperpipe(‘heart_failure’,
13 outer_cv = ShuffleSplit(n_splits = 100,

test_size = 0.2),
14 inner_cv = KFold(n_splits = 10, shuffle = True),
15 use_test_set = False,
16 metrics=[‘balanced_accuracy’, ‘f1_score’,

‘matthews_corrcoef’,
17 ‘sensitivity’, ‘specificity’],
18 best_config_metric=‘f1_score’,
19 optimizer=‘switch’,
20 optimizer_params={‘name’: ‘sk_opt’,

‘n_configurations’: 10},
21 project_folder=‘./tmp’,
22 cache_folder=‘./cache’,
23 verbosity = 1)
24
25 # arrange a sequence of algorithms subsequently applied
26 pipe += PipelineElement(‘StandardScaler’)
27 pipe += PipelineElement(‘SimpleImputer’)
28
29 # learning algorithm’s will be added here
30 . . .

31 #
32
33 # start the training, optimization and test procedure
34 pipe.fit(X, y)

Listing 5. PHOTONAI code to define three learning algorithms that are tested by PHOTO-

NAI automatically through an OR-element, the PHOTONAI Switch.
1 # compare different learning algorithms in an OR_Element
2 estimators = Switch(‘estimator_selection’)
3
4 estimators += PipelineElement(‘RandomForestClassifier’,
5 criterion=‘gini’,
6 bootstrap = True,
7 hyperparameters={‘min_samples_split’:

IntegerRange(2, 30),
8 ‘max_features’: [‘auto’, ‘sqrt’,

‘log2’]})
9
10 estimators += PipelineElement(‘GradientBoostingClassifier’,
11 hyperparameters={‘loss’: [‘deviance’,

‘exponential’],
12 ‘learning_rate’: FloatRange

(0.001, 1,
13 “logspace”)})
14 estimators += PipelineElement(‘SVC’,
15 hyperparameters={‘C’: FloatRange(0.5, 25),
16 ‘kernel’: [‘linear’, ‘rbf’]})
17 pipe += estimators
18
19 pipe.fit(X, y)
20
21 pipe.results_handler.get_mean_of_best_validation_configs_per_esti-
mator()

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0254062


Results. The results of the initial estimator selection analysis are given in the first line of

Table 1. We observe an f1 score of 75% and a Matthews correlation coefficient of 65%. The

best config found by the hyperparameter optimization strategy applied the Random Forest

classifier, which thus in this case outperforms gradient boosting and the Support Vector

Machine.

Listing 6. Code for adding a feature selection pipeline element that uses Lasso coefficients

to rank and remove features.
1 pipe += PipelineElement(‘LassoFeatureSelection’,
2 hyperparameters={‘percentile’: FloatRange(0.1,

0.5),
3 ‘alpha’: FloatRange(0.5, 5,
4 range_type=“logspace”)})

Use case 2—Feature selection

Next, we will evaluate the effect of an additional feature selection step. This can be done, e.g.,

by analyzing a linear model’s normalization coefficients. While low coefficient features are

interpreted detrimental to the learning process since they might induce error variance into the

data, high coefficient features are interpreted as important information to solve learning prob-

lem. A frequently used feature selection approach is based on the Lasso algorithm, as the Lasso

implements an L1 regularization norm that penalizes non-sparsity of the model and thus

pushes unnecessary model weights to zero. The Lasso coefficients can then be used to select

the most important features.

Setup. The Lasso implementation is imported from scikit-learn, and in order to prepare it

as a feature selection tool, accessed via a simple wrapper class provided in PHOTONAI. The

wrapper sorts the fitted model’s coefficients and only features falling in the top k percentile are

kept. Both the Lasso’s alpha parameter as well as the percentile of features to keep can be opti-

mized. We add the pipeline element LassoFeatureSelection as given in Listing 6 between the

SimpleImputer pipeline element and the estimator switch. Again, we run the analysis and eval-

uate only the validation set (Hyperpipe parameter use_test_set is set to False).
Results. The performance metrics for the pipeline with Lasso Feature Selection are given

in Table 1. We see a minor performance decrease of approximately 1%. Apparently, linear fea-

ture selection is unhelpful indicating that the learning problem is rather under- than over-

described by the features given. Interestingly, while 90% of the subjects are correctly identified

as survivors (specificity of 91%), a notable amount of actual deaths are missed (sensitivity of

73%). The lower sensitivity in relation to a high specificity might be due to the class imbalance

present in the data with more subjects surviving than dying (68%), which we will now investi-

gate in use case 3.

Listing 7. Code for adding class balancing algorithms to the pipeline and optimizing the

concrete class balancing strategy.
1 pipe += PipelineElement(‘ImbalancedDataTransformer‘,

Table 1. Validation performance metrics for three different pipeline setups.

Pipeline f1 matthews corr BACC sens spec
Estimator selection pipeline 0.7504 0.6583 0.8217 0.9144 0.7289

+ Lasso feature selection 0.7496 0.6570 0.8211 0.7300 0.9123

+ class balancing 0.7644 0.6619 0.8384 0.8210 0.8557

Notes: matthews corr = Matthews correlation coefficient, BACC = balanced accuracy, sens = sensitivity, spec = specificity

https://doi.org/10.1371/journal.pone.0254062.t001

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 13 / 19

https://doi.org/10.1371/journal.pone.0254062.t001
https://doi.org/10.1371/journal.pone.0254062


2 hyperparameters={‘method_name‘:
[‘RandomUnderSampler‘,

3 ‘RandomOverSampler‘,
4 ‘SMOTE‘]})

Use case 3—Handling class imbalance

As a next step, we will try to enhance predictive accuracy and balance the trade-off between

specificity and sensitivity by decreasing class imbalance.

Setup. In order to conveniently access class balancing algorithms, PHOTONAI offers a

wrapper calling over- and under-sampling (or a combination of both) techniques imple-

mented in the imbalanced-learn package. We remove the LassoFeatureSelection pipeline ele-

ment and substitute it with an ImbalancedDataTransformer pipeline element as shown in

Listing 7. As a hyperparameter, we optimize the specific class balancing method itself by evalu-

ating random undersampling, random oversampling, and a combination of both called

SMOTE.

Results. Rerunning the analysis with a class balancing algorithm yields a slightly better

performance (f1 score = 0.76, Matthews correlation coefficient = 0.66, see line 3 in Table 1).

The optimal class balancing method was found to be SMOTE, a combination of under- and

over-sampling. More importantly, a greater balance between sensitivity (82%) and specificity

(86%) was reached which also resulted in a higher balanced accuracy compared to the two pre-

vious pipelines (BACC = 84%).

Use case 4—Estimating final model performance

From the results of use cases 2 and 3, we can see that only class balancing but not feature

selection slightly increased the classification performance in this specific dataset. Addition-

ally, when we examine the results of the three learning algorithms of the class balancing

pipeline, we can further see that the Random Forest (f1 = 0.76) is still outperforming

gradient boosting and the Support Vector Machine (see Table 2). Therefore, we restrict

our final machine learning pipeline to a class balancing element and a Random Forest

classifier.

Listing 8. Changes made to the PHOTONAI script to generate the final model
1 pipe = Hyperpipe(. . .

2 use_test_set = True,
3 optimizer=‘grid_search’,
4 optimizer_params = {},
5 performance_constraints = MinimumPerformanceConstraint

(‘f1_score’,
6 threshold = 0.7,
7 strategy=“mean”)
8 . . .)

Table 2. Different estimator’s average best validation performance for the class balancing pipeline.

Estimator f1 matthews corr BACC sens spec
Random Forest 0.7623 0.6602 0.8368 0.8161 0.8575

Gradient Boosting 0.7393 0.6233 0.8192 0.7949 0.8435

SVM 0.7017 0.5717 0.7895 0.7445 0.8344

Notes: matthews corr = Matthews correlation coefficient, BACC = balanced accuracy, sens = sensitivity, spec = specificity

https://doi.org/10.1371/journal.pone.0254062.t002

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 14 / 19

https://doi.org/10.1371/journal.pone.0254062.t002
https://doi.org/10.1371/journal.pone.0254062


9 . . .

10 pipe += PipelineElement(‘RandomForestClassifier’,
11 criterion=‘gini’,
12 bootstrap = True,
13 hyperparameters={‘min_samples_split’:

IntegerRange(2, 30),
14 ‘max_features’: [‘auto’, ‘sqrt’,

‘log2’]})
15 . . .

16 pipe.fit(X,y)

Setup. In this last step, we finish model development and estimate the final model perfor-

mance. We remove the estimator switch from the pipeline and substitute it by a single Random

Forest pipeline element. In addition, we decide to thoroughly investigate the hyperparameter

space and therefore change the hyperparameter optimizer to grid search (see line 3-4 in Listing

8). In addition, we use the previously calculated validation metrics as a rough guide to specify

a lower performance bound that promising hyperparameter configurations must outperform.

Specifically, we apply a MinimumPerformanceConstraint on f1 score, meaning that inner fold

calculations are aborted when the mean performance is below 0.7 (see line 5-7 in Listing 8).

Thereby, less promising configurations are dismissed early and computational resources are

saved. Importantly, we will now set use_test_set to True to make sure that PHOTONAI will

evaluate the best hyperparameter configurations on the outer cv test set.

Results. The final model performance on the test set is given in Table 3. All metrics

remained stable when being evaluated on the previously unused test set. As a comparison,

Chicco et al. (2020) [30] trained several learning algorithms to the heart failure dataset used in

this example (see row 2 of table 11 in Chicco et al. [30]). PHOTONAI is able to outperform the

best model of Chicco et al. which was trained on all available features in a similar fashion (see

Table 3). For the f1 score, the PHOTONAI pipeline reaches 0.746. Also, sensitivity and speci-

ficity appears to be more balanced in comparison to Chicco et al.

Fig 4 shows a parallel plot of the hyperparameter space PHOTONAI has explored in this

final analysis. Since we have used a grid search optimizer, all possible hyperparameter combi-

nations have been evaluated. Interestingly, when looking at Fig 4, a clear disadvantage becomes

evident when no class balancing algorithm is used, random under-sampling appears to provide

generally better model performance.

Discussion

We introduced PHOTONAI, a high-level Python API for rapid machine learning model devel-

opment. As demonstrated in the example above, both the pipeline and the training and test

procedure, as well the integration of hyperparameter optimization can be implemented in a

few lines of code. In addition, experimenting with different algorithm sequences, hyperpara-

meter optimization strategies, and other workflow-related parameters was realized by adding

single lines of code or changing a few keywords. Through the automation of the training, vali-

dation and test procedure, data transformation and feature selection steps are restricted to the

Table 3. Test performance metrics for the final model.

f1 matthews corr BACC sens spec
Chicco et al. 0.714 0.607 0.818 0.780 0.856

Final PHOTONAI model 0.746 0.619 0.818 0.813 0.823

Notes: matthews corr = Matthews correlation coefficient, BACC = balanced accuracy, sens = sensitivity, spec = specificity

https://doi.org/10.1371/journal.pone.0254062.t003

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 15 / 19

https://doi.org/10.1371/journal.pone.0254062.t003
https://doi.org/10.1371/journal.pone.0254062


validation set only, thus strictly avoiding data leakage even when used by non-experts. Interest-

ingly, this fundamentally important separation between training and test data was apparently

not implemented for the feature selection analyses in Chicco et al., as they seem to have

selected the most important features on the whole dataset which has most likely inflated their

final model performance. Examples like this again highlight the importance of easy-to-use

nested cross-validation frameworks that guarantee an unbiased estimate of the predictive per-

formance and generalization error, which is key to, e.g., the development of reliable machine

learning applications in the medical domain. Finally, the toolbox automatically identified the

best hyperparameter configurations, yielded in-depth information about both validation and

test set performance, and offered convenient estimator comparison tools.

PHOTONAI is developed with common scientific use cases in mind, for which it can sig-

nificantly decrease programmatic overhead and support rapid model prototyping. However,

use cases that substantially differ in the amount of available data or in the computational

resources required to train the model, might require a different model development workflow.

For example, while all kinds of neural networks can be integrated in PHOTONAI, developing

and optimizing extremely complex and specialized deep neural networks with specialized

architecture optimization protocols might be cumbersome within the PHOTONAI frame-

work. In addition, unbiased performance evaluation in massive amounts of data might signifi-

cantly relax the need for strict cross-validation schemes.

In addition, cross-toolbox access to algorithms comes at the cost of manually pre-registrat-

ing the algorithms with the PHOTONAI Registry system. In addition, if the algorithm does

not inherently adheres to the scikit-learn object API, the user needs to manually write a wrap-

per class calling the algorithm according to the fit-predict-transform interface. However, this

process is only required once and can afterwards be shared with the community, thereby

enabling convenient access for other researchers without further effort. Furthermore, once

registered, all integrated algorithms are instantaneously compatible with all other

Fig 4. Parallel plot showing hyperparameter exploration. All three hyperparameters used in the final model are

shown on the x-axis. They include the class balancing algorithm and two hyperparameters of the Random Forest

classifier (maximum number of features and minimum samples per split). Each line represents a specific combination

of all hyperparameters. The line color reflects the corresponding model performance based on the f1 score. Higher

model performance is shown in dark red while lower model performance is shown in blue. Random under-sampling

appears to increase model performance slightly while using no class balancing algorithm decreases overall model

performance. CB = class balancing, RUS = random under-sampling, ROS = random over-sampling,

SMOTE = synthetic minority oversampling technique, RF = Random Forest.

https://doi.org/10.1371/journal.pone.0254062.g004

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 16 / 19

https://doi.org/10.1371/journal.pone.0254062.g004
https://doi.org/10.1371/journal.pone.0254062


functionalities of the PHOTONAI framework, for example, can they be optimized with any

hyperparameter optimization algorithm of choice.

In the future, we intend to extend both functionality and usability. First, we will incorporate

additional hyperparameter optimization strategies. While this area has seen tremendous prog-

ress in recent years, these algorithms are often not readily available to data scientists, and stud-

ies systematically comparing them are extremely scarce. Second, we seek to extend automatic

ensemble generation to fully exploit the various models trained during the hyperparameter

optimization process. Generally, we strive to pre-register more of the arising ML utility pack-

ages, so that accessibility is facilitated and functionality can be used within PHOTONAI as a

unified framework. Finally, we would like to improve our convenience functions for model

performance assessment and visualization.

In addition to these core functionalities, we aim to establish an ecosystem of add-on mod-

ules simplifying ML analyses for different data types and modalities. For example, we will add

a neuroimaging module as a means to directly use multimodal Magnetic Resonance Imaging

(MRI) data in ML analyses. In addition, a graph module will integrate existing graph analysis

functions and provide specialized ML approaches for graph data. Likewise, modules integrat-

ing additional data modalities such as omics data would be of great value. More generally,

PHOTONAI would benefit from modules making novel approaches to model interpretation

(i.e. Explainability) available.

Conclusion

In summary, PHOTONAI is especially well-suited in contexts requiring rapid and iterative

evaluation of novel approaches such as applied ML research in medicine and the Life Sciences.

In the future, we hope to attract more developers and users to establish a thriving, open-source

community.

Author Contributions

Conceptualization: Ramona Leenings, Nils Ralf Winter, Tim Hahn.

Formal analysis: Ramona Leenings, Benjamin Risse, Xiaoyi Jiang, Tim Hahn.

Funding acquisition: Udo Dannlowski, Tim Hahn.

Project administration: Ramona Leenings, Nils Ralf Winter.

Software: Ramona Leenings, Nils Ralf Winter, Lucas Plagwitz, Vincent Holstein, Jan Ernsting,

Kelvin Sarink, Lukas Fisch, Jakob Steenweg, Leon Kleine-Vennekate, Julian Gebker, Daniel

Emden, Dominik Grotegerd, Tim Hahn.

Supervision: Tim Hahn.

Writing – original draft: Ramona Leenings, Nils Ralf Winter, Tim Hahn.

Writing – review & editing: Ramona Leenings, Nils Ralf Winter, Vincent Holstein, Dominik

Grotegerd, Nils Opel, Benjamin Risse, Xiaoyi Jiang, Udo Dannlowski, Tim Hahn.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. {TensorFlow}: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.

2. Team TTD, Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, et al. Theano: A Python

Framework for Fast Computation of Mathematical Expressions. arXiv preprint arXiv:160502688. 2016;.

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 17 / 19

https://www.tensorflow.org/
https://doi.org/10.1371/journal.pone.0254062


3. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al. Caffe: Convolutional Architecture

For Fast Feature Embedding. In: Proceedings of the 22nd ACM international conference on Multimedia;

2014. p. 675–678.

4. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,

High-Performance Deep Learning Library. In: Advances in Neural Information Processing Systems;

2019. p. 8024–8035.

5. Chollet F, Others. Keras; 2015. Available from: https://keras.io.

6. Howard J, Others. fastai; 2018. \url{https://github.com/fastai/fastai}.

7. Pedregosa F, Weiss R, Brucher M, Varoquaux G, Gramfort A, Michel V, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research. 2011; 12(Oct):2825–2830.

8. Lemaitre G, Nogueira F, Aridas CK. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbal-

anced Datasets in Machine Learning. Journal of Machine Learning Research. 2017; 18(17):1–5.

9. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for

neuroimaging with scikit-learn. Frontiers in Neuroinformatics. 2014; 8. https://doi.org/10.3389/fninf.

2014.00014 PMID: 24600388

10. Brett M, Markiewicz CJ, Hanke M, Côté MA, Cipollini B, McCarthy P, et al. nibabel; 2020. Available

from: https://zenodo.org/record/4295521.

11. Head T, MechCoder, Louppe G, Shcherbatyi I, Fcharras, Vinı́cius Z, et al. Scikit-optimize; 2018. Avail-

able from: https://doi.org/10.5281/zenodo.1207017.

12. Hutter F, Hoos HH, Leyton-Brown K. Sequential Model-Based Optimization for General Algorithm Con-

figuration. In: International Conference on Learning and Intelligent Optimization. Springer; 2011.

p. 507–523.

13. Rapin J, Teytaud O. Nevergrad—A gradient-free optimization platform; 2018. \url{https://GitHub.com/

FacebookResearch/Nevergrad}.

14. Pedregosa F. Hyperparameter Optimization with Approximate Gradient. Département Informatique de

l’École Normale Supérieure, Paris; 2016.

15. Kartik Chandra Erik Meijer SAEAFIDJGMGBHSSATSY. Gradient Descent: The Ultimate Optimizer.

Stanford University, Palo Alto, California—USA Facebook, Menlo Park, California, USA; 2019.

16. Feurer M, Klein A, Eggensperger K, Springenberg JT, Blum M, Hutter F. Auto-sklearn: Efficient and

Robust Automated Machine Learning; 2019. p. 113–134. Available from: http://link.springer.com/10.

1007/978-3-030-05318-5_6.

17. Olson RS, Moore JH. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learn-

ing; 2019. p. 151–160. Available from: http://link.springer.com/10.1007/978-3-030-05318-5_8.

18. Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K. Auto-WEKA 2.0: Automatic Model Selec-

tion and Hyperparameter Optimization in WEKA. Journal of Machine Learning Research. 2017; 18

(1):826–830.

19. Jin H, Song Q, Hu X. Auto-Keras: An Efficient Neural Architecture Search System. In: Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining—KDD’19.

New York, New York, USA: ACM Press; 2019. p. 1946–1956. Available from: http://dl.acm.org/citation.

cfm?doid=3292500.3330648.

20. Zoph B, Le QV. Neural Architecture Search with Reinforcement Learning. 2016;.

21. Pham H, Guan MY, Zoph B, Le QV, Dean J. Efficient Neural Architecture Search via Parameter Shar-

ing. 2018;.

22. Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, et al. AutoGluon-Tabular: Robust and Accu-

rate AutoML for Structured Data. 2020;.

23. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API Design For Machine

Learning Software: Experiences From the scikit-learn Project. 2013;.

24. Pedregosa F, Weiss R, Brucher M, Varoquaux G, Gramfort A, Michel V, et al. DummyClassifier; 2020.

Available from: https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.

html.

25. Pedregosa F, Weiss R, Brucher M, Varoquaux G, Gramfort A, Michel V, et al. Pipeline; 2020. Available

from: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html.

26. Rocklin M. Dask: Parallel computation with blocked algorithms and task scheduling. In: Proceedings of

the 14th python in science conference. 130-136. Citeseer; 2015.

27. Ahmad T. Heart Failure Prediction; 2020. Available from: https://www.kaggle.com/andrewmvd/heart-

failure-clinical-data

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 18 / 19

https://keras.io
https://github.com/fastai/fastai
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
http://www.ncbi.nlm.nih.gov/pubmed/24600388
https://zenodo.org/record/4295521
https://doi.org/10.5281/zenodo.1207017
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
http://link.springer.com/10.1007/978-3-030-05318-5_6
http://link.springer.com/10.1007/978-3-030-05318-5_6
http://link.springer.com/10.1007/978-3-030-05318-5_8
http://dl.acm.org/citation.cfm?doid=3292500.3330648
http://dl.acm.org/citation.cfm?doid=3292500.3330648
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://www.kaggle.com/andrewmvd/heart-failure-clinical-data
https://www.kaggle.com/andrewmvd/heart-failure-clinical-data
https://doi.org/10.1371/journal.pone.0254062


28. Ahmad T, Munir A, Bhatti SH, Aftab M, Raza MA. Survival analysis of heart failure patients: A case

study. PLOS ONE. 2017; 12(7):e0181001. https://doi.org/10.1371/journal.pone.0181001

29. Lockett AJ. No free lunch theorems. Natural Computing Series. 2020; 1(1):287–322. https://doi.org/10.

1007/978-3-662-62007-6_12

30. Chicco D, Jurman G. Machine learning can predict survival of patients with heart failure from serum cre-

atinine and ejection fraction alone. BMC Medical Informatics and Decision Making. 2020; 20(1):16.

https://doi.org/10.1186/s12911-020-1023-5

PLOS ONE PHOTONAI—A Python API for rapid machine learning model development

PLOS ONE | https://doi.org/10.1371/journal.pone.0254062 July 21, 2021 19 / 19

https://doi.org/10.1371/journal.pone.0181001
https://doi.org/10.1007/978-3-662-62007-6_12
https://doi.org/10.1007/978-3-662-62007-6_12
https://doi.org/10.1186/s12911-020-1023-5
https://doi.org/10.1371/journal.pone.0254062

