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Abstract

The security of car driving is of interest due to the growing number of motor vehicles and fre-

quent occurrence of road traffic accidents, and the combination of advanced driving assis-

tance system (ADAS) and vehicle-road cooperation can prevent more than 90% of traffic

accidents. Lane detection, as a vital part of ADAS, has poor real-time performance and

accuracy in multiple scenarios, such as road damage, light changes, and traffic jams. More-

over, the sparse pixels of lane lines on the road pose a tremendous challenge to the task of

lane line detection. In this study, we propose a model that fuses non bottleneck skip residual

connections and an improved attention pyramid (IAP) to effectively obtain contextual infor-

mation about real-time scenes and improve the robustness and real-time performance of

current lane detection models. The proposed model modifies the efficient residual factorized

pyramid scene parsing network (ERF-PSPNet) and utilizes skip residual connections in non

bottleneck-1D modules. A decoder with an IAP provides high-level feature maps with pixel-

level attention. We add an auxiliary segmenter and a lane predictor side-by-side after the

encoder, the former for lane prediction and the latter to assist with semantic segmentation

for classification purposes, as well as to solve the gradient disappearance problem. On the

CULane dataset, the F1 metric reaches 92.20% in the normal scenario, and the F1 metric of

the model is higher than the F1 metrics of other existing models, such as ERFNet-HESA,

ENet_LGAD, and DSB+LDCDI, in normal, crowded, night, dazzling light and no line scenar-

ios; in addition, the mean F1 of the nine scenarios reached 74.10%, the runtime (time taken

to test 100 images) of the model was 5.88 ms, and the number of parameters was 2.31M,

which means that the model achieves a good trade-off between real-time performance and

accuracy compared to the current best results (i.e., a running time of 13.4 ms and 0.98M

parameters).
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Introduction

The rapid growth of car ownership has caused an escalating conflict between vehicles and road

resources, and the complexity of road conditions and the not yet fully mature communication

and intelligent driving technologies make the safety of car driving an increasingly important

issue. To this end, Alazab et al. used an improved Dijkstra algorithm to accomplish optimal

transport path selection for dynamic traffic flow [1]. Javed A R et al. used a CANintelliIDS

model that fuses convolutional neural networks and attention-gated recurrent units (GRUs) to

detect single and mixed intrusion attacks on the CAN bus to ensure the security of in-vehicle

communication [2]. ADAS can guarantee the safety of vehicle driving with the aid of vehicle

sensors to perceive external conditions. Lane detection, an indispensable component of

ADAS, plays an essential role in departure warning, lane keeping, and trajectory planning.

Lane detection in complicated traffic scenes is often perceived as a highly challenging task.

First, sensor-generated data from the vehicle are subject to anomalies caused by faults, errors,

and/or cyberattacks and need to be detected accurately. Second, the lane line characteristic

information is heavily weakened in scenarios such as scenarios involving light changes, road

damage, and object occlusion, which makes the accuracy of lane line detection poor. Finally,

ADAS have high demands for real-time lane line detection, making it difficult to simulta-

neously fulfill the real-time and accuracy requirements.

The combination of a multistage attention mechanism and a convolutional neural net-

work (CNN) with long short-term memory (LSTM) has efficiently reduced the number of

anomalous instances in the dataset, and this has removed obstacles to data collection for

related tasks such as lane line detection [3]. At present, there are two types of vision-based

lane detection methods: traditional methods and deep learning methods. The available tra-

ditional lane detection algorithms based on hand-designed features extract the color, edge,

texture and shape of lanes through a color histogram, Sobel algorithm, LBP algorithm, SIFT

algorithm or Hough transform and combined lane marker grouping [4]; then, they output

lane lines from straight lines or curve model fitting via a mathematical model. Although the

calculations performed by traditional methods are extremely simple, there are still short-

comings in many complex road scenarios, such as a lack of lines, blocked lanes, and poor

light. Therefore, traditional methods are no longer able to meet the substantial require-

ments of autonomous vehicle driving [5]. The development of deep learning has opened

new horizons for lane line detection. It extracts rich information and has a superior model

robustness, which compensates for the shortcomings of traditional algorithms to some

extent, but the real-time performance and accuracy of detection cannot satisfy the require-

ments of intelligent driving in complex scenarios such as scenarios involving object occlu-

sion and shadow interference environments.

According to the strengths of semantic segmentation algorithms in traffic scenario parsing,

we improve the ERF-PSPNet semantic segmentation model, which uses the non bottleneck

skip residual connections (Non-bt-1D-SRC) module in the encoder stage to integrate abun-

dant convolutional layer information, and the decoder uses the IAP module to minimize the

number of parameters and extract rich contextual information. Under multiscene environ-

ment interference, the real-time performance and accuracy of lane line detection have been

improved, and the limitations of available algorithms have been effectively overcome.

Related work

Traditional lane detection algorithms based on hand-designed features are generally divided

into four steps: (1) lane marking generation, (2) lane marking grouping, (3) lane model fitting,

and (4) temporal tracking [6]. The lane image is captured by a camera located behind the
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windshield, and lane line detection uses lane markers to locate whether the vehicle is well

inside the lane boundary. Li et al. [7] proposed a lane detection algorithm based on a line seg-

ment detector (LSD) and a weighted hyperbolic model to determine the effect of inverse per-

spective mapping (IPM) on lane detection, to reduce the noise generated by lane markings

and shadows, and to divide lane detection into near-field line detection and far-field curve fit-

ting. Lee et al. [8] proposed an efficient and robust lane detection and tracking algorithm that

uses the region of interest (ROI) of an input image to reduce redundant image data; the algo-

rithm is divided into three steps: initialization, lane detection, and lane tracking. Hu et al. [9]

proposed a new method of lane detection combined with model predictive control for effective

lane information extraction and trajectory tracking by using a dynamic ROI extraction

method based on longitudinal vehicle speed changes to improve the real-time performances

and adaptability of traditional image information extraction methods. In a recent study, lane

lines were detected with perspective transformation, threshold processing, mask operations

and sliding window optimization [10]. These algorithms rely on intuitive means and mathe-

matical knowledge and are only applicable to a single scene environment; however, it is not

easy to obtain continuous edge features in real-time traffic scenes with uneven illumination

and obstacle occlusion when lane lines have broken edges and discontinuous brightness.

With the advent of convolutional neural networks and the rapid development of the

computing power of hardware, deep learning has demonstrated its evident nature and com-

petitiveness in solving many computer vision problems. Gadekallu TR et al. utilized crow

search algorithms for hyperparameter tuning of CNNs and achieved excellent performance

in gesture recognition [11]. Vasan et al. implemented image-based malware classification

with the help of a CNN [12]. Scholars at home and abroad have also applied CNNs to detect

lane lines [13, 14] to address the challenges that traditional detection algorithms encounter

in multiple scenarios. Liu et al. [15] conceived a label-guided attentional distillation

(LGAD) method for lane line segmentation that separately considered lane labels and target

images as inputs to the teacher network and student network and employed the teacher net-

work to reinforce the attentional map of the student network. However, substantial compu-

tational resources are required to train the teacher network. Liu et al. [16] presented style

transformation for data augmentation to generate images in low-light conditions with gen-

erative adversarial networks that improve the environmental adaptability of the lane detec-

tor, which does not demand any additional manual annotation or inference overhead. Yun

et al. [17] used the horizontal reduction module to compactly extract the lane marker infor-

mation in the image and achieved end-to-end lane marker detection via row-wise classifica-

tion. Liu et al. [18] proposed a multitask fusion lane line detection model that utilizes

semantic segmentation to extract lane features and heat map regression to predict the van-

ishing point of lanes. Lee et al. [19] introduced an extended self attention (ESA) module,

which is divided into horizontal ESA (HESA) and vertical ESA (VESA). Each module

extracted the occlusion location by predicting the confidence of the lane in the vertical and

horizontal directions, and the model is robust in occluded and low-light environments. Li

et al. [20] applied a modified encoder-decoder network with an instance-batch normaliza-

tion net (IBN-NET) and an attention mechanism based on the LaneNet structure, which is

well suited for two types of semantic segmentation (SS) tasks with only lanes and back-

grounds, but further improvement is needed regarding the extraction of road environment

structures; to this end, Ye et al. [21] proposed a new method of describing roads using wave-

forms to analyze the local and global features of road geometries to detect lane markings. To

some extent, these algorithms compensate for the shortcomings of traditional algorithms

regarding lane detection in complex scenarios, but their real-time performances and accu-

racies in terms of detection remain poor. To this end, we propose a model that fuses Non-
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bt-1D-SRC and attention pyramid (AP) for real-time lane detection; this model not only

extracts abundant contextual scenarios but also satisfies the demands of real-time perfor-

mance and accuracy in intelligent driving with fewer parameters and better detection out-

comes than existing methods.

Related work presented in the literature and the main methods, innovations and limitations

are shown in Table 1.

Our main contributions can be summarized as follows:

• We design a skip residual connection module that joins the given input features with the

residual features of multiple layers in a non bottleneck module to solve the problem regard-

ing the lack of relevant characteristic information for adjacent convolutional layers in non

bottleneck modules.

• We propose an improved decoder structure by adding an AP, which prominently decreases

the number of parameters utilized and enables us to extract abundant global contextual

information from images.

Methods

The bottleneck module, a basic structure proposed by He et al. [22], increases the depth and

decreases the computational complexity of a network, but it is always subject to degradation

problems [23]. Romera et al. [24] introduced non bottleneck-1D (Non-bt-1D) modules, which

use 1D factorization to accelerate and reduce the number of parameters in the original non

bottleneck layer. It disaggregates the 3×3 convolution of a bottleneck residual module into

combinations of 3×1 and 1×3 convolutions, reducing the number of network parameters by

33%; this is equal to the decomposition of two 3×3 convolution kernels in the regular residual

module into two sets of 3×1 and 1×3 one-dimensional convolutions [25]. The fusion of the

input features and the convoluted feature maps using residual connections also strengthens

the expressiveness of the network. These modules are shown in Fig 1.

Table 1. Summary of the related work.

Paper cited Main methods Innovations Limitations

Li et al. [7] A hyperbolic model Near field: LSD + DBSCAN. Failure to fit the S-lane well.

Far field: hyperbolic model.

Lee et al. [8] A lane detection algorithm with an efficient

ROI

VP with clustering and tracking scheme,

EDLines, and Kalman filter in ^-ROI.

Cannot detect lanes on snowy and

rainy nights.

Traditional

algorithms

Hu et al. [9] A novel approach that combines lane

detection and model predictive control

Dynamic ROI extraction, edge and Hough

detection.

Needs a good mathematical

foundation.

Liu et al. [15] ENet_LGAD Uses a teacher network to reinforce the

attentional map of the student network.

Requires high computational

resources.

Liu et al. [16] SIM_CycleGAN +ERFNet Style transfer and generative adversarial

networks.

Performs poorly except in low

light.

Yun et al. [17] ERFNet_E2E Uses horizontal reduction to extract

information.

Fails to detect lanes when

reflections exist.

Deep learning

algorithms

Liu et al. [18] ERFNet-VP SS and heat map regression. Poor lane line fitting.

Lee et al. [19] ERFNet-HESA An ESA, which is divided into an HESA and

a VESA.

Less effective for datasets with

fewer occlusions.

Li et al. [20] Improved SS IBN-Net and attention mechanism. Sensitive to the structure of the

road environment.

Ye et al. [21] Based on lane structural analysis and CNNs Waveforms to analyze the local and global

features to detect lane markings.

Additional parameters are needed

to control deviations.

https://doi.org/10.1371/journal.pone.0252755.t001
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Non-bt-1D-SRC module

The output of the Non-bt-1D module of the ERFNet encoder is determined by only the input

features and output features; however, there are multiple convolutions inside the Non-bt-1D

module, and if only the input and output features are connected, the intermediate features are

likely to be lost. Although ERF-PSPNet [26] fuses the encoder of ERFNet and the decoder of

PSPNet [27], the decoder tends to be more complicated, and less contextual information can

be extracted. In view of this, a lane detection model that fuses Non-bt-1D-SRC with an AP is

presented below as a reference.

Zhao et al. [28] studied a multilevel skip residual connection block to overcome the prob-

lem of a lack of relevance between adjacent convolutional layers, and their approach achieved

excellent results on image superresolution reconstruction tasks. Accordingly, we design a

Non-bt-1D-SRC module to resolve the problem regarding the lack of relevant characteristic

information between neighboring convolutional layers in the non bottleneck module. Our

module cross-stacks 2 sets of 3×1 and 1×3 convolution blocks (the first 3×1 convolution opera-

tion is followed by ReLU) and adds batch normalization (BN) to accelerate the training of the

neural network and reduce the dependence of the gradient on the model parameters after the

1×3 convolution [29]. The 2nd to 4th 3×1 and 1×3 convolution blocks adopt dilation rates of

2, 4, and 8, respectively, for dilated convolution to collect additional background information

while employing random deactivation to prevent overfitting. The features after each pair of

3×1 and 1×3 convolution blocks are subblocks of the residual connection and are summed

with the convolution result to obtain the final result. The non bottleneck skip residual connec-

tion module is shown in Fig 2.

IAP module

An attention mechanism [30] enables humans to allocate limited computational resources to

focus on regions of interest when processing complex visual information, providing more eas-

ily processed and relevant information for more complex visual processing tasks [31]. Incorpo-

rating an attention mechanism in a neural network is an efficient technique to tackle resource

allocation in a problem with information overload.

Fig 1. Diagram of the bottleneck residual block and Non-bt-1D module, where w0 denotes the number of channels

in the upper layer output and w denotes the number of channels in the input.

https://doi.org/10.1371/journal.pone.0252755.g001
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The decoder of ERF-PSPNet utilizes a pyramid pooling module (PPM) to effectively con-

verge the information obtained from different subregions [32]. The contextual information

extracted from this approach is very limited, whereas the AP model can exploit abundant fea-

tures to extract and evaluate the semantic labels on each pixel. However, the available AP mod-

ules contain more parameters and extract less contextual information. For this reason, we

Fig 2. Non-bt-1D-SRC module, where w0 is the number of output channels in the last layer; here, w0 is 128. Input,

output2, and output4 denote the input features together with the output features after two pairs of 3×1 and 1×3

combination operations.

https://doi.org/10.1371/journal.pone.0252755.g002
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employ an IAP module, which includes three parts, namely, a main module, a pyramid mod-

ule, and an attention module, and the AP and IAP models are shown in Fig 3A and 3B.

The main module performs a 1×1 convolution on the encoder output; the attention module

adopts global pooling, executing 1×1 convolution and upsampling operations on the encoder

output features; we remove the second 7×7, 5×5, and 3×3 convolutions from the original AP

module and replace them with 5×5, 3×3, and 3×3 convolutions while joining them in pairs to

form a small pyramid network. The results of ③ and ④ are added after a 3×3 convolution

and then upsampled; ① and ② use the same operation as ③ and ④. In the IAP module,

there are two pyramid networks that considerably reduce the number of channels and parame-

ters and decrease the complexity of the overall network. The output of the main module is

multiplied piecewise with the output of the pyramid module, and the result is then added to

the output of the attention module.

Improved lane detection model

The structure of the improved lane detection model is shown in Fig 4.

The model consists of three components: an auxiliary segmenter (Its loss is shown in S1

Fig), a lane predictor [33] (for predicting the presence of lanes, its loss is shown in S2 Fig), and

a semantic segmenter (for solving the vanishing gradient problem, its loss is shown in S3 Fig).

The semantic segmenter, based on an encoder-decoder prototype, extracts enriched landscape

features through downsampling and Non-bt-1D and Non-bt-1D-SRC operations. The decoder

introduces the IAP module and adds the designed attention mechanism, where the decoder,

auxiliary splitter and lane predictor operate side by side. The model is named the "Non-bt-

1D-SRC_IAP network" and is abbreviated as "Nb_SINet".

Lane detection process

The proposed lane detection process is shown in Fig 5.

Fig 3. AP and IAP modules.

https://doi.org/10.1371/journal.pone.0252755.g003
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We obtain the ROI of the input image using OpenCV and feed the image into the

Nb_SINet model for SS after a series of preprocessing steps, including cropping and rota-

tion, to obtain the lane line probability distribution map. If the probability is greater than

or equal to 0.5, point fitting is carried out on the lane line; otherwise, the line is processed

as background.

Experiments

Dataset

To verify the robustness of our model in complicated scenarios, we use the public dataset

CULane [34] in our experiments. It contains 133,235 images at resolutions of 1640 × 590,

including 88,880 training images, 9675 validation images, and 34,680 testing images. The

images were captured from nine different scenarios by cameras mounted behind the front

windshields of six vehicles, and the proportion of each category is shown in Fig 6.

Fig 4. The Nb_SINet lane detection model.

https://doi.org/10.1371/journal.pone.0252755.g004
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We select the ROI as the region in the image containing lane lines, crop the image to a reso-

lution of 976×208, and apply random scaling and random rotation to enlarge the dataset while

strengthening the robustness of the model.

Evaluation metrics

Each lane line is marked in the dataset as a line with a width of 30 pixels according to the litera-

ture [35]. Then, we calculate the intersection over union (IoU) between the real lane line and

the predicted lane line, where an IoU greater than 0.5 is regarded as a true positive. The mean

IoU (mIoU) refers to the mean of IoUs for all categories, and the equation is as follows [36]:

mIOU ¼
1

kþ 1

Xk

i¼0

TP
FN þ FPþ TP

ð1Þ

We assume that there are k+1 classes (including an empty class and a background class); TP, FP
and FN are the numbers of true positives, false positives and false negatives, respectively [37].

Precision indicates how many of the samples with positive predictions are actually positive sam-

ples. Recall indicates the probability that a positive sample is correctly predicted in the original

positive sample. F1 represents the harmonic mean of precision and recall. The FP metric is mea-

sured for the crossroad scenario, and the F1 metric is measured for the rest of the scenarios.

Fig 5. Flow chart for lane detection. The process involves three steps, including image preprocessing, lane line

segmentation and lane line fitting.

https://doi.org/10.1371/journal.pone.0252755.g005
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Precision, recall and F1 are calculated as follows [38]:

Precision ¼
TP

TPþ FP
ð2Þ

Recall ¼
TP

TPþ FN
ð3Þ

F1 ¼
2 � Precision � Recall
Precisionþ Recall

ð4Þ

Implementation details

In this experiment, we train our model on a machine equipped with an Ubuntu 16.04 LTS

64-bit operating system and two GeForce GTX 1080 GPUs containing 12 GB of memory; the

model is implemented in Python (the Pytorch framework), and then, we calculate the final

results with MATLAB. We use TensorboardX to visualize the induced loss variation.

We use the optimal parameters of ERFNet on the Cityscapes dataset as pretraining parame-

ters for transfer learning, and we apply the SGD optimizer with an initial learning rate of 0.01

and a batch size of 4. The number of iterations is 6.66×105. We adjust the learning rate based

on the loss value until the loss does not change for several consecutive epochs.

The learning rate and total loss (the weighted sum of the SS loss, auxiliary segmentation

loss, and lane prediction loss) curves yielded during the training process are shown in Fig 7.

The total loss reaches 0.073 when the number of iterations reaches 6.548 ×105. The total

loss converges faster than the learning rate.

Fig 6. Scenarios and their proportions.

https://doi.org/10.1371/journal.pone.0252755.g006
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The accuracy and mIoU curves obtained on the validation set are shown in Fig 8A and 8B,

respectively. The accuracy reaches 95.94%, and the mIoU reaches a maximum value of 61.55%

when iterating 5.555×105 times.

Comparison and analysis

In this section, we prove the effectiveness of the Non-bt-1D-SRC module and the IAP module

by conducting ablation experiments, and we prove the superiority of our model by a compari-

son with existing models.

Effectiveness of the Non-bt-1D-SRC module. In this section, we perform experiments to

verify the significant effect of the skip residual connection module. The F1 metrics (and FP metrics

at crossroads) obtained for each scenario with the encoder using Non-bt-1D versus those obtained

using our Non-bt-1D-SRC module are shown in Table 2, where both decoders use a PPM.

Fig 7. Graphs of the learning rate and total loss. (a) Learning rate. (b) Total loss.

https://doi.org/10.1371/journal.pone.0252755.g007

Fig 8. Graphs of the accuracy and mIoU achieved on the validation set. (a) Accuracy. (b) mIoU.

https://doi.org/10.1371/journal.pone.0252755.g008
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From Table 2, the performances of the Non-bt-1D-SRC module are better than those of the

Non-bt-1D module in the normal, night, no line, dazzle light, and crossroad scenarios, and the

mean F1 improves for the nine scenarios, thereby proving the effectiveness of the Non-bt-

1D-SRC module through ablation experiments.

Table 2. Comparison between the results obtained using the Non-bt-1D and Non-bt-1D-SRC encoders.

Scenarios Non-bt-1D Non-bt-1D-SRC

Normal 91.84 92.11

Crowded 72.01 71.47

Night 69.13 69.82

No line 46.34 46.84

Shadow 67.06 63.19

Arrow 87.39 87.23

Dazzle light 64.26 65.96

Curve 69.21 67.75

Crossroad (FP) 2,590 2,469

Mean F1 73.70 73.76

https://doi.org/10.1371/journal.pone.0252755.t002

Fig 9. Semantic segmentation diagram of lane lines.

https://doi.org/10.1371/journal.pone.0252755.g009
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Effectiveness of the IAP module. Based on the above experiments, we randomly choose

several scenarios to compare the lane line detection probability distribution plots obtained

when the AP (named the Nb_SAP model) and IAP (named the Nb_SINet model) modules are

used as decoders, and the semantic segmentation diagram of lane lines before and after

improvement (introducing both auxiliary trainers and lane predictors) are shown in Fig 9.

Fig 9 lists the original images in the normal and shadow conditions in each scene, as well as

the ground truth, Non-bt-1D-SRC-PPM and the semantic segmentation diagram of the

Nb_SINet model.

In Fig 9, two kinds of images under normal and shadow conditions are randomly selected,

and the fitting plots of the original image obtained when the AP module and the IAP module

from this paper are used as the decoder are listed in turn, along with the real labeling of each

image. After using the AP as the decoder, the probability distribution of the lane lines in the

yellow box is more discrete; however, after using the IAP, the probability distribution of the

lane lines is more concentrated, and the fitted lane lines are closer to the real labeled image,

which indicates the effectiveness of the IAP.

Table 3 shows the changes in the F1 and FP (crossroad only) test metrics of the CULane

dataset before and after improving the decoder. Nb_SAP is the model using Non-bt-1D-SRC

and the AP as the encoder-decoder.

Table 3. Comparison between the F1 and FP metrics of Nb_SAP and Nb_SINet.

Scenarios Nb_SAP Nb_SINet

Normal 92.11 92.24

Crowded 72.10 73.36

Night 69.22 69.08

No line 47.20 47.17

Shadow 67.55 74.82

Arrow 87.67 87.61

Dazzle light 65.09 68.18

Curve 68.40 68.24

Crossroad (FP) 2,881 2,664

Mean F1 73.76 74.10

https://doi.org/10.1371/journal.pone.0252755.t003

Fig 10. Comparison between the runtime and parameters of the two tested models.

https://doi.org/10.1371/journal.pone.0252755.g010
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The F1 index improves in the normal, crowded, shadow, dazzle light, and crossroad scenar-

ios after the decoder adopts the IAP model, especially in the shadow scenarios, where the

index improves remarkably. The mean F1 score for the nine scenarios increases noticeably.

The number of parameters and runtime are shown in Fig 10 before and after

improvement.

The number of parameters is reduced by 0.41M and the runtime is reduced by 0.06 ms

when the IAP module is used as the decoder; this verifies the effectiveness of the IAP module

in terms of reducing the number of parameters and the runtime.

Ablation experiments with assisted trainers. In this section, we conduct ablation experi-

ments on the model with the auxiliary trainer (named Nb_SINet) and without the auxiliary trainer

(named Nb_SINet_noaux), and the metric comparison for each scenario is shown in Table 4.

In Table 4, the F1 indexes in the normal, crowded, night, shadow, dazzle light, and curved

scenes obviously increase after incorporating the auxiliary trainer, the number of FPs in the

crossroad scenario is clearly reduced, and the mean F1 increases from 73.86 to 74.10. Addi-

tionally, the effects of incorporating the auxiliary trainer on the runtime and the number of

parameters are small, which indicates that incorporating the auxiliary trainer helps with the

training process of the model, thereby proving the usefulness of the auxiliary trainer.

Comparison with available models. To verify the effects of our model, we undertook a

broad comparison with several state-of-the-art methods. We evaluated Nb_SINet and multiple

backbones, i.e., ENet_LGAD [15], SIM_CycleGAN+ERFNet [16], ERFNet-E2E [17],

Table 4. Performance comparison of auxiliary trainer ablation experiments.

Scenarios Nb_SINet_noaux Nb_SINet

Normal 92.07 92.24

Crowded 72.10 73.36

Night 68.90 69.08

No line 47.45 47.17

Shadow 70.05 74.82

Arrow 88.22 87.61

Dazzle light 65.13 68.18

Curve 68.58 68.24

Crossroad (FP) 2,797 2,664

Mean F1 73.86 74.10

Parameters (M) 2.31 2.31

Runtime (ms) 5.88 5.88

https://doi.org/10.1371/journal.pone.0252755.t004

Table 5. F1 index for each model in different scenarios.

Scenarios ENet_LGAD SIM_CycleGAN+ERFNet ERFNet-E2E ERFNet-HESA ERFNet_VP Nb_SINet

Normal 91.2 91.8 91.00 92.0 91.9 92.24

Crowded 68.9 71.8 73.10 73.1 72.3 73.36

Night 66.8 69.4 73.10 69.2 69.4 70.20

Shadow 66.4 76.2 74.10 75.0 74.0 74.82

Arrow 84.5 87.8 85.80 88.2 87.4 87.61

Dazzle light 59.9 66.4 64.50 63.8 67.1 68.18

Curve 66.4 67.1 71.90 67.9 66.4 68.24

No line 43.7 46.1 46.60 45.0 46.8 47.17

Mean F1 72.0 73.9 74.00 74.2 74.2 74.10

https://doi.org/10.1371/journal.pone.0252755.t005
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ERFNet_VP [18] and ERFNet-HESA [19], for each scenario, and the mean F1 for each method

is also shown in Table 5.

Nb_SINet achieves excellent performance, with an F-measure of 74.10%, and outperforms

other methods in almost all categories. There are noticeable performance improvements in the

dazzling light and no line scenes.

The comparison results regarding the FP metrics for each model in the crossroad scenario

are shown in Fig 11.

The FP of our model in the crossroad scenario is 2,664, while that of the ENet_LGAD model

is only 1,955, so the latter model requires further improvement for the crossroad scenario.

We compare our model with the ENet_LGAD, ERFNet_VP, and ERFNet-HESA models in

terms of both their runtime and numbers of parameters, and the comparison results are

shown in Fig 12.

In Fig 12, the runtime of our model is only 5.88 ms, and the number of parameters is only

2.31M, so our model outperforms the state-of-the-art ENet_LGAD in terms of accuracy and

Fig 11. Comparison of the FP results obtained for the crossroad scenario.

https://doi.org/10.1371/journal.pone.0252755.g011

Fig 12. Comparison between the runtime and numbers of parameters for the tested models. (a) Comparison of runtimes. (b)

Comparison of the number of parameters.

https://doi.org/10.1371/journal.pone.0252755.g012
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number of parameters. Our model meets the state-of-the-art requirements, satisfying the

trade-off between the number of parameters and runtime.

Fig 13. Original drawings and diagrams with the fitted lane lines.

https://doi.org/10.1371/journal.pone.0252755.g013
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Lane line fitting outcomes

In this paper, we randomly select three images from each scenario and analyze the fitting

effects of the detected lane lines to show the superiority of the proposed lane line fitting

approach. We fit four lanes within the field of view of the current driving lane with 30-pixel

lines by preprocessing the input image with cropping and normalization operations and load-

ing the trained model; the obtained lane line fitting results are shown in Fig 13. The Nb_SINet

model fits lines relatively well in the normal, crowded, shadow, night, arrow, and dazzle light

scenarios, while the fitting effect still needs to be improved when there are no lines, curves, or

crossroads.

Conclusions

In this paper, we introduced a real-time lane detection model called Nb_SINet that fuses Non-

bt-1D-SRC and an IAP to address the problem regarding the poor lane line detection accuracy

and real-time performance of ERF-PSPNet in multiscenario environments. We adopted a

Non-bt-1D-SRC in the encoder, which incorporates multiple features after performing asym-

metric convolution to enhance the mIOU achieved during SS. An improved feature pyramid

network was used for the decoding phase, which introduces an attention mechanism and uses

the AP module to obtain rich contextual information. The contributions of this paper are as

follows: (1) we propose a Non-bt-1D-SRC module to solve the problem regarding the lack of

correlated feature information between adjacent convolutional layers. (2) The IAP module

extracts rich contextual information. In a comparison with ENet_LGAD, SIM_CycleGAN+-

ERFNet, ERFNet-E2E, ERFNet_VP and ERFNet-HESA, the experimental results show that

our model improved the F1 values in five scenarios: normal, shadow, arrow, dazzle light, and

no line. The mean F1 is also higher for the nine tested scenarios. Meanwhile, our model has

fewer parameters and the shortest runtime.

In the future, we need to further enhance the lane line fitting effect yielded in the curve sce-

nario. Next, we will consider using the biarc spline function for fitting purposes. In the cross-

road scenario, the number of FPs is largest, mainly because the crossroad data are not finely

labeled, and the number of lanes is the greatest. In this paper, we only considered the four left

and right lane lines from where the vehicle was located. A further step will be to focus on mul-

tiple lanes at a crossroad and carefully annotate the data.

Supporting information

S1 Fig. Auxiliary training loss. The cross-entropy loss of the auxiliary trainer is used as the

auxiliary loss, which solves the problem of gradient disappearance.

(TIF)

S2 Fig. Lane forecast loss. Lane prediction loss is used to evaluate the quality of lane predic-

tion.

(TIF)

S3 Fig. SS loss. Semantic segmentation is used to segment the image background and four

lane lines, and the calculation of cross-entropy loss can evaluate the effect of SS.

(TIF)
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