
RESEARCH ARTICLE

Optimizing hyperparameters of deep

reinforcement learning for autonomous

driving based on whale optimization

algorithm

Nesma M. AshrafID
1☯*, Reham R. Mostafa2☯*, Rasha H. Sakr1☯, M. Z. Rashad1☯

1 Computer Science Department, Faculty of Computers and Information Sciences, Mansoura University,

Mansoura, Egypt, 2 Information Systems Department, Faculty of Computers and Information Sciences,

Mansoura University, Mansoura, Egypt

☯ These authors contributed equally to this work.

* nesma.ashraf.89@gmail.com (NMA); Reham_2006@mans.edu.eg (RRM)

Abstract

Deep Reinforcement Learning (DRL) enables agents to make decisions based on a well-

designed reward function that suites a particular environment without any prior knowledge

related to a given environment. The adaptation of hyperparameters has a great impact on

the overall learning process and the learning processing times. Hyperparameters should be

accurately estimated while training DRL algorithms, which is one of the key challenges that

we attempt to address. This paper employs a swarm-based optimization algorithm, namely

the Whale Optimization Algorithm (WOA), for optimizing the hyperparameters of the Deep

Deterministic Policy Gradient (DDPG) algorithm to achieve the optimum control strategy in

an autonomous driving control problem. DDPG is capable of handling complex environ-

ments, which contain continuous spaces for actions. To evaluate the proposed algorithm,

the Open Racing Car Simulator (TORCS), a realistic autonomous driving simulation envi-

ronment, was chosen to its ease of design and implementation. Using TORCS, the DDPG

agent with optimized hyperparameters was compared with a DDPG agent with reference

hyperparameters. The experimental results showed that the DDPG’s hyperparameters opti-

mization leads to maximizing the total rewards, along with testing episodes and maintaining

a stable driving policy.

1. Introduction

Reinforcement Learning (RL) is a machine learning category, which should achieve the highest

cumulative reward through interactions with an unknown environment. There is a trend to

blend this category with deep learning, which led to significant advancements in different

domains. RL has steadily improved because of the prominence of deep neural networks

(DNN), leading to the emergence of Deep Reinforcement Learning (DRL), which has outper-

formed humans in various games in the last few years [1–4]. DRL has been broadly used for

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ashraf NM, Mostafa RR, Sakr RH,

Rashad MZ (2021) Optimizing hyperparameters of

deep reinforcement learning for autonomous

driving based on whale optimization algorithm.

PLoS ONE 16(6): e0252754. https://doi.org/

10.1371/journal.pone.0252754

Editor: Thippa Reddy Gadekallu, Vellore Institute of

Technology: VIT University, INDIA

Received: April 1, 2021

Accepted: May 22, 2021

Published: June 10, 2021

Copyright: © 2021 Ashraf et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-0489-2320
https://doi.org/10.1371/journal.pone.0252754
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252754&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252754&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252754&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252754&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252754&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252754&domain=pdf&date_stamp=2021-06-10
https://doi.org/10.1371/journal.pone.0252754
https://doi.org/10.1371/journal.pone.0252754
http://creativecommons.org/licenses/by/4.0/

addressing multiple challenges in speech recognition [5], computer vision [6], natural lan-

guage processing [7], and other AI models [8, 9].

DRL has been integrated with a Deep Q-Network (DQN) framework, where DNN offered

the fundamental of Q-learning [1]. DQN demonstrated exceptional outputs in fifty variants of

Atari games and contributed to developing various DRL systems [10–12]. DQN was concerned

only with those tasks where there are minor and discrete states, as well as action spaces. Vari-

ous RL tasks involve continuous states as well as action spaces. Though DQN might have

accomplished continuous tasks by converting the continuous spaces into discrete ones, which

in turn, will increase the unpredictability of the overall control mechanism. To address this

issue, the Deterministic Policy Gradient (DPG) algorithm [13] coupled with DNN techniques,

was deemed appropriate, resulting in the Deep Deterministic Policy Gradient (DDPG) algo-

rithm [14]. However, DDPG is affected by inadequate exploration and unstable training occa-

sionally [15].

A set of parameters must be predefined to ensure that the DDPG algorithm can explore and

learn on its own during the interaction with a complex environment in a continuous control

problem. These parameters, also known as hyperparameters, include neural network size,

learning rates, exploration, and others. In the training phase, they are not automatically tuned,

where developers would select them based on their experience. The outcome of the learning

process and the interactions with the environment, as well as the required learning time, highly

depends on the choice of the hyperparameters. Because of this, it is critical to accurately choose

the best hyperparameters for enhancing the model’s performance. Each environment has its

hyperparameters that suit its nature and complexity. An ordinary way of selecting those hyper-

parameters is to manually search for suitable ones, which demand expertise to find robust

hyperparameter sets. However, it is not easy to find out the best hyperparameters [16]. An

automatic hyperparameter search process offers has become essential as it enables a DRL algo-

rithm to produce the optimal solution regarding any predefined problem. First, any applica-

tion would be applied with a guarantee that a DRL algorithm will function at its best, as a user

is not reliant on sophisticated personal experience regarding the tuning of hyperparameters.

Second, the optimality-based problem solving using a DRL algorithm can be advanced into

true automation, as only the identification of the optimal hyperparameters enables the DRL

algorithms to deliver optimal results regarding the given task without any prior knowledge to

the environment, and completely through trial and error.

Recently, optimization has become one of the most interesting topics in different life

aspects and nature-inspired meta-heuristic optimization algorithms that are shown to be one

of the promising optimization techniques. These algorithms have been utilized with AI meth-

ods because they: (i) are easy to implement and rely on rather simple concepts; (ii) do not

require gradient information; (iii) can avoid local optima; and (iv) are utilized in multiple

problems covering different research areas. Nature-inspired meta-heuristic algorithms resolve

optimization problems by simulating physical or biological phenomena. These algorithms can

be categorized into three main classes: swarm-based, evolution-based, and physics-based

methods.

Evolution-based methods are motivated by the rules of the evolutionary process. Physics-

based methods mimic the rules of physics evident in nature. Nature-inspired methods contain

swarm-based methodologies that mimic the communal conduct of clusters of animals. Con-

ventionally, swarm-based techniques have some better Properties than evolution-based algo-

rithms. For instance, swarm-based algorithms save the data of search avenues over the next

iterations. On the other hand, approaches based on evolution eliminate all details as soon as a

new population is formed. Swarm-based algorithms generally contain reduced operations

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 2 / 24

https://doi.org/10.1371/journal.pone.0252754

compared with evolutionary strategies (selection, crossover, mutation, elitism) and are com-

paratively easy to execute.

The most popular swarm-based optimization algorithms are Particle Swarm Optimization

(PSO) [17] that is motivated by the societal conduct of bird flocking, Ant Colony Optimization

[18], which is motivated by societal conduct of ants as they operate and perform in an ant col-

ony. Recently, the Whale Optimization Algorithms (WOA) [19] which motivated by whales’

potential for chasing target prey. WOA can efficiently solve various issues and was extended

with many updates from 2016 till today. The research for improving the WOA by extending

the original work with new features or create a hybrid algorithm between WOA and other

swarm-based optimization techniques is presented strongly in academic research.

WOA and its extensions are utilized in various domains, industrial applications, and aca-

demic theories. They have been confirmed with outstanding results in Electrical and Electron-

ics Engineering [20–22], Economic Scheduling [23], Civil Engineering [24], Fuel and Energy

[25, 26], Reduce the burden of the DNN features extraction from the dataset [27] and solving

resource allocation problems in wireless networks [28].

In this paper, the DDPG algorithm [9] was adopted, which combines the ideas of DPG, actor-

critic algorithms, and deep Q-learning. The DDPG agent was aimed to control an automated

vehicle. Autonomous driving (AD) was selected as the field of interest in this paper because its

state space is exceptionally complex, and action space is continuous. Besides that, a neat fine con-

trol is required. In addition, in a dynamic world, autonomous driving vehicles often have to

ensure practical stability. These aspects make the AD task very challenging even for DRL algo-

rithms that can tackle continuous spaces like DDPG. AD is an active research point in computer

vision and control systems. In the industry, Google, Tesla, NVIDIA, Uber, and Baidu, are some

of the companies devoted to developing advanced AD cars because they can benefit humans in

the real life. The annual social benefits of AD systems, if widely adopted, are expected to hit

approximately $800 billion by 2050, thanks to traffic reduction, reduced road fatalities, lower

energy usage, and improved efficiency due to the reallocation of driving time [29]. In this context,

respectful efforts have been put into the research to provide a reliable and safe experience to the

future of AD for both connected vehicles [30, 31] and ego vehicles [32, 33]. On the other hand,

the DRL technique can be seen as a promising technique to be applied in the field of AD.

To prevent physical damage, the Open Racing Car Simulator (TORCS) was chosen as the

test environment in this paper. To learn the policy in TORCS, first, a set of appropriate sensor

information was selected as inputs from TORCS. Based on these inputs, a rewarder inside

TORCS has been adopted that was proven to encourage DDPG agents to maintain a promising

driving policy in previous work.

Meanwhile, to make the perfect fit of DDPG in the TORCS environment, this paper aims to

optimize a set of five critical hyperparameters of the DDPG algorithm using WOA. The opti-

mized hyperparameters are (actor learning rate, critic learning rate, discount factor, learning

rate of target networks, batch size). Those hyperparameters control the performance of the over-

all system. The WOA was chosen as the metaheuristic optimization technique in this paper due

to its promising results. Because of the arbitrary structure of the optimization algorithm, achiev-

ing a suitable equivalence between exploitation and exploration in the improvement of any

metaheuristic algorithm is a topmost task. Through its exploitation, exploration, and ability to

get rid of local minima, WOA has the highest significance among the different optimization

approaches [34]. Thanks to the whales’ location updating process, the WOA has a significant

exploration capability. The whales are forced to travel randomly around each other during the

first step of the algorithm. The algorithm then instructs the whales to update their positions fre-

quently and travel along a spiral-shaped route in the direction of the best path found thus far.

The WOA avoids local optima since these two stages are performed independently and in half

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 3 / 24

https://doi.org/10.1371/journal.pone.0252754

iteration each. However, since most other optimization algorithms (such as PSO and GSA) do

not have operators to consecrate a particular iteration to the exploration or the exploitation so

the probability of falling into local optima is more likely increased [35].

To demonstrate the effectiveness of the proposed method, we evaluate our agent in training

mode within TORCS. The results were compared with another DDPG agent’s performance,

which uses a set of hyperparameters that was suggested by an expert. The results show that our

agent had outperformed its competitor in terms of maximizing the accumulated rewards

along with test episodes with a non-trivial difference.

This article makes the following contribution:

• Surveys the latest and most outstanding DRL research in the field of AD and state the

research efforts which have been put into optimizing the DRL algorithm’s hyperparameters.

• targeting a set of five hyperparameters of the DDPG algorithms to be optimized which are

known to be the most critical for the learning process efficiency [14].

• Applying WOA to find the optimal values of the selected hyperparameters to allow our

agent to apply the continuous control within the TORCS environment.

• Comparing the performance of the DDPG agent that using the optimized hyperparameters

with another DDPG agent which uses a set of hyperparameters proposed by an expert and

shows that the proposed hyperparameters maximized the total rewards gained along with

test episodes within the TORCS environment.

The remainder of this paper is organized as follows. In section 2, the background is given.

The related work is discussed in section 3. The proposed approach is introduced in depth in

section 4. Section 5 discusses the proposed method’s experimental findings. Section 6 con-

cludes the paper.

2. Background

This section presents a brief background of Reinforcement Learning, the Deep Deterministic

Policy Gradient algorithm (DDPG), Whale Optimization Algorithm (WOA), and The Open

Racing Car Simulator (TORCS).

2.1 Reinforcement learning

RL [36] is a subdomain in machine learning, and it utilizes reward points explicitly obtained

by the environment for learning a policy. Policy here is referring to the process of mapping

observations (states) to actions. In the traditional perspective of reinforcement learning, an

agent intends to learn an ideal policy given the environment E in discrete time steps. The Mar-

kov decision process (MDP) is formally used to describe RL problems. RL problem consists of

the tuple (S,A,P,R,γ) where S refers to the state space, A is the action space, P(st+1|st, at) is a

transition function that predicts the next state (st+1) given a current state-action pair (st, at), R

is the reward function that defines the immediate reward r(st, at) achieved at each state-action

pair, and finally, γ � [0, 1] denotes a discount factor that gives more value to the reward given

to the agent now more than the rewards that will be collected way in the future. Eq (1)

describes the accumulated reward obtained by an agent starting from time step t along the tra-

jectory of interactions with an environment:

Rt ¼
PT

i¼tg
ði� tÞrðsi; aiÞ ð1Þ

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 4 / 24

https://doi.org/10.1371/journal.pone.0252754

When the agent optimizes the expected accumulated reward E [Rt], the ideal strategy (pol-

icy) π� is expected to be reached.

2.2 Deep Deterministic Policy Gradient algorithm (DDPG)

DDPG [14] is an off-policy algorithm based on the DPG [13] method. As the name refers, the

DDPG algorithm uses deep learning (represented here in DNN) to estimate the policy func-

tion μ deterministically besides approximating an action-value function Q(s, a).

The key features of the DDPG procedure are explained next. Initially, the DDPG algorithm

uses the actor-critic framework [36]. It implies the presence of two segments, the actor as well

as the critic. The actor preserves a policy. The policy gets a state in the form of input and pro-

duces an action as its output. The critic approximates the action-value function, which

becomes beneficial for evaluating the fitness of the actor. Moreover, the algorithm uses two

sets of DNN for the actor and the critic. There are main networks (main actor μ with weights θ
and main critic Q with weights ω) and target networks (target actor �m with weights �y and tar-

get critic �Q with weights �o). At last, the algorithm utilizes a stochastic gradient [13] for the

updating of main network weights and a soft updating rule for the target network weights.

The DDPG algorithm eventually receives the replay buffer feature from (DQN) [1] to

address computational resources’ consumption issues. Because DDPG is an off-policy algo-

rithm, the replay buffer may be huge, enabling the algorithm to take advantage of training in

randomly sampled mini-batches throughout unrelated environmental interactions, which

maintains the concept of i.i.d (independent identically distributed) supposition. A determin-

istic policy makes the training more stable for continuous domains. The "soft" updating rule,

which is utilized for updating the target networks, also increases the training process’s

stability.

This type of model is sufficiently adequate to demonstrate a tricky task as a continuous con-

trol problem. When the learning has been accomplished, the actor meets the ideal policy. (Fig

1) shows a Diagram of the DDPG algorithm.
Algorithm#1 DDPG algorithm
Input actor networks weights θ and critic networks weights ω, replay
buffer R, Max episodes Emax, Max steps T
Output optimal policy π�

1. Begin
2. Randomly initialize main critic network Q(s, a) and main actor-
network μ(s) with weights ω and θ
3. Initialize target critic network Q� ðs; aÞ and target actor-network
�μðsÞ with weights �ω and �θ
4. Initialize replay buffer R
5. For i = 1 to Emax do
6. Initialize action exploration noise process Ɲ
7. Receive initial state s1 from the environment.
8. For i = 1 to T do

Fig 1. Diagram of deep deterministic policy gradient algorithm (DDPG).

https://doi.org/10.1371/journal.pone.0252754.g001

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 5 / 24

https://doi.org/10.1371/journal.pone.0252754.g001
https://doi.org/10.1371/journal.pone.0252754

9. Execute action at= μ ðstjyÞ þƝ
10. Observe reward rt and successor state st+1
11. Store experience (st, at, rt, st+1) in R
12. Sample random minibatch of N transitions from R
13. Set yi ¼ ri þ γ �Qðsiþ1; �μðsiþ1j�θÞj�θÞ
14. Update the critic by minimizing the loss L where

L ¼ 1

N

P
iðyi � Qðsi; aijoÞÞ

2

15. Update the actor using the sampled policy gradient:
rymjsi �

1

N

P
iraQðs; ajoÞjs¼st ;a¼mðstÞrymðsjyÞjst

16. Update the target network weight according to the soft
update rule

17. End for
18. End for
19. End

2.3 Whale Optimization Algorithm (WOA)

The original version of the WOA was demonstrated in [19] by Mirjalili and Lewis. The effec-

tiveness of the WOA was demonstrated in solving various issues [25, 37, 38]. The procedure is

motivated by the potential of a whale to chase the target prey. The primary objective in WOA

is to find out the target (optimal solution) by chasing it using the hunting strategy of the hump-

back whales. The hunting process of the humpback whales involved by first, surrounding the

target, subsequently produces a net of bubbles to confine the target. Similar to other swarm-

based optimization techniques, WOA depends on two strategies, which are exploration (seek-

ing for the prey) and exploitation (hunting the prey) [19].

This combination of searching techniques for indicating the optimal solution ensures that

the algorithm’s output is close to optimal solution among all possible solutions since explora-

tion circumvents the local optima by expanding the outcomes’ plurality [39]. The bubble-net

system in humpback whales can be mathematically modeled as the following.

Step 1: Bubble net attacking method (exploitation phase). There is two approaches for

mathematically model the humpback whale’s bubble net behavior. The two approaches are

described as follows:

1. Encircling Prey. When whales identify the target’s location, they create a circle to produce

a net. Initially, the ideal solution’s position remains unknown; therefore, the WOA presup-

poses the current leading candidate as the current best solution. Next, other searching

agents are utilized to alter their positions to arrive at the current best agent’s location. The

strategy is manifested, as mentioned in Eqs (2) and (3) below:

X!ðtþ 1Þ ¼ X�
�!
ðtÞ � A

!
:D! ð2Þ

D!¼ jC
!
: X�
�!
ðtÞ � X!ðtÞj ð3Þ

In the equations, X�
�!
ðtÞ denotes the whale’s previous best location at step t. X!ðtþ 1Þ the

current position of a whale, D! is the distance from the whale point to the target, and the ||

indicates the absolute value. ‘A,’ as well as ‘C,’ serve as coefficients, and their computations are

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 6 / 24

https://doi.org/10.1371/journal.pone.0252754

given below:

A
!
¼ 2: a!: r!� a! ð4Þ

C
!
¼ 2: r! ð5Þ

In Eq (4), a parameter is proportionately reduced in the range of 2 to 0 in all phases (explo-

ration and exploitation); thereby, A
!

is a harmonic range that decreases by a!. r! denotes a

random vector in [0,1]. The updated location of all search agents can be approximated between

their initial locations and the best agent’s location.
Algorithm#2 Whale Optimization Algorithm
Input number of whales (N), the maximum number of iterations (Tmax)
Output best search agent X�

1. Begin
2. Set number of whales.
3. Initialize whales’ positions randomly.
4. Calculate the fitness of each whale.
5. Find the best whale X�

6. While (t < Tmax)
7. For (i = 1 to N) do
8. Update parameters (a,A,c,l and p)
9. If (p<0.5)
10. If (|A| <1) then Update current whale position by Eq
(2)
11. Else if (|A| >= 1) then Update current whale position

by Eq (8)
12. End if
13. Else if (p >= 0.5)
14. Update current whale position by Eq (6)
15. End if
16. End for
17. Force whales’ position to remain inside the search

boundaries
18. Calculate the fitness of each whale
19. Update the current best whale X�

20. t = t+1
21. End while
22. End

2. Spiral Updating Position. The area between the whale positioned at (X,Y) and the target

positioned at (X�Y�) is represented, then a helix-shaped movement is implemented by

using the spiral equation as shown in Eq (6).

X!ðtþ 1Þ ¼ ebl:cosð2plÞ:D�
�!
þ X�
�!
ðtÞ ð6Þ

where D�
�!
¼ j X�
�!
ðtÞ � X!ðtÞj, b denotes the constant used to determine a logarithmic spiral

shape and l denotes a random number in the range [−1, 1].

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 7 / 24

https://doi.org/10.1371/journal.pone.0252754

When updating whale’s positions, there is a likelihood of 50 percent to choose among

shrinking encircling mechanism and the spiral model as follows:

X!ðtþ 1Þ ¼
X�
�!
� A
!
: D;�! if p < 0:5;

ebl:cosð2plÞ: D�
�!
þ X�
�!
ðtÞ; if p � 0:5

8
<

:

9
=

;
ð7Þ

In the equation, p represents a random quantity within (0, 1).

Step 2: Search for prey (exploration). During this stage, the whales essentially utilize a

random search to explore the target. Hence, to force the agents to distance from the best

whale, the ’A’ vector is supported with a random value not equal to 1. In this phase of explora-

tion, the agents’ position is rearranged based on randomly choosing the search agent instead

of looking for the best agent. The exploration strategy is beneficial for WOA addressing the

issue of local optima. The exploration position update is demonstrated in Eqs (8) and (9).

X!ðtþ 1Þ ¼ Xrand
��!

� A
!
:D! ð8Þ

D!¼ j c!:Xrand
��!

� X!j ð9Þ

Where Xrand
��!

represents a random location (randomly selected whale) based on the current

population.

2.4 The Open Racing Car Simulator (TORCS)

The environment used for this paper is TORCS [40]. TORCS is a publicly available 3D racing

game based on OpenGL technologies. TORCS has been widely used in academic research and

has been chosen in this paper because it provides a realistic driving simulation. The simulator

concept was first introduced in 1997 by Eric Espi and Christophe Guionneau. The simulator

was coded in C++, and AI driving agents were developed using it over the years. TORCS exe-

cutes detailed-oriented physics processes that consider various dimensions of real-life car driv-

ing, for instance, wheel movement, aerodynamics, car damages, and so forth. Therefore,

TORCS enabled the development of highly trained agents. (Fig 2) shows an example screen-

shot representing TORCS.

In TORCS, the car driver receives a sense of the racing scene provided by numerous sensors

to know the ego vehicle’s most recent position. Next, the controller executes the driving tasks,

including brakes application, using the accelerator, and using the steering by adhering to a spe-

cific control policy. The driver uses a UDP connection to communicate with the race server.

At each stage, the server transmits the latest updated environmental state and evaluates any

response from the controller within 10 ms. In the case of no response, the previous response is

considered. It is essential to state why TORCS is a very popular testbed for DRL:

Fig 2. An example screenshot of TORCS.

https://doi.org/10.1371/journal.pone.0252754.g002

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 8 / 24

https://doi.org/10.1371/journal.pone.0252754.g002
https://doi.org/10.1371/journal.pone.0252754

• It provides good interactivity between the client (car controller) and the race server.

• In TORCS, it is possible to visualize neural networks’ learning over the training and assess

the overall process. In contrast to other methods where one can only view the final results,

this feature is very beneficial.

• It is also possible to visualize the stage when the neural network is stuck in local minima.

3. Related work

In this section, the recent research efforts in the domain of DRL for AD as well as optimization

of DRL hyperparameters are presented.

3.1 DRL for autonomous driving

This section describes how different DRL algorithms dealt with the continuous control prob-

lem in AD. To simplify the process and enable DRL methodologies, which are effective in dis-

crete action spaces exclusively (such as DQN), to function on such a domain as AD, an action

space may be discretized uniformly as in [41]. Also, a Deep Q-Learning with filtered experi-

ence (DQFE) procedure was proposed with an extended experience replay strategy in [42].

The model has productively been trained on a routing technique with (TORCS).

However, Discretization has its drawbacks; it may result in a jerky or unstable driving pol-

icy. Another option to overcome this limitation is to use non-discrete values for actions

directly by DRL methodologies. In this case, an agent’s training is accomplished explicitly

through DRL that could handle the complex and continuous nature of the AD problem (such

as DDPG). In this area, authors in [43] demonstrated the use of the DDPG algorithm to handle

a real-size automated car.

Also, a temporal abstractions options framework was used to reduce the complexity con-

cerned with the choice of actions for AD in [44], where agents choose options rather than

direct low-level actions. The options constitute a subset of a policy as an extension of a basic

action over several stages. Authors in [45] also adopt the (DDPG) algorithm to align DDPG

strategies with TORCS and develop their reward function (which has been adopted in this

paper). They also designed their network architecture for actors as well as critic within the

DDPG framework. They present the network’s efficiency by showing both quantitative and

qualitative results.

Authors in [46] utilized DQN for the refinement stage within Inverse-RL to obtain the

rewards. This effort focused on learning humanistic lane change attempts. Authors in [47]

indicated an expert demonstration from human drivers to optimize a solid driving policy. The

method used was Maximum Entropy Inverse RL (IRL) so that the optimization of human-like

and comfortable driving trajectories could be learned.

Model-based deep RL strategies are also suggested for training modes and methodologies

in AD directly from raw pixel inputs [48–50]. For a detailed review of the Adoption of DRL in

AD tasks, we refer the reader to [51, 52].

The objective of constructing a reward function for the DRL agents in AD is open to debate.

Different criteria are integral components of a successful reward function design for DRL

agents in AD tasks. These criteria are: distance traveled, car speed, maintaining the standstill

state of the car, collision with scene objects and road walkers, infractions on the sidewalk,

keeping in the lane, keeping smoothness and stability, and finally following traffic guidelines.

In Table 1, a list of the research efforts that have been put into designing the reward function

according to the criteria mentioned above is shown.

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 9 / 24

https://doi.org/10.1371/journal.pone.0252754

From the literature survey, it has been observed that most of the works concentrate on

applying DRL algorithms to AD by discretizing the action space uniformly which led to jerky

driving policy, or by applying vanilla DDPG algorithm, which led to an acceptable perfor-

mance that could be farther improved. Hence, to address this issue a hyperparameters optimi-

zation for the DDPG algorithm is performed in this paper to provide a stable driving policy for

AD.

3.2 Optimization of DRL hyperparameters

This section deals with related studies concerned with hyperparameter’s optimization of differ-

ent DRL methodologies.

Hyperparameter adaptation in DRL based on the Bayesian method was proposed in [53].

Where Chen et al. conducted the most thorough RL hyperparameters study, opting to use

Bayesian optimization to configure the AlphaGo algorithm. Bayesian optimization facilitates

an automatic solution to tune the game-playing hyperparameters of AlphaGo. The traditional

methods can never achieve these results. Bayesian optimization improved the winning chances

of AlphaGo and helped gain key data that can prove beneficial for constructing updated vari-

ants of self-play agents with Monte Carlo Tree Search (MCTS). However, this methodology

necessitates conducting significant trials and requires advanced information. Moreover, these

strategies can mostly adapt to one particular hyperparameter, and they are unable to adapt to a

range of hyperparameters.

In [54] Liessner et al. describe a model-based hyperparameter optimization for DDPG that

proved efficient in the industrial application settings. The optimization is extended with strict-

ness on the available training time for the DDPG algorithm in the selected domain in their

work. The authors showed that DDPG hyperparameters were optimized under hard time con-

strain. DDPG hyperparameters were also optimized in [55], where Authors used a Genetic

Algorithm (GA) to identify adequate HER+DDPG hyperparameters. The used GA found the

hyperparameters that requiring fewer epochs to learn better task performance. They utilized

this approach on reach, fetch, push, slide, place, pick, and open processes in robotics manipu-

lation jobs.

Authors in [56] concurrently proposed a method similar to population-based training

(PBT). They indicated an alternate approach that is focused on the evolutionary mechanism,

which is the OMPAC method. OMPAC was the first approach for executing DRL’s multiple

hyperparameters adaptation by the population-based strategy. Authors in [57] also utilized the

population-based neural network training (PBT) approach that essentially uses a static compu-

tational budget to optimize a population of models and their hyperparameters configuration

to reach the best output. The proposed approach produced good outcomes in Machine Trans-

lation, DRL, and GANs. Nevertheless, PBT utilizes primitive stochastic perturbations for

Table 1. Research efforts in designing reward function for the AD problem with different criteria.

REFERENCE Aspects considered in designing reward function for AD

Traveled distance

towards a

destination

Car

speed

Maintaining the

standstill state of the

car

Collision with scene

objects and road

walkers

Infractions on

sidewalk

keeping in

lane

Maintaining

smoothness and

stability

Following the

traffic rules

[36] ✓

[43] ✓ ✓ ✓

[44] ✓ ✓ ✓

[45] ✓ ✓

[46] ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0252754.t001

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0252754.t001
https://doi.org/10.1371/journal.pone.0252754

obtaining hyperparameter adaptation, which has been considered ineffective to track changes

of potential temporary ideal hyperparameter configuration.

Recently, authors in [58] demonstrated a process of online hyperparameter adaptation for

DRL. The efficient online hyperparameter adaptation method was an improved procedure of

Population-based Training (PBT). An operation inspired by the GA called recombination

operation is presented into the population optimization to accelerate the population’s conver-

gence towards the best hyperparameter configuration. The authors confirmed this approach’s

effectiveness and provided improved results compared to PBT, which is a classical approach

consistent with their work.

Also, authors in [59] introduced the pioneering, confirmed, and effective Population-Based

Training (PBT-style) procedure, named Population-Based Bandits (PB2). The procedure

enables the identification of outstanding hyperparameter setups with fewer agents compared

to PBT. Authors demonstrate with several RL trials, that PB2 can reach outstanding levels in a

modest computational budget.

Strategies such as Population Based Training that are trained to learn optimal schedules for

hyperparameters instead of fixed settings will produce promising outcomes, however, they are

affected by sample ineffectiveness.

To address the limitation mentioned above, S. Paul et al. propose Hyperparameter Optimi-

zation on the Fly (HOOF) as a method to learn the hyperparameters of a policy gradient algo-

rithm in [60]. A gradient-free procedure that needs only a single training execution to

automate the hyperparameter adaptation that affects the policy gradient update. Their method

was producing sample efficient and computationally effective algorithms that can be imple-

mented easily. The findings within all used fields and algorithms indicate that the utilization of

HOOF for learning the hyperparameter schedules results in quicker training with exceptional

results.

An alternative approach was introduced in [61] to setting the TD’s λ hyperparameter,

which is responsible for maintaining timescale concerning the TD updates. They reinforce the

λ choice as a bias-variance trade-off in which the outcome is λ hyperparameter that results in

the minimum Mean Squared Value Error (MSVE). Leave-One-Trajectory-Out Cross-Valida-

tion (LOTO-CV) was used for searching the domain of λ values. The approach highlighted

that LOTO-CV could be executed effectively to fine-tune λ hyperparameter in an automated

manner. However, these adaptation types often necessitate comprehensive practical skills and

require significant computation power in various real-life scenarios.

From the literature survey, it has been observed that most of the works concentrate on

applying grid search, Bayesian methods, or genetic algorithms to optimize different DRL

hyperparameters, which shows some success but still has obvious drawbacks. Hence to achieve

unprecedented results, a swarm-based metaheuristic optimization algorithm, which is the

WOA, is proposed in this work to optimize the DDPG algorithm’s hyperparameters in the AD

field.

4. Proposed framework

This section presents this paper’s primary contribution: where the WOA searches the space of

DDPG hyperparameters trying to reach the hyperparameter set that maximizes the total

rewards gained within the TORCS environment.

Following hyperparameters is the target set:

• actor learning rate αactor

• critic leering rate αcritic

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 11 / 24

https://doi.org/10.1371/journal.pone.0252754

• discount factor U

• τ parameter (the parameter used to soft updates both actor and critic target networks)

• Batch size

The selected range of all the hyperparameters is shown in Table 2.

4.1 DDPG network structure

The training is done using two sets of networks, which are critic networks and actor networks.

The actor networks input is a 29-dimensional state vector (selected from 18 different types of

sensor inputs available in the TORCS environment), and the output is a 3-dimensional action

vector. The output consists of 3 continuous actions, which are Steering, Acceleration, and

Brake

Steering is a single unit with tanh activation function (in such, -1 means a max right turn

and +1 means a max left turn). A single unit with a sigmoid activation function assigned for

each of acceleration and brake separately (where 0 means no gas in the case of acceleration and

no brake at all in the case of brake, 1 means full gas in the case of acceleration, and bull brake

in the case of brake). Meanwhile, the critic network’s input is the state vector and the action

vector together, and the output of the critic network is an action-value function Q(s, a). Only

in the second hidden layer does the 3-dimensional action vector enter the critic network.

The actor and critic network configurations are shown in Table 3. There are two hidden

layers of both actor and critic networks with 300 units and 600 units, respectively. Using the

ADAM algorithm [62], the main network parameters are optimized. Meanwhile, the main net-

work’s parameters are initialized at random.

4.2 Training of DDPG networks

Critic network training. Critic networks comprise the main network and target network.

A batch of samples is used for updating the main network at each discrete time stage. The

minibatch sample acquires data from the replay memory. The batch size is determined based

on the 5th value of each whale’s position vector (according to the arrangement of the

Table 2. List of hyperparameters to be optimized with ranges.

parameter range

αactor [1e-04] – [1e-05]

αcritic [(1e-03) – (1e-4)]

discount factor U [0–1]

τ parameter [(0) -(1e-02)]

Batch size [32-512]

https://doi.org/10.1371/journal.pone.0252754.t002

Table 3. Actor and critic networks configuration.

name actor critic

Input layer 29 feature state vector State vector and action vector (st, at)

1st fully-connected layer 300 Neurons 600 Neurons

2nd fully-connected layer 300 Neurons 600 Neurons

Output layer 3-dimensional action vector (at) Q-value

Initial parameters Uniformly random between [−3e−3, 3e−3] Uniformly random between [−3e−3, 3e−3]

Optimizer ADAM ADAM

https://doi.org/10.1371/journal.pone.0252754.t003

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 12 / 24

https://doi.org/10.1371/journal.pone.0252754.t002
https://doi.org/10.1371/journal.pone.0252754.t003
https://doi.org/10.1371/journal.pone.0252754

hyperparameters to be optimized as whales’ positions). Particularly, the main critic network

weights are optimized to minimize the loss as shown in Eq (10).

L ¼
1

N
P

iðyi � Qðsi; aijoÞÞ
2

ð10Þ

Where L represent the loss and i indicates the ith sample in the batch and

yi ¼ ri þ gQ
0ðsiþ1; m

0ðsiþ1j
�yÞj�oÞ ð11Þ

where γ is the discount factor hyperparameter (gamma), Which defines how many time steps

from the future the agent considers when picking the current action (this value strongly

depends on the environment).

Target critic network weights are coupled with main critic network weights since it is

updated using the soft-updating technique with learning rate τ as shown in Eq (12).

�o toþ ð1 � tÞ�o ð12Þ

Actor-network training. Similarly, the main actor network is updated by using the DPG

theorem as shown in Eq (13).

rymjsi �
1

N
P

iraQðs; ajoÞjs¼si ;a¼mðsiÞ � rymðsjyÞjsi ð13Þ

WhereraQ(s, a|ω) is the gradient of the critic network parameters w.r.t. action a andrθμ
(s|θ) is the gradient of actor-network parameters w.r.t. actor parameter θ. The target actor is

updated the same as the target critic using the soft-updating technique with the same learning

rate τ as shown in Eq (14).

y
0
 tyþ ð1 � tÞy

0
: ð14Þ

4.3 Learning process

The position vector of each whale is a combination of DDPG hyperparameters that needs to be

optimized, arranged as follows: (αactor, αcritic, γ, batch size, τ). Each whale is considered a

DDPG agent, where each whale’s training process is done with the set of hyperparameters

found in the corresponding whale’s position vector. Each whale’s fitness function is calculated

via accumulating the total reward gained during the whale’s complete training process. Algo-

rithm 3 explains the integration of DDPG-WOA for hyperparameter optimization and the

whole hyperparameters optimization process is summarized in (Fig 3).

The training process of each whale described as follows:

1. At each step, the state of the environment (st) is sent to the agent, and the actor returns the

continuous values of (steering, acceleration, and break) as the action (at) where at = μ(st|θ)

+Nt is the added noise for exploring the space of action using the Ornstein-Uhlenbeck

method [63]).

2. TORCS transmit to the next state (st+1) and return reward (rt) to the agent.

3. For further usage, the sampled information (st, at, rt, st+1) is preserved in an experience

replay buffer.

4. To train the networks, a randomly selected minibatch of size N from experience replay is

used, as seen in section (4.2).

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 13 / 24

https://doi.org/10.1371/journal.pone.0252754

5. The step reward is accumulating along with the complete training episodes and used as

each whale’s fitness function that must be maximized. At each iteration, the best whale X�

with the best fitness is updating if a better whale were found, as shown in section (2.3).

Algorithm#3 WOA for optimizing DDPG hyperparameters
Input number of whales (N), maximum iterations (Tmax), Max episodes
(Emax), Max steps (T)
Output optimized set of (αactor, αcritic, γ, batch size, τ)
hyperparameters.
1. Begin
2. set number of whales (N)
3. Initialize whales’ positions (αactor, αcritic, γ, batch size, τ)

randomly
4. while (t < Tmax)
5. For (i = 1 to N)
6. Randomly initialize main critic network Q(s, a) and main

actor-network μ(s) with weights ω and θ

7. Initialize target critic network Q0ðs; aÞ and target actor-net-

work μ0ðsÞ with weights ω0 and θ0

8. Initialize replay buffer R
9. Set hyperparameters (αactor, αcritic, γ, batch size, τ) as in

position vector of the current whale
10. For (i = 1 to Emax) do
11. Initialize action exploration process Ɲ
12. Receive initial state s1 from environment
13. For j =1 to T do
14. Execute action at = μ ðstjθÞ þƝ
15. Observe reward rt a and successor state st+1
16. Store experience (st, at, rt, st+1) in R
17. accumulated step reward
18. Sample random minibatch of N transitions from R

19. Set yi ¼ ri þ γQ0ðsiþ1;μ
0
ðsiþ1jθ

0
Þjθ0Þ

20. Update the critic by minimizing the loss in Eq (10)
Update the actor using the sampled policy gradient as
shown in Eq (13)

21. Update the target network weight according to Eq
(12) and Eq (14)

Fig 3. The workflow of the proposed DDPG+ WOA is applied to the TORCS environment.

https://doi.org/10.1371/journal.pone.0252754.g003

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0252754.g003
https://doi.org/10.1371/journal.pone.0252754

22. End for
23. End for
24. Set the fitness of each whale to the accumulated train

rewards value
25. Find the best whale X� with the highest fitness
26. Update parameters (a,A,c,l and p)
27. Update whales’ positions using WOA algorithm

(algorithm#3)
28. End for
29. Update the current best whale X�

30. t = t+1
31. End while
32. Return X�

33. End

5. Experiments

In this section the experimental analysis is presented, where the results of the optimized hyper-

parameters are shown and compared with the DDPG hyperparameters presented by Lillicrap

in [14].

5.1 Experimental setting

All experiments were made on an Ubuntu 16.04 machine, with 8 cores CPU, 64 GB memory,

and 4 GTX-780 GPU (8 GB Graphic memory in total). The DDPG replay buffer size is 100000

state-action pairs.

5.2 Training analysis

TORCS engine contains different modes. Generally, they can be divided into two kinds: train-

ing mode and compete mode. In compete mode, computer-controlled AI can be added into

the game to race with our agent. Of course, other competitors’ existence will affect our car’s

sensors and therefore affect the input state. For this reason, we select train mode for training

where there are no other competitors in the race, and the view-angle is first-person. The

selected training map is the Aalborg map. The WOA uses 8 whales over 10 iterations (all

whales in each iteration run in parallel along with the eight cores). Each whale trains the

DDPG algorithm on TORCS for 2000 episodes. If the car rushes out of the track or if the car is

oriented in the opposite direction, the current episode will end. Therefore, the episode’s length

is highly variated, a perfect model can play infinitely through one episode. Thus, it is essential

to set a maximum length of an episode. Max steps count was set to 100000 steps per episode.

Reward (r). TORCS does not have internal rewards; for this reason, a designed reward

function must be provided. The reward should encourage the speed to increase along the track

axis simultaneously the reward function must punish the speed vertical to the track axis at the

same time.

We adopted the reward function design in [45]. Authors in [45] designed their reward

function as shown in Eq (15).

Rt ¼ V � cosy � V � siny � V � jtrackposj ð15Þ

Where V×cosθ denotes the speed that should be encouraged along the track. V×sinθ
denotes the Vertical speed (the transverse velocity). The distance between the car and the track

line is determined by |trackPos|. Both the second and third terms penalize the agent when the

agent deviates from the middle of the lane.

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 15 / 24

https://doi.org/10.1371/journal.pone.0252754

State (s). In TORCS, there are 18 different types of sensor input [64]. The used input sen-

sors are shown in Table 4.

Training performance of the best whale (X�). Each optimization fills the DDPG algo-

rithm’s memory (replay buffer) with sample episodes in the initial stage of execution. The

learning process has not started yet in this phase. In the second step, the learning process con-

tinues relying on the sets of experiences in memory.

We can see in (Fig 4) that the cumulative reward per episode is increasing as training pro-

gresses and also see in (Fig 5) that the overall steps per episode are increasing as well. This

improvement is because the algorithm has improved and is less likely to fail or run out of track.

5.3 Validation map

The selected validation race map is (Alpine 1). Testing the agent in different tracks than the

training track is a must to avoid overfitting where the AI simply memorizes the track. That is

why Alpine 1 is used since it is three times longer than the training map and has lots of sharp

turns. The train and validation track are shown in (Fig 6).

Table 4. The 29-dimensional state vector used in this paper.

Name Range Details

Angle [-π,+π] The angle between the position of the vehicle and the direction of the track axis

Track (0,200) 19 range finder sensor vectors: each sensor returns the distance between the edge of the

track and the car within a 200-meter range.

trackPos (−1,

+1)

Distance between a car and the axis of the track

speedX (−1,

+1)

Car speed along the car’s longitudinal axis (km/hour)

speedY (−1,

+1)

Car speed along the car’s transverse axis (km/Hour)

speedZ (−1,

+1)

Car speed along the car’s Z axis (km/Hour)

Wheel spin

value

(0,+1) Vector of 4 sensors representing the rotation speed of wheels (rad/second)

Rotation per

min

(0,+1) Number of rotation per minute of the car engine

https://doi.org/10.1371/journal.pone.0252754.t004

Fig 4. Optimized hyperparameters train total rewards per episode (x-axis shows the train episodes count and the y-axis shows the gained total rewards per

episode.

https://doi.org/10.1371/journal.pone.0252754.g004

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 16 / 24

https://doi.org/10.1371/journal.pone.0252754.t004
https://doi.org/10.1371/journal.pone.0252754.g004
https://doi.org/10.1371/journal.pone.0252754

5.4 Evaluation of the hyperparameter optimization results

At this point, the performance of the optimized hyperparameters is analyzed in comparison to

the expert hyperparameters. As a reference, the hyperparameters from the initial DDPG paper

[14] are described. The reference hyperparameter set is not arbitrary selections, but they have

already been optimized by the author (Lillicrap) and provide a good learned policy in different

domains. Therefore, the optimized hyperparameter must exceed the already good selection of

parameters.

For this purpose, testing both hyperparameters set (optimized and reference) is done on the

validation track for ten episodes with max-steps equals 10000 steps per episode with the same

termination conditions as in training. The results of the validation run deliver the values for

(Fig 7). As stated before, the goal of the analysis in this paper is to finish the validation race on

TORCS within the maximum total rewards comparing to the reference set of hyperparameters

plus spend more steps or the same number of steps on the track. Since the reward function is

designed to maximize longitudinal velocity, minimize transverse velocity, and also penalize

the AI if it frequently drives the very off-center of the track, it is guaranteed that maximizing

the number of steps spent on the track while maximizing the total rewards will result in a solid

driving policy.

Fig 5. Optimized hyperparameters train total steps per episode (x-axis shows the episodes count and y-axis shows the total steps the agent spent in each

episode).

https://doi.org/10.1371/journal.pone.0252754.g005

Fig 6. Train and evaluation maps on TORCS. (a) TRAIN Map Aalborg. (b) TEST Map Alpine 1.

https://doi.org/10.1371/journal.pone.0252754.g006

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 17 / 24

https://doi.org/10.1371/journal.pone.0252754.g005
https://doi.org/10.1371/journal.pone.0252754.g006
https://doi.org/10.1371/journal.pone.0252754

Table 5 lists the hyperparameters chosen by Lillicrap and the optimized values of

hyperparameters.

In Table 6, the max and min value of total travel distance, total rewards, and mean gain of

the car controlled by the DDPG agent trained with reference hyperparameters and the DDPG

agent trained with optimized hyperparameters among all 10 test runs are shown. The apparent

improvement in total rewards gained by the optimized hyperparameters show that the model

avoids the drunk driver attitude when the agent drives the car in an 8-shape [45].

5.5 Comparison

There are different works proposed in the literature that tried to optimize different RL algo-

rithms hyperparameters [Table 7]. For example, Sehgal et al. [55] used a genetic algorithm

(GA) to find the values of parameters used in (DDPG) combined with Hindsight Experience

Replay (HER) to help speed up the learning agent. They used this method on fetch reach, slide,

push, pick and place, and door opening in robotic manipulation tasks. Since the GA is proba-

bilistic, they show results from 10 runs of the GA, and the results show that the optimized

parameters found by the GA can lead to better performance. The learning agent can run faster

and can reach the maximum success rate faster. The results show changes when only two

parameters (out of the five target parameters) are being optimized. The results from optimiz-

ing all five parameters justify that GA found parameters outperformed the original parameters

of the DDPG, indicating that the learning agent was able to learn faster. They state that the ini-

tial results bore the assumption that GAs are a good fit for such parameter optimization and

the six manipulation tasks. They did not state the limitation of their method.

Jaderberg et al. [57] present a population-based training (PBT). This simple asynchronous

optimization algorithm effectively utilizes a fixed computational budget to jointly optimize a

Fig 7. Optimal hyperparameters over ten runs, vs. reference hyperparameters. a) Optimal hyperparameters vs. reference total reward per episode (X-axis

represent the episode count and Y-axis represent the accumulated reward), b) Optimal hyperparameters vs. reference total steps per episode (X-axis represent the

episode count and Y-axis represent steps achevied).

https://doi.org/10.1371/journal.pone.0252754.g007

Table 5. Original vs. optimal values of parameters.

hyperparameter Reference value Optimized value

αactor 1e-04 7e-04

αcritic 1e-03 4.6e-03

U .99 .96

τ .001 6.7e-03

Batch size 64 50

https://doi.org/10.1371/journal.pone.0252754.t005

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 18 / 24

https://doi.org/10.1371/journal.pone.0252754.g007
https://doi.org/10.1371/journal.pone.0252754.t005
https://doi.org/10.1371/journal.pone.0252754

population of models and their hyperparameters to maximize performance. They demonstrate

the effectiveness of PBT on DRL problems, showing faster wall-clock convergence and higher

final performance of agents by optimizing over a suite of hyperparameters. In all cases, PBT

results in the automatic discovery of hyperparameter schedules and model selection which

results in stable training and better final performance. In all three test cases (DeepMind Lab

levels, Atari games, StarCraft II), they show faster learning and higher performance across a

suite of tasks, with PBT allowing discovery of new state-of-the-art performance and behavior,

as well as the potential to reduce the computational resources for training. Results show that

PBT increases the final performance of the agents when trained for the same number of steps,

compared to the very strong baseline of performing a random search. Using PBT increases the

final performance of UNREAL from 93% to 106% human performance. Since PBT is copying

the weights of good performing agents during the exploitation phase, agents lucky in environ-

ment exploration are quickly propagated to more workers. StarCraft II showed how PBT

improved A3C baselines from 36% human performance to 39% human performance when

averaged over six levels.

S. Elfwing et al. [56] proposed the Online Meta-learning by Parallel Algorithm Competition

(OMPAC) method. The idea behind OMPAC is simple. They aim to run several instances of

an RL algorithm in parallel, with slight differences in the initial values of the meta-parameters.

The OMPAC method is similar to the evolutionary process without the crossover operator but

with two main differences from standard applications of artificial evolution. First, the goal is

not to find the parameters that represent the optimal solutions directly; instead, the goal is to

Table 6. Original vs. optimal values of parameters test results among 10 test runs.

Hyperparameter

set

Max mean gain

among 10 runs

Min mean gain

among 10 runs

Max travel distance

among 10 runs (m)

Min travel distance

among 10 runs (m)

Max total rewards

among 10 runs

Min total rewards

among 10 runs

reference 0.0053 -0.0039 10000 (m) 10000(m) 53.48 -170

Optimized 0.0385 -0.129 10000(m) 1310(m) 385 -39

https://doi.org/10.1371/journal.pone.0252754.t006

Table 7. Comparisons with recent state-of-art techniques.

Technique Optimization algorithm DRL algorithm to
be optimized

Target set of hyperparameters to be
optimized

Environment Results

Sehgal et al.

[55]

genetic algorithm (GA) (DDPG) combined

with Hindsight

Experience Replay

(HER)

discount factor; polyak-averaging

coefficient; critic learning rate; actor

learning rate; percent of times a random

action is taken; standard deviation of

Gaussian noise η

Robotic

manipulation tasks.

Optimized parameters found by the GA

can lead to better performance. The

learning agent can run faster and can

reach the maximum success rate faster.

Jaderberg

et al. [57]

Population Based

Training (PBT)

UNREAL on,

Feudal Networks,

and simple A3C

agent

learning rate, entropy cost, and unroll

length

DeepMind Lab

levels, Atari games,

StarCraft II

PBT results in the automatic discovery

of hyperparameter schedules and model

selection. It has the potential to reduce

the computational resources for

training.

Elfwing

et al. [56]

Online Meta-learning

by Parallel Algorithm

Competition (OMPAC)

method

Sarsa (λ) learning rate α, discount factor γ, and λ
(lambda parameter)

Stochastic

SZ-Tetris, standard

Tetris and Atari

2600.

OMPAC adaptation of the meta-

parameters can significantly improve

the learning performance when using

suitable starting values of the meta-

parameters

Proposed WOA DDPG Actor learning rate, critic learning rate,

discount factor, target networks learning

rate, batch size.

The open racing car

simulator (TORCS)

WOA can find hyperparameters that

achieve the optimal strategy by

maximizing the gained accumulated

reward and training episodes. At the

same time, maintain the same training

steps compared against the DDPG agent

with original hyperparameters.

https://doi.org/10.1371/journal.pone.0252754.t007

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 19 / 24

https://doi.org/10.1371/journal.pone.0252754.t006
https://doi.org/10.1371/journal.pone.0252754.t007
https://doi.org/10.1371/journal.pone.0252754

find the meta-parameters that enable RL agents to learn more efficiently. Second, the goal is

not to find the best set of fixed parameters; instead, the goal is to adopt the values of the meta-

parameters according to the current learning progress. The experiments in the two Tetris and

the Atari 2600 domains showed that OMPAC adaptation of the meta-parameters could signifi-

cantly improve the learning performance when using suitable starting values of the meta-

parameters.

In case of our study, the WOA was selected as an appropriate swarm-based optimization

algorithm since WOA has a high significance compared to other optimization approaches due

to its exploitation, exploration, and ability to get rid of local minima [34]. WOA was selected

to optimize 5 of the DDPG hyperparameters (actor learning rate – critic leering rate – batch

size - discount factor – soft update parameter). Those hyperparameters must be predefined

before training began and has the most critical role in the learning process. Our findings show

that the WOA can find hyperparameters that achieve the optimal strategy by maximizing the

gained accumulated reward and training steps as we investigated the applicability of the pro-

posed method within an AD environment represented in the TORCS environment.

6. Conclusion

In this paper, we have presented the usability of WOA for optimizing reinforcement learning

model hyperparameters. We evaluated its performance in optimizing the hyperparameters of

DRL algorithms, where the DDPG algorithm was selected for investigation. The WOA was

selected as an appropriate swarm-based optimization algorithm since WOA has a high signifi-

cance when compared to other optimization approaches due to its exploitation, exploration,

and ability to get rid of local minima [34]. The selected set of DDPG hyperparameters to be

optimized are (actor learning rate – critic leering rate – batch size - discount factor – soft

update parameter). Those hyperparameters must be predefined before training began. Results

showed that optimized DDPG hyperparameters consistently returned higher total rewards at

test time than commonly used reference hyperparameter suggested by an expert. The effi-

ciency of DRL algorithms has been recognized to be sensitive to their hyperparameters. We

witnessed multiple search agents’ training with different hyperparameter combinations

regarding the optimization method, therefore the DDPG’s hyperparameters sensitivity was

noticeable. This illustrates the challenge of optimizing the DDPG algorithm’s hyperpara-

meters, as one search agent could be stuck in a poor policy for a long period if the agent initial-

ized with an inappropriate hyperparameter set. Since DRL algorithms are sensitive to small

modifications in their hyperparameters, precautions should be taken when optimizing them.

For efficient optimization, we believe that splitting the search space (selecting the number of

whales and the number of iterations) and determining the range of each hyperparameter must

be accurately determined.

It was also obvious that randomization plays an important role in exploration and exploita-

tion, which is at the heart of WOA; therefore, using the current randomization technique in

WOA increases computational time, particularly for highly complex problems [65], which is

the case in AD. Furthermore, the WOA algorithm’s convergence and speed are dependent on

one control parameter, which is (a). This parameter has a significant impact on WOA’s effi-

ciency [66]. As a result of the mentioned factors, we discovered that WOA has a slow conver-

gence rate during both the exploration and exploitation phases [67].

Our findings show that the WOA can find hyperparameters that achieve the optimal strat-

egy by maximizing the gained accumulated reward along with training episodes as we investi-

gated the applicability of the proposed method within an AD environment represented in the

TORCS simulation. In the future, we can perform experiments to analyze how hyperparameter

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 20 / 24

https://doi.org/10.1371/journal.pone.0252754

optimization techniques act in model-based reinforcement learning algorithms, where DRL

methods are effectively modeling the given environment. The model-based RL has been

observed more productive than the model-free RL. By comparing model-based RL with

model-free algorithms for task-specific performance, sometimes model-based RL yields lower

results. In the future, we will investigate if the capabilities of model-based RL techniques

would be enhanced by optimizing their hyperparameters.

Author Contributions

Conceptualization: Nesma M. Ashraf, Reham R. Mostafa, M. Z. Rashad.

Data curation: Nesma M. Ashraf, Rasha H. Sakr.

Formal analysis: Nesma M. Ashraf, Reham R. Mostafa, Rasha H. Sakr, M. Z. Rashad.

Investigation: Nesma M. Ashraf, Reham R. Mostafa, Rasha H. Sakr, M. Z. Rashad.

Methodology: Nesma M. Ashraf, Reham R. Mostafa.

Software: Nesma M. Ashraf.

Supervision: Reham R. Mostafa, Rasha H. Sakr, M. Z. Rashad.

Validation: Nesma M. Ashraf, Reham R. Mostafa, Rasha H. Sakr, M. Z. Rashad.

Visualization: Nesma M. Ashraf, Reham R. Mostafa, Rasha H. Sakr.

Writing – original draft: Nesma M. Ashraf, Reham R. Mostafa.

Writing – review & editing: Nesma M. Ashraf, Reham R. Mostafa, Rasha H. Sakr, M. Z.

Rashad.

References
1. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through

deep reinforcement learning. Nature. 2015; 518(7540):529–33. https://doi.org/10.1038/nature14236

PMID: 25719670

2. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, et al. Mastering the game of

Go with deep neural networks and tree search. nature. 2016; 529(7587):484–9. https://doi.org/10.1038/

nature16961 PMID: 26819042

3. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of go

without human knowledge. nature. 2017; 550(7676):354–9. https://doi.org/10.1038/nature24270 PMID:

29052630

4. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, et al. Grandmaster level in

StarCraft II using multi-agent reinforcement learning. Nature. 2019; 575(7782):350–4. https://doi.org/

10.1038/s41586-019-1724-z PMID: 31666705

5. Dahl GE, Yu D, Deng L, Acero A. Context-dependent pre-trained deep neural networks for large-vocab-

ulary speech recognition. IEEE Transactions on audio, speech, and language processing. 2011; 20

(1):30–42.

6. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems. 2012; 25:1097–105.

7. Yonghui W, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, et al. Bridging the gap between

human and machine translation. arXiv preprint arXiv:160908144. 2016.

8. Russell S, Norvig P. Artificial intelligence: a modern approach. 2002.

9. Da Silva FL, Warnell G, Costa AHR, Stone P. Agents teaching agents: a survey on inter-agent transfer

learning. Autonomous Agents and Multi-Agent Systems. 2020; 34(1):1–17.

10. Van Hasselt H, Guez A, Silver D, editors. Deep reinforcement learning with double q-learning. Proceed-

ings of the AAAI Conference on Artificial Intelligence; 2016.

11. Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. arXiv preprint arXiv:151105952.

2015.

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 21 / 24

https://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
https://doi.org/10.1371/journal.pone.0252754

12. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N, editors. Dueling network architectures

for deep reinforcement learning. International conference on machine learning; 2016: PMLR.

13. Silver D, Lever G, Heess Nl, Degris T, Wierstra D, Riedmiller M, editors. Deterministic policy gradient

algorithms. International conference on machine learning; 2014: PMLR.

14. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with deep reinforce-

ment learning. arXiv preprint arXiv:150902971. 2015.

15. Zheng12 Z, Yuan C, Lin12 Z, Cheng12 Y. Self-adaptive double bootstrapped DDPG. 2018.

16. Ketkar N, Santana E. Deep learning with python: Springer; 2017.

17. Kennedy J, Eberhart R, editors. Particle swarm optimization. Proceedings of ICNN’95-international con-

ference on neural networks; 1995: IEEE.

18. Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE computational intelligence magazine.

2006; 1(4):28–39.

19. Mirjalili S, Lewis A. The whale optimization algorithm. Advances in engineering software. 2016; 95:51–

67.

20. Prakash D, Lakshminarayana C. Optimal siting of capacitors in radial distribution network using whale

optimization algorithm. Alexandria Engineering Journal. 2017; 56(4):499–509.

21. Touma HJ. Study of the economic dispatch problem on IEEE 30-bus system using whale optimization

algorithm. International journal of engineering technology and sciences (IJETS). 2016; 5(1):11–8.

22. Tirkolaee EB, Alinaghian M, Hosseinabadi AAR, Sasi MB, Sangaiah AK. An improved ant colony optimi-

zation for the multi-trip Capacitated Arc Routing Problem. Computers & Electrical Engineering. 2019;

77:457–70.

23. Hemasian-Etefagh F, Safi-Esfahani F. Dynamic scheduling applying new population grouping of whales

meta-heuristic in cloud computing. The Journal of Supercomputing. 2019; 75(10):6386–450.

24. Kaveh A, Ghazaan MI. Enhanced whale optimization algorithm for sizing optimization of skeletal struc-

tures. Mechanics Based Design of Structures and Machines. 2017; 45(3):345–62.

25. Oliva D, Abd El Aziz M, Hassanien AE. Parameter estimation of photovoltaic cells using an improved

chaotic whale optimization algorithm. Applied Energy. 2017; 200:141–54.

26. Gupta S, Saurabh K, editors. Modified artificial killer whale optimization algorithm for maximum power

point tracking under partial shading condition. 2017 International Conference on Recent Trends in Elec-

trical, Electronics and Computing Technologies (ICRTEECT); 2017: IEEE.

27. Gadekallu TR, Rajput DS, Reddy MP, Lakshmanna K, Bhattacharya S, Singh S, et al. A novel PCA–

whale optimization-based deep neural network model for classification of tomato plant diseases using

GPU. Journal of Real-Time Image Processing. 2020 Jun 12:1–4.

28. Pham QV, Mirjalili S, Kumar N, Alazab M, Hwang WJ. Whale optimization algorithm with applications to

resource allocation in wireless networks. IEEE Transactions on Vehicular Technology. 2020 Feb 11; 69

(4):4285–97.

29. Montgomery WD, Mudge R, Groshen EL, Helper S, MacDuffie JP, Carson C. America’s workforce and

the self-driving future: Realizing productivity gains and spurring economic growth.

30. Rehman Javed A, Jalil Z, Atif Moqurrab S, Abbas S, Liu X. Ensemble adaboost classifier for accurate

and fast detection of botnet attacks in connected vehicles. Transactions on Emerging Telecommunica-

tions Technologies. 2020:e4088.

31. Amadeo M, Campolo C, Molinaro A. Information-centric networking for connected vehicles: a survey

and future perspectives. IEEE Communications Magazine. 2016 Feb 11; 54(2):98–104.

32. Rehman A, Rehman SU, Khan M, Alazab M, Reddy T. CANintelliIDS: Detecting In-Vehicle Intrusion

Attacks on a Controller Area Network using CNN and Attention-based GRU. IEEE Transactions on Net-

work Science and Engineering. 2021 Feb 19. https://doi.org/10.1109/tnse.2020.3032117 PMID:

33997094

33. Akai N, Morales LY, Yamaguchi T, Takeuchi E, Yoshihara Y, Okuda H, et al. Autonomous driving based

on accurate localization using multilayer LiDAR and dead reckoning. In2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC) 2017 Oct 16 (pp. 1-6). IEEE.

34. Mohammed HM, Umar SU, Rashid TA. A systematic and meta-analysis survey of whale optimization

algorithm. Computational intelligence and neuroscience. 2019 Apr 28; 2019. https://doi.org/10.1155/

2019/8718571 PMID: 31231431

35. Ho-Huu V, Nguyen-Thoi T, Nguyen-Thoi MH, Le-Anh L. An improved constrained differential evolution

using discrete variables (D-ICDE) for layout optimization of truss structures. Expert Systems with Appli-

cations. 2015 Nov 15; 42(20):7057–69.

36. Sutton RS, Barto AG. Reinforcement learning: An introduction: MIT press; 2018.

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 22 / 24

https://doi.org/10.1109/tnse.2020.3032117
http://www.ncbi.nlm.nih.gov/pubmed/33997094
https://doi.org/10.1155/2019/8718571
https://doi.org/10.1155/2019/8718571
http://www.ncbi.nlm.nih.gov/pubmed/31231431
https://doi.org/10.1371/journal.pone.0252754

37. Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selec-

tion. Neurocomputing. 2017; 260:302–12.

38. Mirzapour F, Lakzaei M, Varamini G, Teimourian M, Ghadimi N. A new prediction model of battery and

wind-solar output in hybrid power system. Journal of Ambient Intelligence and Humanized Computing.

2019; 10(1):77–87.

39. Yang X-S. Nature-inspired metaheuristic algorithms: Luniver press; 2010.

40. Wymann B, Espié E, Guionneau C, Dimitrakakis C, Coulom R, Sumner A. Torcs, the open racing car

simulator. Software available at http://torcssourceforgenet. 2000; 4(6):2.

41. Xu H, Gao Y, Yu F, Darrell T, editors. End-to-end learning of driving models from large-scale video data-

sets. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.

42. Hausknecht M, Stone P. Deep recurrent q-learning for partially observable mdps. arXiv preprint

arXiv:150706527. 2015.

43. Kendall A, Hawke J, Janz D, Mazur P, Reda D, Allen J-M, et al., editors. Learning to drive in a day. 2019

International Conference on Robotics and Automation (ICRA); 2019: IEEE.

44. Sutton RS, Precup D, Singh S. Between MDPs and semi-MDPs: A framework for temporal abstraction

in reinforcement learning. Artificial intelligence. 1999; 112(1-2):181–211.

45. Wang S, Jia D, Weng X. Deep reinforcement learning for autonomous driving. arXiv preprint

arXiv:181111329. 2018.

46. Quiter C, Ernst M. deepdrive/deepdrive: 2.0. March; 2018.

47. Lopez PA, Behrisch M, Bieker-Walz L, Erdmann J, Flötteröd Y-P, Hilbrich R, et al., editors. Microscopic

traffic simulation using sumo. 2018 21st International Conference on Intelligent Transportation Systems

(ITSC); 2018: IEEE.

48. Watter M, Springenberg JT, Boedecker J, Riedmiller M. Embed to control: A locally linear latent dynam-

ics model for control from raw images. arXiv preprint arXiv:150607365. 2015.

49. Wahlström N, Schön TB, Deisenroth MP. From pixels to torques: Policy learning with deep dynamical

models. arXiv preprint arXiv:150202251. 2015.

50. Chiappa S, Racaniere S, Wierstra D, Mohamed S. Recurrent environment simulators. arXiv preprint

arXiv:170402254. 2017.

51. Kiran BR, Sobh I, Talpaert V, Mannion P, Sallab AAA, Yogamani S, et al. Deep reinforcement learning

for autonomous driving: A survey. arXiv preprint arXiv:200200444. 2020.

52. Zhu Z, Zhao H. A Survey of Deep RL and IL for Autonomous Driving Policy Learning. arXiv preprint

arXiv:2101.01993. 2021 Jan.

53. Chen Y, Huang A, Wang Z, Antonoglou I, Schrittwieser J, Silver D, et al. Bayesian optimization in

alphago. arXiv preprint arXiv:181206855. 2018.

54. Liessner R, Schmitt J, Dietermann A, Bäker B, editors. Hyperparameter Optimization for Deep Rein-

forcement Learning in Vehicle Energy Management. ICAART (2); 2019.

55. Sehgal A, La H, Louis S, Nguyen H, editors. Deep reinforcement learning using genetic algorithm for

parameter optimization. 2019 Third IEEE International Conference on Robotic Computing (IRC); 2019:

IEEE.

56. Elfwing S, Uchibe E, Doya K, editors. Online meta-learning by parallel algorithm competition. Proceed-

ings of the Genetic and Evolutionary Computation Conference; 2018.

57. Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, et al. Population based

training of neural networks. arXiv preprint arXiv:171109846. 2017.

58. Zhou Y, Liu W, Li B, editors. Efficient Online Hyperparameter Adaptation for Deep Reinforcement

Learning. International Conference on the Applications of Evolutionary Computation (Part of EvoStar);

2019: Springer.

59. Parker-Holder J, Nguyen V, Roberts SJ. Provably efficient online hyperparameter optimization with pop-

ulation-based bandits. Advances in Neural Information Processing Systems. 2020; 33.

60. Paul S, Kurin V, Whiteson S. Fast efficient hyperparameter tuning for policy gradients. arXiv preprint

arXiv:190206583. 2019.

61. Mann TA, Penedones H, Mannor S, Hester T. Adaptive lambda least-squares temporal difference

learning. arXiv preprint arXiv:161209465. 2016.

62. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.

63. Uhlenbeck GE, Ornstein LS. On the theory of the Brownian motion. Physical review. 1930; 36(5):823.

64. Loiacono D, Cardamone L, Lanzi PL. Simulated car racing championship: Competition software man-

ual. arXiv preprint arXiv:13041672. 2013.

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 23 / 24

http://torcssourceforgenet
https://doi.org/10.1371/journal.pone.0252754

65. Trivedi IN, Pradeep J, Narottam J, Arvind K, Dilip L. Novel adaptive whale optimization algorithm for

global optimization. Indian Journal of Science and Technology. 2016 Oct; 9(38):319–26.

66. Zhong M, Long W. Whale optimization algorithm with nonlinear control parameter. InMATEC Web of

Conferences 2017 (Vol. 139, p. 00157). EDP Sciences.

67. Saidala RK, Devarakonda N. Improved whale optimization algorithm case study: clinical data of anae-

mic pregnant woman. InData engineering and intelligent computing 2018 (pp. 271–281). Springer, Sin-

gapore .

PLOS ONE Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on WOA

PLOS ONE | https://doi.org/10.1371/journal.pone.0252754 June 10, 2021 24 / 24

https://doi.org/10.1371/journal.pone.0252754

