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Abstract

Background

Our aim was to present the experience of systematic, routine use of next generation
sequencing (NGS) in clinical diagnostics of myopathies.

Methods

Exome sequencing was performed on patients with high risk for inherited myopathy, which
were selected based on the history of the disease, family history, clinical presentation, and
diagnostic workup. Exome target capture was performed, followed by sequencing on HiSeq
2500 or MiSeq platforms. Data analysis was performed using internally developed bioinfor-
matic pipeline.

Results

The study comprised 86 patients, including 22 paediatric cases (26%). The largest group
were patients referred with an unspecified myopathy (47%), due to non-specific or incom-
plete clinical and laboratory findings, followed by congenital myopathies (22%) and muscular
dystrophies (22%), congenital myotonias (6%), and mitochondrial myopathies (3%). Alto-
gether, a diagnostic yield was 52%; a high diagnostic rate was present in paediatric patients
(64%), while in patients with unspecified myopathies the rate was 35%. We found 51 patho-
genic/likely pathogenic variants in 23 genes and two pathogenic copy number variations.

Conclusion

Our results provide evidence that phenotype driven exome analysis diagnostic approach
facilitates the diagnostic rate of complex, heterogeneous disorders, such as myopathies,
particularly in paediatric patients and patients with unspecified myopathies.
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Introduction

Myopathies represent a clinically and genetically heterogeneous group of neuromuscular dis-
orders that commonly represent a diagnostic challenge [1,2]. They are characterized by a
highly variable, sometimes non-specific clinical presentation and frequently overlapping phe-
notypes between different diseases. Mutations over 200 genes have been implicated in myopa-
thies, including some of the largest genes in humans [2]. The genotype-phenotype correlation
is often difficult to establish; mutations in different genes can present with similar phenotypes
and different mutations in a single gene may result in different phenotypes.

Clinical implementation of massive parallel sequencing technology has emerged as a new
approach to overcome the diagnostic complexity of myopathies and to reduce the necessity for
invasive testing such as muscle biopsy. Correct and timely genetic diagnosis is critical for
appropriate management of the patient, for prognostic information, and genetic counselling of
the patient and his family as well as for carrier status determination and genetic diagnostics in
prenatal settings. There is no widespread consensus for clinical indications for next generation
sequencing (NGS), neither standardized NGS methodological approaches. Two approaches
are mainly being implemented in clinical practice: exome or mendeliome sequencing and
more frequently used targeted gene panel sequencing [3]. Few studies investigated the genetic
diagnosis using NGS testing in unselected cohort of patients with myopathies. In recent years,
there has been an increasing amount of studies conducted on subgroups of patients with a spe-
cific myopathy pattern, including patients with congenital muscular disorders, limb girdle
muscular dystrophies or distal myopathies [4-14]. However, far less attention has been paid to
the accuracy and efficiency of sequencing technology in unselected group of patients with vari-
ous myopathy diagnoses [15-19].

There is a high variability in selection of NGS based diagnostic approaches for characterisa-
tion of patients with myopathies and the diagnostic yield obtained from the implementation of
such methodologies varies significantly between studies [4-22]. Targeted gene panel sequenc-
ing approach was commonly used, but the selection of targeted genes differs greatly both in
number and composition of genes [4-22].

The aim of the present study was to present the experience of systematic, routine use of
novel NGS-based diagnostic approach addressing both clinical and genetic heterogeneity of
myopathies. It is important to emphasize that we sought to assess the diagnostic yield and clin-
ical utility of this approach in a group of patients who were consecutively referred to our centre
with myopathy diagnosis, including patients with unspecified myopathy due to overlapping
and non-specific clinical and laboratory findings.

Patients and methods
Patients

We conducted a retrospective study of patients with a clinical diagnosis of myopathy who
were referred for a genetic evaluation and testing to the Clinical Institute of Medical Genetics,
University Medical Centre, Ljubljana, Slovenia, in a period from 2014-2018. Patients with spe-
cific myopathic phenotype associated with specific mutation mechanisms like facioscapulo-
humeral muscle dystrophy, myotonic dystrophies and Duchenne/Becker muscle dystrophy
were diagnosed directly by gene-targeted assays and were therefore excluded from further
evaluation in this study.

We included 86 patients, who were referred with either congenital myopathy (CMyop),
muscular dystrophy, congenital myotonia (CMyot), mitochondrial myopathy (MitM) or an
unspecified myopathy (UM). Patients with muscular dystrophy were further categorised into
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limb girdle muscular dystrophy (LGMD), Duchenne/Becker MD (DMD) (without deletion/
duplication diagnosed by multiplex ligation-dependent probe amplification) and distal myop-
athy (DM).

UM was defined when a clinical presentation was non-specific or incomplete, or when the
clinical phenotype was suggestive for a myopathy, but EMG and muscle biopsy were not per-
formed, were normal, or unspecific. Patients with UM were eligible for exome sequencing in a
case of positive family history or paediatric age of symptom onset or when no other acquired
cause of myopathy could be identified by a clinical diagnostic workup.

Patients were referred for genetic evaluation by a paediatric/adult neurologist. All patients
received genetic counselling and were referred for exome sequencing by a clinical geneticist.
Patients’ data were obtained through medical records review, including age of symptom onset,
family history, clinical evaluation of muscle symptoms, and associated phenotypic features
(e.g. facial dysmorphism, cardiomyopathy, cognitive delay) as well as standardised clinical
diagnostic workup findings (examination by neurologist specialised in neuromuscular dis-
eases, serum creatine kinase level, electromyography (EMG), and muscle biopsy). Phenotypic
features were described according to the Human Phenotype Ontology (HPO) nomenclature
[23].

Ethics statement

In this study we analysed retrospectively the results of genetic testing previously performed as
a part of a routine clinical diagnostics at our institution. No genetic testing was performed
solely for the purpose of this study. All patients provided written informed consent. All
patients were de-identified (regarding detected genetic variants data included in the manu-
script). No other individual patient data was included.

Exome sequencing, data analysis and interpretation

Sequencing was performed using a standardized series of procedures, starting with an in-solu-
tion capture of exome sequences (TruSight One, TruSight Exome, and Nextera Coding Exome
capture kits, Agilent SureSelect Human All Exon v2, Agilent SureSelect Human All Exon v5
capture kits). This was followed by sequencing on Illumina MiSeq or Illumina HiSeq 2500
platform. The exome data analysis was completed using internally developed pipeline based on
the combined disease and phenotype gene target definition approach, as we previously
described [24,25]. Basic analysis, including SNV and indel discovery and annotation, was per-
formed according to Genome Analysis Toolkit Best Practices workflow [26-29]. The Genome
Aggregation Database (gnomAD) was employed as source of variant frequencies in worldwide
populations. We also used Slovenian genomic database at our Institute which is planned to be
an open database in the future. The details of diagnostic exome sequencing, analysis and inter-
pretation were previously described [24,25]. When possible, family exome sequencing or vari-
ants segregation in families through Sanger sequencing was performed. All variants were
classified according to the guidelines of the American College of Medical Genetics (ACMG)
modified according to Association for Clinical Genomic Science (ACGS) recommendations as
pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, or benign
[27,28]. Evidence support level was weighted using modifiers VSTR (very strong), STR
(strong), MOD (moderate) or SUP (supporting), where applicable according to ACGS recom-
mendations [28]. Variant interpretations were submitted to the ClinVar Database (https://
www.ncbinlm.nih.gov/clinvar/). Pathogenic and likely pathogenic variants were classified as
disease causing variants.
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Gene selection

The search through OMIM (http://www.ncbi.nlm.nih.gov/omim) and Pubmed (http://www.
ncbi.nlm.nih.gov/pubmed) databases enabled the creation of a 250 myopathy associated gene
panel (S1 Table). The panel was supplemented with phenotype-based gene panel, which was
generated using a Web tool (http://kimg.eu/generator). This tool enabled tracking for genes
associated with clinical signs and symptoms using HPO nomenclature [24,25,30]. This data-
base-based gene panel was applied for the filtration of sequence variants. In case of negative
results, untargeted interpretation of all exome variants was performed by using internally
developed variant analysis and interpretation pipeline.

Results
Patients

The study included 86 probands (38 males and 48 females). There were 22 paediatric and 64
adult patients. The mean age of the paediatric patients was 8.36 years (range from 36 months
to 16 years) and the mean age of symptom onset was 16 months (range from birth to 7 years).
In adult patients, the mean age was 41.22 (range from 18 to 72 years). The mean age of symp-
tom onset in adult patients was 21.40 years (range from birth to 65 years). Nineteen cases
(22%) had records of family history of the disease.

Groups of patients referred with diagnosis of CMyop, LGMD, DMD, CMyot, MitM and
DM comprised 19 (22%), 10 (12%), 7 (8%), 5 (6%), 3 (3%), and 2 (2%) patients, respectively,
altogether 46 patients. The remaining 40 patients (47%) were referred with the diagnosis of
UM; 10 were paediatric cases (1 case with family history), and 30 were adults (9 cases with fam-
ily history).

Overall, EMG was performed in 77% (66/86) and muscle biopsy in 66% (57/86) of referred
patients.

EMG and muscle biopsy findings in patients with UM are presented in Table 1.

Diagnosis by exome sequencing and the compatibility of genetic variant
interpretation with the referral diagnosis

The diagnostic yield in our cohort of patients is presented in Table 2. Overall, genetic diagnosis
was achieved in 52% (45/86) of cases.

Among patients referred with a specific clinical myopathy pattern, pathogenic variants
were identified in 67% (31/46) of cases. Clinical diagnosis was confirmed in 90% (28/31) of
patients and in 10% of cases (3/31) genetic diagnosis revealed that myopathic symptoms were
a part of syndrome or other rare neuromuscular disease (S2 Table). The diagnostic yield
among patients referred with UM was 35% (14/40) (Table 2).

Table 1. EMG and muscle biopsy in paediatric and adult patients with an unspecified myopathy.

Patients with an unspecified myopathy Paediatric patients Number (%) | Adult patients Number (%)
Electromyography and muscle biopsy findings

Myopathic EMG and/or MB 6 (60) 27 (90)

Normal EMG / MB not performed 1(10) 0(0)

Normal on both examinations 0(0) 1(3)

Not performed 3 (30) 2(7)

Total 10 (100) 30 (100)

MB-muscle biopsy; EMG-electromyography.

https://doi.org/10.1371/journal.pone.0252953.t001
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Table 2. Diagnostic yield in patients grouped according to referral diagnosis.

Referral diagnosis LGMD N (%) |CMyopN (%) DMDN (%) |CMyotN (%) | MitMN (%) DMN (%) UMN (%) |TotalN
Interpretation of genetic variant

Pathogenic/likely pathogenic 7 (70) 9 (47) 7 (100) 5(100) 1(33) 2 (100) 14 (35) 45
Variant of uncertain significance 2 (20) 4(21) 0(0) 0(0) 0(0) 0(0) 15 (38) 21
Likely benign /benign/ no variants detected 1(10) 6(32) 0(0) 0(0) 2(67) 0(0) 11 (28) 20
Total 10 (100) 19 (100) 7 (100) 5(100) 3 (100) 2 (100) 40 (100) 86

LGMD—Iimb girdle muscular dystrophy; CMyop—congenital myopathy; DMD—Duchenne/Becker muscular dystrophy; CMyot—congenital myotonia; MitM-

mitochondrial myopathy; DM—distal myopathy; UM—unspecified myopathy.

https://doi.org/10.1371/journal.pone.0252953.t1002

Overall, among 38 cases with a genetic diagnosis of myopathy, 32 (84%) had myopathic
EMG and/or muscle biopsy, 1 had normal EMG (muscle biopsy was not performed), and in 5
patients neither EMG nor muscle biopsy were performed. In 7 patients with other rare patho-
genic variants, 4 (57%) had myopathic EMG and/or muscle biopsy, 1 patient had normal
EMG (muscle biopsy not performed), while in 2 patients neither EMG nor muscle biopsy were
performed. Out of 20 cases with likely benign, benign or no variants detected, 17 (85%) had
myopathic EMG and/or muscle biopsy, 2 had normal EMG (muscle biopsy not performed)
and in 1 case neither EMG nor muscle biopsy were performed. There were also 21 cases with
VUS variants, whereas 17 had myopathic EMG and/or muscle biopsy and 4 had normal find-
ings or neither of the examinations were performed.

Diagnostic rate in paediatric and adult cases

Among paediatric patients the two groups, DMD and CMyop, comprised 23% (5/22) of cases.
Two patients were referred with LGMD. Almost a half (10/22, 45%) of cases were referred
with UM. Overall, NGS enabled diagnosis in 64% (14/22) of paediatric cases (Fig 1); myopathy

m Pathogenic/likely pathogenic (N=14)
Variant of uncertain significance (N=4)

m Benign/likely benign/no causative variant (N=4)

Fig 1. Interpretation of detected genetic variants in paediatric patients.

https://doi.org/10.1371/journal.pone.0252953.9001
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B Pathogenic/likely pathogenic (N=31)
Variant of uncertain significance (N=17)

m Benign/likely benign/no causative variant (N=16)

Fig 2. Interpretation of detected genetic variants in adult patients.

https://doi.org/10.1371/journal.pone.0252953.9002

was confirmed in 79% (11/14) of probands and in 21% (3/14) of patients the final diagnosis
revealed that myopathic symptoms were associated with other rare diseases (S2 Table). The
average time from disease symptom onset to the genetic diagnosis was 7.05 years.

Adult patients were referred with UM, LGMD, CMyop and CMyot in 47% (30/64), 13%
(8/64), 22% (14/64) and 8% (5/64) of cases, respectively. The remaining cases were referred
with DMD (2/64), MitM (3/64) and DM (2/64). The diagnostic yield among adults was 48%
(31/64) (Fig 2), where genetic diagnosis confirmed myopathy in 87% (27/31) of patients and in
13% of cases (4/31) genetic testing established other rare diseases with associated myopathic
symptoms (S2 Table). The average time to genetic diagnose was 19.63 years.

Classification and interpretation of identified genetic variants

Identified pathogenic /likely pathogenic variants for a myopathy are presented in Table 3. In
total, 50 pathogenic/likely pathogenic variants were found in 22 nuclear genes and one variant
was detected in the mitochondrial genome. Eight (15%) were novel. Two pathogenic copy
number variations (CNV) were detected (duplication 22q11.2 and 17q12).

Out of 42 patients with pathogenic genetic variants in nuclear genes, 11 carried heterozy-
gous variants resulting in dominant type of a myopathy. Among these, 3 variants were of de
novo origin, whereas the remaining pedigrees were consistent with dominant inheritance. A
homozygous or compound heterozygous pathogenic variant was identified in 23 probands
resulting in a recessive type of a myopathy. A hemizygous pathogenic variant was detected in 8
probands resulting in X-linked type of a myopathy.

Pathogenic CNVs and pathogenic/likely pathogenic variants in genes, including PLOD],
GCH1, CHAT, RAPSN, and SYT2 enabled the diagnosis of other rare diseases with myopathic
symptoms (S2 Table).
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Discussion

Using a phenotype driven exome analysis diagnostic approach we demonstrated a high diag-
nostic yield of 52% in a cohort of patients who were consecutively referred to our centre with
clinical signs and symptoms consistent with a myopathy. Our cohort of patients was not
selected according to specific clinical pattern of myopathy and cases with UM were also
included. To the best of our knowledge, the evaluation of clinical utility of NGS-based
approach in patients with UM has not been conducted so far.

A growing body of literature has been investigating the benefits and the challenges of NGS
based technology implementation in the standard clinical practice of patients with inherited
myopathies [5-22]. So far, however, fewer studies have been conducted on patients with unse-
lected primary muscular disease, whereas reported diagnostic yield ranged between 16% and
36% [15-19]. Park et al. included only patients, who presented with a specific clinical myopa-
thy pattern [14]. Using targeted gene panel NGS diagnostic approach they obtained the diag-
nostic yield of 36%. Bugiardini et al. applied focused exome sequencing to investigate complex
adult myopathy patients, which were categorized based on the age of symptom onset and pre-
dominant pattern of weakness [16]. Pathogenic or likely pathogenic variants were identified in
32% of cases. Haskel et al. performed exome sequencing in 93 undiagnosed paediatric and
adult patients with various neuromuscular diseases, including 31 patients with myopathy phe-
notype, 21 patients with neuropathy phenotype and 41 complex patients with neuropathy,
myopathy, and additional phenotype [17]. They used targeted gene panel (myopathy or neu-
ropathy) and a broad neuromuscular gene panel. Among patients with myopathy phenotype
diagnostic yield was 16.1%, regardless of the used gene panel. In a group of patients with a
complex phenotype, they illustrated higher diagnostic rate (9.8%) using a broader diagnostic
gene panel compared with using neuropathy (4.9%) or myopathy (0%) diagnostic gene panel
alone. Punetha et al. carried out targeted sequencing with a myopathy candidate gene panel in
a cohort of 94 undiagnosed muscle disease patients and obtained the diagnostic yield of 35%
[18]. In recent study, Thuriot et al. used gene panel approach in a large cohort of patients with
suspected muscle disorders and reported an overall diagnostic yield of 15.1% (22.4% in chil-
dren and 13.7% in adults) [19]. Most of other reported NGS based studies focused on one or
more types of myopathy, including congenital muscular disorder [5,8,11,13], LGMD
[5,6,8,10,12,14], or DM [7,12]. Using targeted NGS approach [5-8] or WES [10-14] the
reported diagnostic rate ranged from 12% to 52%, except for the study of Chinese patients pre-
senting with muscular dystrophy and congenital myopathy, which demonstrated the diagnos-
tic yield of 65% [9]. Our results showed a high diagnostic rate among cases with specific
clinical pattern of myopathy (67%), whereas CMyop and LGMD represented the largest
groups of patients (Table 2).

However, it was particularly interesting to assess the diagnostic yield and clinical utility of
our exome sequencing approach in patients with UM, since our cohort encompassed 47% of
such cases. Considering that myopathies are characterized by highly variable, non-specific
clinical presentation and frequently overlapping phenotypes between different diseases, it is
expected that some of the patients could not be designated with certainty into any of the myop-
athy subgroup. We were able to detect a pathogenic variant in 35% of patients with UM, which
is in the range of published diagnostic rates obtained among patients with specific clinical pat-
tern of muscular disease.

In addition, 26% of cases in our study were paediatric patients. A separate analysis of paedi-
atric cases with myopathies revealed a high diagnostic yield of 64%, whereas the average time
to diagnosis was 7.05 years. Our diagnostic rate coincides well with the results published by
Schofield et al, which was conducted on 56 paediatric patients, referred with the diagnosis of
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congenital muscular dystrophy or nemaline myopathy [21]. Using the traditional investigation
based on muscle biopsy and protein-based studies of muscle biopsy specimens, followed by
candidate gene sequencing, they established the diagnosis in 46% of referred patients. They
increased their diagnostic efficacy using neuromuscular gene panel to 75% and to 79% using
WES. In recent study, WES analysis was conducted on 50 patients with undiagnosed paediat-
ric-onset neuromuscular diseases resulting with the overall diagnostic yield of 26% [22]. Diag-
nostic rate among patients with hereditary congenital myopathy was 17% and among patients
with hereditary muscular dystrophy subgroup was 45%.

The diagnostic yield among our adult patients was also high (48%) and the average time to
diagnose was 19.63 years.

Our approach also included the assessment of mitochondrial and CNV variations, which
enabled the diagnosis of microduplication syndrome 17q12 in paediatric patient, referred with
UM. Clinical variability of 17q12 duplication syndrome is broad and myopathy was already
described in those patients [31]. Similarly, we revealed a likely causative 22q11.2 microduplica-
tion in a patient with predominant presentation of hypotonia and motor delay. As known
microduplication 22q11.2 may manifest predominantly with severe muscle hypotonia
(OMIM#608363). In addition, in one patient who presented with unspecific muscle symptoms,
genetic diagnosis revealed Ehlers-Danlos type 4. Interestingly, our results also demonstrated
that diagnostic exome sequencing may affect medical management of the patients. Genetic
testing revealed Dopa-Responsive Dystonia (DRD) in a case referred as UM, as well as congen-
ital myasthenic syndromes in 3 cases referred with UM or CMyop. Those patients started with
symptomatic therapy after genetic diagnosis. These findings further confirm the added value
of our exome sequencing approach in diagnostics of cases with unspecific myopathy pheno-
types and further decipherment whether myopathic symptoms are a part of a syndrome or sep-
arate clinical feature.

Despite the accumulating evidence that NGS technology has high clinical utility and huge
potential to become the first approach in clinical laboratories, there are no universally or
widely accepted guidelines for genetic testing, regarding the patient selection or diagnostic
approach in heterogeneous disorders. This is also because the selection of appropriate target
genes is challenging and carries a risk of missing causative variation due to their restrictive-
ness, whereas time and cost efficiency of such approach is arguable [24]. In view of limitations
of targeted testing, we have applied clinical exome sequencing supplemented with panel of
genes associated with clinical signs/symptoms using HPO nomenclature. This enabled the
assessment of patients in regard to clinical diagnostic hypothesis as well as presenting signs/
symptoms. This approach has been particularly useful in patients with complex, atypical clini-
cal presentation that does not direct the clinical diagnosis toward a specific disease, whereas
some of those patients would not even be considered for genetic testing due to unfulfilled clini-
cal criteria for a specific myopathy. We suggest that patients with specific clinical myopathy
pattern as well as patients with UM and suspected genetic aetiology should be referred for
genetic testing. Genetic diagnosis is of great importance for both, patients and their families, as
it can have a significant impact on patient management (particularly in cases of treatable disor-
ders), prognosis, accurate genetic counselling, prenatal diagnostics and avoiding additional
diagnostic testing. Thus, the need for widely accepted recommendations, which will improve
the diagnostic implementation of exome sequencing in clinical practice of heterogeneous dis-
orders, still remains.

The strength of our study is the patient cohort, which also included cases with UM and sus-
pected genetic aetiology. Secondly, our approach is independent of specificity and accuracy of
the clinical diagnostic hypothesis. The study’s limitation is the number of patients with a
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particular muscular disorder, which hinders the evaluation of our exome sequencing diagnos-
tic utility of rare disorders.

In conclusion, our results provide evidence that phenotype driven exome analysis diagnos-
tic approach improves the diagnostic rate of complex, heterogeneous disorders, such as myop-
athies, particularly in patients with an unspecified myopathy.
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