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Abstract

Handgrip strength is a widely used measure of muscle strength and a predictor of a range of

morbidities including cardiovascular diseases and all-cause mortality. Previous genome-

wide association studies of handgrip strength have focused on common variants primarily in

persons of European descent. We aimed to identify rare and ancestry-specific genetic vari-

ants associated with handgrip strength by conducting whole-genome sequence association

analyses using 13,552 participants from six studies representing diverse population groups

from the Trans-Omics in Precision Medicine (TOPMed) Program. By leveraging multiple

handgrip strength measures performed in study participants over time, we increased our

effective sample size by 7–12%. Single-variant analyses identified ten handgrip strength

loci among African-Americans: four rare variants, five low-frequency variants, and one com-

mon variant. One significant and four suggestive genes were identified associated with

handgrip strength when aggregating rare and functional variants; all associations were

ancestry-specific. We additionally leveraged the different ancestries available in the UK Bio-

bank to further explore the ancestry-specific association signals from the single-variant

association analyses. In conclusion, our study identified 11 new loci associated with hand-

grip strength with rare and/or ancestry-specific genetic variations, highlighting the added

value of whole-genome sequencing in diverse samples. Several of the associations identi-

fied using single-variant or aggregate analyses lie in genes with a function relevant to the

brain or muscle or were reported to be associated with muscle or age-related traits. Further

studies in samples with sequence data and diverse ancestries are needed to confirm these

findings.

Introduction

Handgrip strength is an accessible measure of muscle strength and is used as a proxy of mus-

cular fitness. It is quantified by measuring the amount of static force that the hand can squeeze

around a dynamometer. Handgrip strength varies by age, and men have greater handgrip

strength than women at all ages [1, 2]. For both men and women, peak handgrip strength is

observed in the fourth decade followed by a gradual decline with age. Handgrip strength is a

predictor of a range of morbidities including cardiovascular disease and all-cause mortality

[3], is a marker of frailty [4, 5] and a key component of sarcopenia [6]. Handgrip strength is

considered a marker of healthy aging [7–9]. It has been reported to be associated with both

overall and exceptional survival in men [10, 11] and may also be a marker of brain health [12–

14].

Heritability of handgrip strength, estimated by twin studies, is high (h2 = 30–65%) [15–17].

However, few genome-wide association studies (GWAS) have been conducted for handgrip

strength. A large and well-powered handgrip strength GWAS (N = 195,180 European partici-

pants) combined data from the Cohorts for Heart and Aging Research in Genomic Epidemiol-

ogy (CHARGE) Consortium and the UK Biobank (UKBB) and detected 16 genome-wide

significant (P<5×10−8) loci associated with handgrip strength [18]. A more recent and larger

GWAS was performed in 223,315 participants from the UKBB but analyzed a different pheno-

type, the relative handgrip strength, defined as the average of measurements of right and left

hand divided by weight [19]. The handgrip strength GWAS conducted to date included
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European-ancestry participants and did not leverage the multiple observations of handgrip

strength available in some studies. The genetic associations of the natural variation in handgrip

strength could help understanding the biological mechanisms of aging.

We aimed to identify genetic variants (specifically rare and ancestry-specific variants) asso-

ciated with handgrip strength using multi-ancestry samples and whole genome sequence data

from the National Heart, Lung and Blood Institute (NHLBI) Trans-Omics in Precision Medi-

cine (TOPMed) Program. Leveraging multi-ancestry samples can improve our understanding

of a trait by identifying novel variants that are not common in all populations. For studies

where multiple handgrip strength observations over time per person were available, we lever-

aged this information to increase the effective sample size. We compared three different meth-

ods for incorporating multiple measures of handgrip strength per person (one handgrip

strength observation close to age 60 years vs the mean of all handgrip strength observations vs
inclusion of all handgrip strength observations and accounting for correlations between multi-

ple measurements). We additionally leveraged the different ancestries available in the UKBB

to further explore the ancestry-specific association signals identified in TOPMed.

Materials and methods

Populations and participants

The study design included TOPMed participants from six cohorts who had handgrip strength

measurements available: the Old Order Amish study, the Atherosclerosis Risk in Communities

(ARIC) Study, the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS),

the Hypertension Genetic Epidemiology Network (HyperGEN) and the Women’s Health Ini-

tiative (WHI). Descriptions of each cohort are available in S1 File. These participants repre-

sented six study-reported population groups: Non-Hispanic Whites/European-Americans

(EA), Non-Hispanic Blacks/African-Americans (AA), Hispanics/Latinos, Asians/Pacific-

Islanders, American-Indian/Alaskan-Native, and Other.

Handgrip strength harmonization

The number of handgrip strength measures from multiple visits per study participant varied

across studies (ranging from one to nine). Details on the handgrip strength measurement pro-

tocol for each study are available in S1 File. For each exam with a handgrip strength measure,

we selected the maximum value for each participant. This approach is the standard handgrip

strength protocol used in many epidemiological and GWAS studies [1, 2, 18, 20]. We removed

weak handgrip strength observations (< 5kg) that were more likely to be measurement errors

than real values. In addition, for studies with handgrip strength available at multiple study vis-

its (FHS, CHS and WHI), we removed outliers (|minimum or maximum handgrip strength—

mean handgrip strength| > 20kg by participant). In total, we removed 123 observations (weak

value or outliers). The final sample size consisted of 13,552 unique participants contributing

36,872 handgrip strength observations.

Whole genome sequencing

The NHLBI TOPMed program provided whole genome sequence (WGS), performed at an

average depth of 38× by several sequencing centers (New York Genome Center; Broad Insti-

tute of MIT and Harvard; University of Washington Northwest Genomics Center; Illumina

Genomic Services; Psomagen, Inc.; and Baylor Human Genome Sequencing Center), using

DNA from blood. Details regarding the laboratory methods, data processing and quality con-

trol are described in Taliun et al. [21] and in documents included in each TOPMed accession
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released on the database of Genotypes and Phenotypes (dbGaP). Processing of whole genome

sequences was harmonized across genomic centers using a standard pipeline [22]. This study

utilized genotypes from TOPMed ‘freeze 8’ that comprised 186K samples, although fewer

actual participants were included based on the availability of handgrip strength measures. Var-

iant discovery and genotype calling were performed jointly across TOPMed and Center for

Common Disease Genetics (CCDG) studies for all samples using the GotCloud pipeline [23].

A support vector machine quality filter was trained using known variants (positive training

set) and Mendelian-inconsistent variants (negative training set). The TOPMed Data Coordi-

nating Center performed additional quality control checks for sample identity issues including

pedigree errors, sex discrepancies, and genotyping concordance. The reads were aligned to

human genome build GRCh38 using a common pipeline across all centers. After site level fil-

tering, TOPMed freeze 8 consisted of 1.02B variants (single nucleotide variants (SNVs) and

short insertion-deletion (Indels) variants). As the analysis methods we use require no missing

genotype data, we included in our analyses genotypes with a low depth (less than 10-fold aver-

age depth) rather than imputing them to the mean, as is done by most software. The genotype

files were coded using the same reference allele for all studies and ancestries and the “minor”

allele was defined based on the overall allele frequency in TOPMed.

Principal Component Analyses (PCA) and relatedness estimates

PCA and relatedness (IBD) estimates were made for 140,062 TOPMed samples using 638,486

SNVs passing QC, linkage disequilibrium (LD)-pruned from the genotypes with minimal

depth>10× with a minor allele frequency (MAF) threshold of 0.01 (where “minor” allele is

defined based on overall allele frequency in all of TOPMed), a missing call rate (MCR) thresh-

old of 0.01 and a LD threshold of 0.32. The ancestral principal components (PCs) data were

created by running the GENetic EStimation and Inference in Structured samples (GENESIS)

R package ’pcair’ function [24]. PC-AiR partitions samples into ‘unrelated’ and ‘related’ sets

based on genotypes and then performs PCA on the ‘unrelated’ set, and finally projects PC val-

ues for the ‘related’ set [25]. A threshold of 2^(-9/2) as inferred by the KING ibdseg algorithm

[26] was used for defining the ‘unrelated’ set, meaning that a set of samples less related than

3rd degree was used to calculate the PCs. Relatedness was estimated using the GENESIS R

package ’pcrelate’ function [24], which estimates kinship coefficients and IBD sharing proba-

bilities conditional on ancestry [27]. The resulting relatedness matrix includes pairwise kinship

estimates for all samples, not just those used to calculate PCs. After reviewing the PCA plots as

well as the PC-SNP correlation plots, we determined that PCs 1–11 detected ancestry among

the TOPMed freeze 8 samples, and included PCs 1–11 in all analysis models, as recommended

by the TOPMed Data Coordinating Center (for an example from an earlier TOPMed data

freeze, see Extended Data Fig 1 in Taliun et al. 2021 [21]).

Association analyses in TOPMed

Harmonized handgrip strength data were pooled across six studies and WGS association anal-

ysis of handgrip strength was performed using GENESIS on the Analysis Commons [28]. For

our primary model of handgrip strength outcome (MEAN), we computed the mean of the

maximum handgrip strength observations across exams for each individual and the mean

covariate values. When height or weight information was not available at one exam, we

imputed it based on the closest exams where the information was available (~1.2% of CHS par-

ticipants, and ~5% of FHS participants). We used linear mixed effects models to test the associ-

ation of handgrip strength with the genetic variants individually, while adjusting for age at

handgrip strength measurement, age at handgrip strength measurement2, sex, height, body
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mass index (BMI), study, interaction of age, BMI and study with sex, and 11 PCs, allowing for

heterogeneous variance across study groups [29]. The adjustment for study accounted for any

differences due to differing study design. For studies with different mixes of ancestries, it also

partially adjusted for ancestry. The inclusion of PCs in the model, in addition to study,

adjusted for the residual population structure in the studies. We accounted for relatedness

using a dense empirical kinship matrix. For the X chromosome, genotypes were coded as 0

and 2 for men and 0, 1 and 2 for women.

We compared our primary analysis (MEAN) with two additional models of handgrip

strength outcome: one model where we selected handgrip strength at the visit where a partici-

pant’s age was close to 60 years (ONE), and one model where we used all available visits when

a participant had handgrip strength measures performed (ALL). For the latter, we conducted

analyses using Generalized Linear Mixed Model Association Tests (GMMAT) [30] for variants

with a MAF greater or equal to 0.001 with a random intercept to account for the correlations

of handgrip strength measures from the same individuals across visits. To compare the three

analysis strategies, we calculated correlations of effect sizes and P-values for each SNV from

the three different models of handgrip strength. The handgrip strength phenotypic correlation

between theMEAN and the ONE analysis was equal to 0.96, 0.95 and 0.93 for FHS, WHI and

CHS respectively.

To estimate the impact of using multiple handgrip strength measures on the sample size,

we calculated an effective sample size (Neff) using two different methods. We first calculated

variance ratios between analyses leveraging multiple observations (ALL orMEAN) versus one

(ONE). We also calculated a participant effective sample size using: neff ¼ n
1þðn� 1Þ�r

with ρ
being the study-specific mean of the maximum correlation observed across visits in men and

women (as men and women had different pairwise correlations), and n being the number of

handgrip strength observations for the participant. When ρ approaches 1, neff shrinks toward 1

and Neff = ∑neff shrinks towards the total number of participants (N). As the maximum corre-

lation observed across exams was used, this method may have underestimated the true effec-

tive sample size.

The effect allele frequency (EAF) was estimated in the relevant group used in the analyses.

The minor allele count (MAC) was derived based on the sample size (N) and the MAF (i.e.,

MAC = 2×N×MAF), where the MAF was defined as the EAF if EAF<0.50 and 1-EAF if EAF>

= 0.50. Single-variant association analyses excluded variants with a minor allele count (MAC)

less than 20. We used a significance threshold of P< 2×10−8 to report an association as

genome-wide significant, which was slightly more stringent than the widely adopted P-value

threshold of 5×10−8 in GWAS, based on estimations for genome-wide significance for WGS

studies in UK10K [31].

For the main analysis (MEAN), we additionally performed ancestry-specific analyses (anal-

yses conducted separately in EA and AA, the two population groups with the largest sample

sizes) and sex-stratified analyses (analyses conducted separately in men and women). The het-

erogeneity test between men and women was calculated using:
ðbmen� bwomenÞ2

SEmen2þSEwomen2 � 2�r�SEmen�SEwomen

that assessed the difference in effect sizes between men (βmen) and women (βwomen) while

accounting for correlation (r) due to relatedness, calculated using the genome-wide correlation

of the effect sizes in men and women.

We also performed gene-based tests with SKAT-O using GENESIS [32] for variants with a

MAC greater or equal to 2 and a MAF lower than 0.01. We performed analyses in the pooled

sample as well as stratified by ancestry, as rare variant aggregation tests can be underpowered

for identifying rare variant associations in admixed populations [33]. We aggregated variants

in GENECODE (v28) genes using three successively less stringent criteria: high confidence
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loss of function (hcLoF) based on Loss-Of-Function Transcript Effect Estimator [https://

github.com/konradjk/loftee], loss of function (LoF), or LoF and missense variants combined,

based on Variant Effect Predictor (VEP) Ensembl Consequence [34]. We also tested the associ-

ation of aggregated variants by a fourth strategy which enriched for likely deleterious variants

in protein coding genes by retaining variants which were 1) hcLoF or 2) missense and pre-

dicted to be deleterious (by either SIFT4G [35], Polyphen2 (HDIV or HVAR) [36], or LRT

[37]) or 3) for which VEP Ensembl Consequence has the terms inframe_insertion or infra-

me_deletion, and which have Functional Analysis through Hidden Markov Models (fathmm

[38]) XF coding_score >0.5 (pathogenic mutations). The annotation based variant filtering

and gene-based aggregation was performed using TOPMed freeze 8 WGSA Google BigQuery

annotation database on the BiodataCatalyst powered by Seven Bridges platform [https://

biodatacatalyst.nhlbi.nih.gov/]. The annotation database was built using variant annotations

generated by Whole genome Sequence annotator version v0.8 [39] and formatted by WGSA-

Parsr version 6.3.8 [https://github.com/UW-GAC/wgsaparsr]. We used a significance thresh-

old of P< 5×10−7 to report a gene as genome-wide significant, which corresponded to a

Bonferroni correction for the number of genes tested and the number of analyses performed.

Only genes with a total MAC greater than or equal to 5 were analyzed.

Association analyses in the UKBB

The UKBB was used as an independent sample for external validation of our findings. The

UKBB is a prospective cohort study with deep genetic and phenotypic data collected on

approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69

at recruitment [40]. The centralized analysis of the genetic data, including genotype quality,

population structure and relatedness of the genetic data, and efficient phasing and genotype

imputation has been described extensively elsewhere [40]. Two similar arrays were used for

genotyping (Applied Biosystems UK Biobank Lung Exome Variant Evaluation and UK Bio-

bank Axiom Arrays) and pre-phasing was performed using markers present on both arrays.

Phasing on the autosomes was carried out using SHAPEIT3 [41] and 1000 Genomes phase 3

panel to help with the phasing of non-European ancestry samples. Imputations were carried

out using the IMPUTE4 program [40] with the Haplotype Reference Consortium (HRC) refer-

ence panel or with a merged UK10K and 1000 Genomes phase 3 reference panel when a vari-

ant was not present in HRC. For chromosome X, haplotype estimation and genotype

imputation were carried out separately on the pseudo-autosomal and non-pseudo autosomal

regions. The top 40 ancestral PCs were generated using fastPCA [42], a set of 407,219 unre-

lated participants with high quality samples and 147,604 high quality markers pruned to mini-

mize LD. The corresponding PCs-loadings were then computed, and all samples were

projected onto the PCs, thus forming a set of PC scores for all samples in the cohort.

UKBB African-ancestry participants were identified using the following six self-reported

ancestries: "Caribbean", "African", "Black or Black British", "Any other Black background",

"White and Black African" and "White and Black Caribbean". We identified UKBB European-

ancestry participants using the following three self-reported ancestries: “White”, “British”, and

“Irish”. Handgrip strength in the UKBB was measured at three exams but the majority of the

participants had handgrip strength measured at only the first exam so we used only the first

exam. We excluded participants with a weak handgrip strength (< 5kg), and samples with

high heterozygosity and high missing rate, sex aneuploidy, and with different genomic and

stated sex. We used the Scalable and Accurate Implementation of Generalized mixed model

(SAIGE) [43] and linear mixed effect models to evaluate the variants that were associated with

handgrip strength in TOPMed, adjusting for age at handgrip strength measurement, age at
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handgrip strength measurement2, sex, height, BMI, age×sex, BMI×sex, and PCs significantly

associated with handgrip strength, and using an empirical kinship matrix.

Evaluation of previously published handgrip strength GWAS signals

We performed a look-up of the 1,452 SNVs that passed the genome-wide threshold in the

UKBB handgrip strength GWAS (Stage 1) [18] in our TOPMed analyses and calculated the

correlations of the effect sizes and frequencies of the effect alleles between the UKBB handgrip

strength GWAS and the TOPMed WGS.

Assessment of expression or methylation quantitative trait loci

We investigated whether the genetic variants from the handgrip strength UKBB GWAS or the

primaryMEAN TOPMed handgrip strength WGS were expression or methylation quantita-

tive trait loci (eQTLs / meQTLs) in human skeletal muscle using publicly available results

from the FUSION study [44].

Ethic statement

The data across the following studies were shared through the database of Genotype and Phe-

notype (dbGaP) exchange area. The study was approved by the appropriate institutional

review boards (IRB) and informed consent was obtained from all participants. Amish: All

study protocols were approved by the IRB at the University of Maryland Baltimore. Informed

consent was obtained from each study participant. ARIC: The ARIC Study has been approved

by IRB at all participating institutions: University of North Carolina at Chapel Hill, Johns Hop-

kins University, University of Minnesota, and University of Mississippi Medical Center. Study

participants provided written informed consent at all study visits. CHS: All CHS participants

provided informed consent, and the study was approved by the IRB or ethics review commit-

tee of University Washington. FHS: The Framingham Heart Study was approved by the IRB of

the Boston University Medical Center. All study participants provided written informed con-

sent. HyperGEN: All HyperGEN participants provided informed consent, and the study was

approved by the IRB of the University of Kentucky. WHI: All WHI participants provided

informed consent and the study was approved by the IRB of the Fred Hutchinson Cancer

Research Center.

Results

Populations and participants

WGS association analysis of handgrip strength included 13,552 TOPMed participants. The

majority of these participants belonged to two major population groups: EA (N = 10,263; 76%)

and AA (N = 3,145; 23%) (Table 1). Around 1% of the sample belonged to other population

groups (Hispanic or Latino, Asian or Pacific-Islander, American-Indian or Alaskan-Native, or

other). Additional descriptive tables of the participants are presented in S1–S4 Tables in S1

File. Mean age (SD) of participants was 69 years (14) and mean handgrip strength (SD) was

29.4 kg (11.2). A total of 4,878 participants (36%) were men. Mean handgrip strength (SD) was

equal to 23.5 kg (6.5) in women and 40.1 (9.9) in men. Mean age (SD) was 71 years (11) in EA

participants and 60 years (18) in AA participants. Mean handgrip strength was equal to 28.9

kg (10.9) in EA participants and 31.6 kg (11.9) in AA participants.
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Main single-variant analyses results

Manhattan plots and Quantile-Quantile plots for the main analysis (MEAN) are included in S1

and S2 Figs in S1 File. We observed a slight inflation of type I error (λGC = 1.08), despite hav-

ing adjusted for potential sources of heterogeneity, cryptic relatedness, and population struc-

ture. This genomic inflation factor, computed at the median, was not extreme and within the

range of many published GWAS of densely typed variants with mixed ancestries. We detected

rare or low-frequency signals in ten regions at the genome-wide significance threshold

(P<2×10−8) in at least one analysis (pooled sample of 13,552 participants, ancestry-specific, or

sex-specific analyses for theMEAN handgrip strength outcome model). The most significant

variant in each region is indicated in Table 2 and S5 Table in S1 File. All signals were specific

to AA, the variants being too rare in EA to be tested in that subgroup alone. We identified a

region in 8p12 with a variant (rs2958754) common in AA (MAF = 0.10) but rare in EA

(MAF = 0.001), and with the highest association in women (S5 Table in S1 File, P = 1.3×10−8).

Table 1. Description of the 13,552 TOPMed participants included in the main pooled whole genome sequence association analysis of MEAN handgrip strength and

the 8,408 UK Biobank participants used for replication.

TOPMED UKBB AAa

TOTAL EAa AAa Othera MEN WOMEN TOTAL

N (%) 13,552 (100) 10,263 (76) 3,145 (23) 144 (1) 4,878 (36) 8,674 (64) 8,408 (100)

Age (years), mean (SD) 69 (14) 71 (11) 60 (18) 76 (6) 68 (14) 69 (14) 52 (8)

Height (cm), mean (SD) 165 (9.4) 165 (9.5) 166 (9.3) 158 (6.5) 174 (6.9) 160 (6.5) 168 (9)

BMI (kg/m2), mean (SD) 28.4 (5.8) 27.7 (5.2) 30.9 (7.0) 27.6 (5.3) 28.2 (4.8) 28.6 (6.3) 29.3 (5.4)

Handgrip strength (kg), mean (SD) 29.4 (11.2) 28.9 (10.9) 31.6 (11.9) 21.4 (7.2) 40.1 (9.9) 23.5 (6.5) 34.0 (11.7)

Mean covariates were calculated across all exams for which handgrip strength was available for theMEAN analysis.
aEA: White/European-American; AA: Black/African-American/African-ancestry; Other: Hispanic or Latino (N = 107), Asian or Pacific-Islander (N = 17), American-

Indian or Alaskan-Native (N = 8), or other (N = 12).
b We identified UKBB African-ancestry participants using the following six self-reported ancestries: "Caribbean", "African", "Black or Black British", "Any other Black

background", "White and Black African" and "White and Black Caribbean".

https://doi.org/10.1371/journal.pone.0253611.t001

Table 2. Main association results from the WGS association analysis of MEAN handgrip strength (P<2×10−8 in at least one analysis) in the pooled sample of 13,552

TOPMed participants, or stratified by study-reported population groups (AA), and by sex (AA men and AA women).

TOTAL (N = 13,552) AAa (N = 3,145) AA MEN (N = 987) AA WOMEN

(N = 2,158)

Chr Pos (build 38) rsid Ref Alt EAF Beta P EAF Beta P EAF Beta P EAF Beta P Gene

2 198,070,149 rs74688411 A G 0.004 3.84 6.4E-09 0.018 3.95 7.5E-08 0.018 6.21 2.5E-04 0.018 2.55 4.0E-04 PLCL1
5 76,919,524 rs57776684b C T 0.003 -2.84 5.1E-04 0.013 -3.14 3.8E-04 0.011 -13.10 1.5E-08 0.014 -0.51 5.4E-01 S100Z
5 174,630,802 rs377692678 G A 0.0008 -8.66 8.0E-09 0.003 -7.63 3.5E-06 0.006 -8.98 3.2E-03 0.002 -6.03 4.0E-03 intergenic
7 95,524,137 rs544430450 G A 0.001 -6.66 1.7E-08 0.006 -6.10 2.2E-06 0.006 -6.00 4.1E-02 0.006 -5.62 1.9E-05 ASB4
8 30,273,968 rs2958754 b G A 0.023 -1.28 1.0E-05 0.096 -1.27 1.1E-04 0.085 -0.19 8.2E-01 0.101 -1.55 1.7E-06 intergenic

10 85,774,936 rs569475444 b G C 0.005 -1.76 5.5E-03 0.022 -1.80 9.1E-03 0.024 -8.16 9.4E-08 0.021 0.97 1.6E-01 GRID1
10 119,692,415 rs189542078 b C T 0.001 5.36 1.0E-05 0.005 5.16 1.0E-04 0.005 -1.08 7.5E-01 0.006 6.29 8.3E-07 intergenic
11 113,977,732 rs182799368 b G T 0.003 -3.13 4.2E-05 0.013 -3.07 2.3E-04 0.016 -9.19 2.0E-07 0.012 0.06 9.4E-01 HTR3A
14 96,043,941 rs143569685 b T A 0.003 -3.57 8.1E-07 0.014 -3.57 8.0E-06 0.013 -2.31 2.4E-01 0.015 -3.93 4.3E-07 C14orf132
18 71,404,509 rs185725127 A C 0.001 -6.92 1.4E-09 0.006 -6.52 1.9E-07 0.006 -7.21 1.6E-02 0.006 -5.97 2.6E-06 intergenic

EAF: Effect allele Frequency; Alt: Alternate (Effect) allele; Pos: Positions in build GRCh38; Beta: effect size, unit (kg).
aAA: Black/African American/African-ancestry participants.
b SNP significant in sex-stratified analyses (S5 Table in S1 File).

https://doi.org/10.1371/journal.pone.0253611.t002
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We identified sex-specific signals (Phet<0.05) in six regions (S5 Table in S1 File). The most

heterogeneous associations in 5q13, 10q23 and 11q23 were genome-wide significant in men

but not significant in women.

Gene-based tests results

We detected one gene (SLCO1A2) associated with handgrip strength at the genome-wide sig-

nificance level (P< 5×10−7) when aggregating hcLoF/LoF rare variants with a MAC� 2 and a

MAF <1% using SKAT-O. The association was EA-specific (Table 3). Among the six hcLoF

variants that contributed to the test, two frameshift mutations were associated with handgrip

strength in single-variant association analyses (12:21292255:AAC:A, delAC, rs777190986,

MAF = 0.0001, MAC = 3, P = 8.6×10−4 and 12:21306938:CTGTT:C, delTGTT, rs761787824,

MAF = 0.0002, MAC = 4, P = 2.6×10−6). Additionally, a total of four genes were suggestively

associated with handgrip strength (P< 10−5) in at least one analysis (all participants, EA only,

or AA only) when aggregating 1) hcLoF, 2) LoF, or 3) hcLoF, missense variants predicted to be

deleterious, and pathogenic indels (Table 3). One EA-specific association (C9orf43) was found

when aggregating hcLoF or LoF and was driven by a splice donor mutation (rs766369889,

MAF = 0.0002, MAC = 3, P = 1.4×10−6). Two EA-specific associations (ZNF593 and

GALNT17) were found when aggregating hcLoF, missense variants predicted to be deleterious,

and pathogenic indels. The first association (ZNF593) was driven by a missense variant

(rs2232649, MAF = 0.004, MAC = 112, P = 1.3×10−5). This variant has a MAF higher than 1%

in AA and thus it did not contribute to the gene-based test in AA only. The second association

(GALNT17) was driven by a missense variant (rs139969494, MAF = 0.001, MAC = 22,

P = 1.5×10−6). One AA-specific association (MRPL16) was found when aggregating hcLoF,

Table 3. Significant and suggestive genes (P<10−5) associated with MEAN handgrip strength in TOPMed when aggregating rare variants with a minor allele count

(MAC) greater or equal to 2 and a minor allele frequency (MAF) less than 1% using SKAT-O.

High confidence loss of function

(hcLoF) variants

LoF variants LoF and missense variants hcLoF, deleterious missense

variants and pathogenic indels

Gene Groupa n.site n.alt n.s.alt P n.site n.alt n.s.alt P n.site n.alt n.s.alt P n.site n.alt n.s.alt P
ZNF593 Total -- -- -- -- -- -- -- -- 11 343 335 0.001 6 129 129 4.7E-06

EA -- -- -- -- -- -- -- -- 11 47 44 0.07 6 20 20 0.01

AA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

MRPL16 Total 2 10 10 0.24 3 12 12 0.11 17 250 239 0.75 13 210 201 0.65

EA 2 9 9 0.15 3 11 11 0.06 14 92 90 0.34 11 86 84 0.36

AA -- -- -- -- -- -- -- -- 5 80 79 0.004 3 24 24 1.2E-06

SLCO1A2 Total 6 18 18 2.7E-07 6 18 18 2.7E-07 47 434 419 0.37 31 250 240 0.37

EA 4 10 10 1.3E-06 4 10 10 1.3E-06 31 148 148 0.12 20 77 77 0.02

AA 2 7 7 0.81 2 7 7 0.81 15 80 73 0.30 10 34 27 0.42

GALNT17 Total -- -- -- -- -- -- -- -- 19 279 278 0.03 14 98 98 3.1E-05

EA -- -- -- -- -- -- -- -- 12 81 81 1.1E-05 10 74 74 9.3E-06

AA -- -- -- -- -- -- -- -- 5 69 69 0.76 4 21 21 0.42

C9orf43 Total 3 9 9 1.0E-05 4 12 12 1.5E-05 28 409 404 0.21 14 63 63 0.05

EA 2 5 5 9.4E-06 2 5 5 9.4E-06 17 315 311 0.50 10 49 49 0.06

AA -- -- -- -- 2 7 7 0.46 13 131 130 0.80 4 30 30 0.46

n.site: the number of variant sites included in the test; n.alt: the number of alternate alleles included in the test; n.s.alt: the number of samples with an observed alternate

allele at any variant in the aggregate set.

–: no result (total minor allele count lower than 5).
aEA: White/European-American; AA: Black/African-American/African-ancestry.

https://doi.org/10.1371/journal.pone.0253611.t003
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missense variants predicted to be deleterious, and pathogenic indels and was driven by a mis-

sense variant predicted to be deleterious by SIFT (rs147545257, MAF = 0.002, MAC = 15,

P = 6.8×10−7).

Comparison of handgrip strength outcome models and calculation of the

effective sample size

We observed very high correlations when comparing effect-sizes of variants with a MAF

greater or equal to 0.001 from the three different models of handgrip strength outcomes (r

ranging from 0.93 to 0.99). The correlations when comparing–log(P)-values were also high

but a bit lower, particularly when comparing the analysis leveraging one handgrip strength

observation (ONE) versus the analyses leveraging the multiple handgrip strength observations

(MEAN and ALL, r = 0.87 and 0.85 respectively). The highest correlation (r = 0.98 for–log(P)-

values and r = 0.99 for effect sizes) was observed when comparing ALL andMEAN, the two

models that leveraged the multiple handgrip strength observations (S3 and S4 Figs in S1 File).

Results of all signals reaching genome-wide significance with at least one model of handgrip

strength outcome (ALL, ONE andMEAN) and a MAF greater or equal to 0.001 are presented

in S6 Table in S1 File. All these signals had a P-value lower than 10−7 in theMEAN analysis.

We estimated that the effective sample size increase ranged between 7 and 12% when leverag-

ing multiple handgrip strength observations and accounting for the correlations of the obser-

vations (S7 Table in S1 File).

Exploration of the main ancestry-specific TOPMed results in UKBB

We did not observe a significant association of the six low-frequency or common index vari-

ants associated withMEAN handgrip strength in TOPMed AA association analysis in UKBB

African-ancestry participants (N = 8,408; S8 Table in S1 File). Two of the six variants

(rs577776684 and rs569475444), which had a low-frequency in TOPMed AA, were rarer in the

UKBB African-ancestry participants.

Evaluation of previously published handgrip strength GWAS signals

Single-variant associations for the 16 index variants from the CHARGE+UKBB handgrip

strength GWAS [18] are presented in S9 Table in S1 File. We estimated that the power to

detect each of these 16 variants in our TOPMed sample, using significance level α = 0.05, ran-

ged between 0.18 and 0.26, assuming that the variants explain the same proportion of variance

in our sample as in the GWAS discovery UKBB sample. In addition, a total of 1,452 SNVs

were genome-wide significant in the handgrip strength GWAS Stage 1 (UKBB only). We

observed a high concordance of the direction of effects between UKBB and TOPMed (98%

when including all participants in the TOPMed analysis, 99% when including only TOPMed

EA, and 92% when including only TOPMed AA). We observed a high concordance of the

effect sizes reported by the UKBB handgrip strength GWAS and TOPMed (correlation of 0.93

when including all TOPMed participants in the analysis or only EA, and of 0.69 when includ-

ing only TOPMed AA in the analysis). We observed a difference in allele frequencies between

EA and AA for the handgrip strength UKBB GWAS results in TOPMed (S5 Fig in S1 File). A

total of 295 variants showed nominal significance (P<0.05) and 14 variants had a P-value less

than 0.001 in at least one TOPMed analysis (all participants, ancestry-specific, or sex-specific

analyses for theMEAN handgrip strength outcome model) (S10 Table in S1 File). The most

significant association was observed for the variant rs4793937 in 17q21 (P = 3.8×10−6) with a

higher effect in men compared to women.
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Assessment of expression or methylation quantitative trait loci

We investigated whether the 16 lead SNPs from the handgrip strength UKBB GWAS, the 14

SNPs from the handgrip strength UKBB GWAS with a P-value less than 0.001 in TOPMed,

and the 10 lead SNPs from the TOPMed handgrip strength WGS, were eQTLs or meQTLs in

human skeletal muscle. We found that 13 SNPs from the handgrip strength UKBB GWAS

were eQTLs (P<1×10−6) in 1p36 (PEX14), 2p21 (LRPPRC), 17q21 (HOXB cluster) and 17q25

(ACTG1). Interestingly, the allele associated with a higher handgrip strength was also associ-

ated with an increase in gene expression, except for rs6565586 in 17q25 (S11 Table in S4 File).

We found that all of these eQTLs were also meQTLs (P<1×10−6) except rs4245797 and we

identified additional meQTLs in 1p32, 2p22, 2p13, 10q24, 10q26, 11q25, and 12p12 (S12

Table in S4 File).

Discussion

This study is the first to report a WGS association analysis of handgrip strength in 13,552 par-

ticipants from six studies representing diverse population groups. By leveraging multiple

handgrip strength observations per person over time, we increased our effective sample size by

7–12%. Using single-variant analyses, we identified 10 new loci influencing handgrip strength

with rare, low-frequency or common AA-specific associations. Using gene-based tests, we

identified one significant and four suggestive genes associated with handgrip strength when

aggregating rare and functional variants. These associations were ancestry specific.

Several genetic variants identified associated with handgrip strength using single-variant

association analysis or gene-based tests in TOPMed lie in genes with a function relevant to the

brain or muscle. We describe below the function of some of these genes.

Like the findings in Willems et al handgrip strength GWAS, two TOPMed handgrip

strength hits lie within genes with a function relevant to the brain. The genetic variant

rs569475444 lies in the intron of the glutamate ionotropic receptor delta type subunit 1 gene

(GRID1) that encodes a subunit of glutamate receptor channels and mediates most of the fast

excitatory synaptic transmission in the central nervous system and play key roles in synaptic

plasticity. It is mainly expressed in the brain (Genotype-Tissue Expression project, GTEx) and

sex-specific associations in this gene were reported with Alzheimer’s Disease risk [45]. Addi-

tionally, sex differences in the glutamate system have been described [46]. The genetic variant

rs182799368 lies in the intron of the 5-hydroxytryptamine receptor 3A gene (HTR3A) that

encodes the subunit A of the type 3 receptor for 5-hydroxytryptamine (serotonin), a biogenic

hormone that functions as a neurotransmitter, a hormone, and a mitogen. Variants in this

gene were reported to be associated with multiple sclerosis [47], a potentially disabling disease

of the brain and spinal cord causing numbness or weakness in one or more limbs, tremor, lack

of coordination or unsteady gait. Additionally, sex differences in serotonin synthesis rates have

been described in human brain [48]. Emerging evidence suggests that handgrip strength is

associated with better cognitive performance in patients with major depressive disorder

(MDD) and that stronger handgrip strength is associated with greater left and right hippocam-

pal volume and reduced white matter hyperintensities in patients with MDD [14]. White mat-

ter hyperintensities are common, albeit mild, in middle adult life and are associated with

physical disability, possibly through reduced speed, fine motor coordination, and muscular

strength [49]. A correlation also exists between spinal white matter organization as determined

by diffusion tensor imaging and force control in precision grip, an important aspect of manual

dexterity in healthy subjects [50].

Other TOPMed handgrip strength hits lie within genes with a function relevant to muscle

or have reported associations with muscle or age-related traits.
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The genetic variant rs74688411 lies in the intron of the phospholipase C like 1 (PLCL1)

gene that has been reported by GWAS of adult and juvenile dermatomyositis [51], hip bone

size variation in women [52], and total bone mineral density [53]. Hip bone size and bone

mineral density are key measurable risk factors for low trauma hip fractures. Handgrip

strength is also a potentially useful objective parameter to predict fracture since it is an indica-

tor of general muscle strength, is associated with fragility and propensity to fall, and is related

to fracture risk [54, 55]. Willems et al found genome-wide genetic correlations of bone mineral

density with handgrip strength, supportive of a role for genetically predicted handgrip strength

in fracture risk [18]. The genetic variant rs544430450 lies in the intron of the ankyrin repeat

and SOCS box containing 4 gene (ASB4) that colocalizes with the insulin receptor substrate 4

(IRS4) in the hypothalamic neurons and mediates IRS4 degradation [56]. Ankyrin repeat

domain containing proteins have a role in muscle physiology [57]. Indeed, many aspects of

muscle function are controlled by the superfamily ankyrin repeat domain containing proteins,

including structural fixation of the contractile apparatus to the muscle membrane by ankyrins,

the archetypical member of the family. Interestingly, this gene is highly and specifically

expressed in the adrenal gland (GTEx). Variants in the solute carrier organic anion transporter

family member 1A2 (SLCO1A2) have been reported to be associated with statin-induced

myopathy and progressive supranuclear palsy, an uncommon brain disorder that affects,

among others, movement, control of walking (gait) and balance. This gene is specifically

expressed in the brain (GTEx). The S100 calcium binding protein Z (S100Z) and the mito-

chondrial ribosomal protein L16 (MRPL16) genes were found to be significantly different

between non-frail and frail middle-aged individuals [58]. Variants in the polypeptide N-acetyl-

galactosaminyltransferase 17 gene (GALNT17) were reported associated with physical activity

[59].

We have compared our primary analysis, where all available handgrip strength measures

were averaged for each participant (MEAN), with two additional models: one model where the

handgrip strength measure at the exam close to 60 years old was analyzed for each participant

(ONE), and one model where all available handgrip strength measures were analyzed for each

participant (ALL). Each of these approaches has strengths and limitations. The ONE analysis

does not leverage the multiple handgrip strength measures and requires selecting one handgrip

strength exam. We decided to select the exam close to 60 years old for each participant to

investigate handgrip strength in older adults at a time when handgrip strength may be declin-

ing. Thus, this approach has a limited power. TheMEAN analysis accounts for the variability

of handgrip strength measures across studies but does not account for the variability of hand-

grip strength measures within studies. A weighted analysis could be performed to account for

the number of measures for each participant within each study, but this approach is not imple-

mented in GENESIS or GMMAT software available on the Analysis Commons. We do not

expect our results to drastically change when weights are incorporated in the model. The ALL
analysis may be the best model to leverage all available handgrip strength measures. However,

this approach is computationally intensive and may over-represent participants or studies with

a higher number of handgrip strength observations (such as CHS or WHI). To note, all signals

with a MAF greater or equal to 0.001 and reaching genome-wide significance (P<2×10−8)

with at least one model of handgrip strength outcome had a P-value lower than 10−7 in the

MEAN analysis (S6 Table in S1 File).

None of our TOPMed findings were found to be eQTLs or meQTLs in human skeletal mus-

cle. However, the FUSION eQTL and meQTL study was performed in Finnish participants

whereas our signals were almost all specific to AA. Availability of eQTLs or meQTLs data in

African-ancestry participants is limited.
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Strengths of this investigation include the analysis of extremely high-quality deep sequence

data from a large, multi-ancestry sample with multiple handgrip strength observations. We

included six studies with the majority of participants identified as Non-Hispanic Black/Afri-

can-American or Non-Hispanic White/European-American. The high-quality sequence data

allowed us to assess association of handgrip strength with genetic variation across the full alle-

lic spectrum.

We also recognize limitations. Our sample size, and thus our power, is limited compared to

previous large European-ancestry GWAS, but the WGS permits the investigation of less com-

mon and rare variants. Including larger samples of individuals, especially of non-European

population groups, will improve the characterization of the genetic architecture underlying

handgrip strength. We used a slightly more stringent threshold to report genome-wide signifi-

cant findings than the widely adopted GWAS P-value threshold of 5×10−8, to account for the

higher number of variants tested (SNVs and insertions/deletions) but this threshold may still

be a bit anti-conservative due to the additional subgroup analyses performed. We view these

additional analyses as critical to understanding the observed associations. Finally, we have not

considered in this paper local ancestry analysis that could help to further investigate the effects

of the detected variants and ancestry-gene interaction that could boost statistical power of rare

variant association mapping in admixed populations.

The handgrip strength genome-wide associations in single-variant analyses that we

observed were AA-specific and some were also sex-specific. We observed associations with

consistent direction of effects in at least two studies for each signal (S13 Table in S1 File).

Given the large mean handgrip strength difference between men and women, we might expect

that handgrip strength may have at least some different genetic associations in men and

women. A recent GWAS of testosterone identified, for instance, extreme sex differences in tes-

tosterone genetic architecture [60].

Finding replication samples with ethnically diverse populations, handgrip strength infor-

mation and sequence data is challenging. As no similar sample with WGS exists, we used

UKBB imputed genotype data to further explore our ancestry-specific findings. We could only

look-up the common or low-frequency AA-specific TOPMed signals in the UKBB African-

ancestry participants, who were defined based on six different self-reported ancestries. We did

not observe significant associations of these variants with handgrip strength. There are several

possible explanations, including 1) genetic heterogeneity across the two samples, 2) age differ-

ences in the two samples (UKBB participants are 8 years younger on average than those in our

TOPMed sample, Table 1) 3) imputation in UKBB African ancestry samples may not be accu-

rate for these low frequency variants, and 4) the effects we observed may be inflated due to

winners curse, and thus the power to detect the associations is limited in the UKBB African

ancestry sample. Because we do not have a sequenced replication sample from the same popu-

lations as our discovery sample, we cannot rule out the possibility that the associations identi-

fied in TOPMed could be false positives.

In conclusion, by leveraging multiple handgrip strength observations from a multi-ancestry

sample with sequence data, our study identified 11 new loci associated with handgrip strength

with rare and/or ancestry-specific genetic variations. Further studies in ethnically diverse pop-

ulations are needed to confirm these findings.
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