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Abstract

Research papers are a repository of information on the various elements that make up sci-

ence and technology R&D activities. Generating knowledge maps based on research

papers enables identification of specific areas of scientific and technical research as well as

understanding of the flow of knowledge between those areas. Recently, as the number of

electronic publishing and informatics archives along with the amount of accumulated knowl-

edge related to science and technology has proliferated, the need to utilize the meta-knowl-

edge obtainable from research papers has increased. Therefore, this study devised a model

based on meta-knowledge (i.e., text information including citations, abstracts, area codes)

for prediction of future growth potential using deep learning algorithms and investigated the

applicability of the various forms of meta-knowledge to the prediction of future growth poten-

tial. It also proposes how to select the promising technology clusters based on the proposed

model.

Introduction

Research papers play a repository role in recording information on the various elements of sci-

ence and technology R&D activities. Such elements include information on the source of the

research (researchers, research institutes, regions, countries, etc.), the management system of

the research (funding information), the communication medium of the research results

(source information), science and technology research activities information on social and

cognitive connection relationships (co-author information, citation information, etc.), infor-

mation on various areas and hierarchical structures in which research activities are carried out

(science and technology classification information), and information about the contents of

knowledge accumulated through research activities (keywords, text), among others. Research-

ers in the field of scientometrics collate and recombine the above information to measure the

impact of the various levels of research performers such as researchers, research institutes, and

countries or to grasp the qualitative and quantitative changes of activity and the trends of

changes in specific research areas. To those ends, they create geographic knowledge maps

based on science and technology activities to identify specific areas of science and technology

research and understand the flow of knowledge among them. The method of constructing the
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knowledge map, including the terrain of research activity, is as follows. 1. Define nodes on the

knowledge map, such as journals, researchers, research institutes, countries, keywords and so

on, as analysis units. 2. Extract the relationships (links) between nodes from science and tech-

nology activities. 3. Cluster the nodes into similar areas using that link information. 4. Identify

areas based on the grouped nodes and isolate the directions of science and technology develop-

ment through time-series analysis. Monitoring of changes in technology clusters over time

enables investigation of the following: quantitative changes such as enlargement or reduction

of technology cluster size; qualitative changes in research contents such as separation or merg-

ing of technology clusters; structural changes such as to connections between internal nodes

within clusters or between different clusters. Given these investigative capabilities and the ben-

efits thereof, many studies on monitoring of research-field dynamics have been conducted

with the aim of extracting the various indicators related to the dynamics of research areas and

predicting, thereby, changes in future growth potentials and their impacts [1–6]. That is, they

have mostly extracted various analytical indicators and focused on exploring the relationship

between indicator fluctuations and technological growth. However, the extant research in this

vein has limitations. First of all, it has been conducted to quantify the development of research

fields by focusing on research in a specific field [7–9]. Studies to quantify the development of a

research area by focusing on a specific area of research are meaningful in themselves, but there

are clearly limitations in that they cannot capture changes within global research areas. Map-

ping the structure of the entire study area using relationships such as citation relationships

between areas allows tracking of the development of detailed areas on this configured map.

Secondly, due to the limitations of data processing capacity, clustering and identifying of area

codes have been performed based mainly on only core papers such as those that have been the

most frequently cited [10–12]. However, an analysis based on a core paper has the disadvan-

tage that it cannot accurately describe its area. Comprehensive analysis of all scientific and

technical areas based on the entire literature, by contrast, enables detailed analysis and relative

comparisons of specific areas with all areas [13–17]. In this study, we investigated quantitative

changes in global technology clusters over time and devised a prediction model for detection

of newly emerging or rapidly growing technology clusters. All research areas were considered,

utilizing micro-field information published by the Centre for Science and Technology Studies

(CWTS) [18] of Leiden University in the Netherlands to guarantee the reliability and repro-

ducibility of the results. The entire literature for analysis was collected in conjunction with

Web of Science (WoS) [19]. Recently, the need for meta-knowledge has increased as the

amount of accumulated knowledge related to science and research has accumulated and the

factors needing to be considered have diversified. Meta-knowledge encompasses various addi-

tional information, such as statistical information and information obtained through natural

language processing, that facilitates prompt and efficient knowledge acquisition and under-

standing [20]. Therefore, this study also examined the applicability of various forms of meta-

knowledge suitable for detection of rapidly growing technology clusters. The remainder of this

paper is organized as follows. Our proposed future-growth-potential prediction model is intro-

duced in Section 2. The promising technology-selection process based on the proposed model,

and specific technologies thus selected, are presented in Section 3. Finally, conclusions and

recommendations for future study are made in Section 4.

Future-growth-potential prediction model

Process of future-growth-potential prediction model

The proposed prediction model consists of three steps: data collection, data embedding, and

deep learning-based prediction model training and prediction. Deep neural networks (DNNs)
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are typically used to model complex nonlinearity of high-dimensional data in regression or

classification problems. The proposed model uses deep learning algorithms to convert text

data containing the core content of the paper into numerical data in the data embedding step

and predicts the future growth potential of the technology in the prediction step. A recent

study used deep learning to predict new technologies [21]. Specifically, it used a deep learning

algorithm to predict emerging technologies in Gartner’s hype curve in 2017 based on patent

data from 2000 to 2016 and overcome the limitations of small samples. In the present study,

by contrast, we used deep learning to embed text information (i.e., citations, abstracts, area

codes) as meta-knowledge and predict the growth potential of technologies. The process of the

future-growth-potential prediction model is shown in Fig 1.

Data collection

This research is processed by matching the Web of Science database [19] with CWTS micro-

level field information [18]. CWTS provides the “Leiden Ranking” that quantitatively analyzes

the scientific performances of major universities around the world and the publications’

assignment information in the micro-level field based on bibliographic data from the WoS

database. WoS is one of the representative citation databases covering a wide range of interna-

tional scientific literature generated by Clarivate [19]. For this study, 16,298,856 research

papers published from 2006 to 2017 were collected after preprocessing.

Then, reference information, abstracts, and WoS research-area information were extracted

from each research paper. The purpose of the deep learning model for prediction of future

growth potential is to predict whether a technology cluster will grow after 7 years (2024) based

on two years’ worth (2016-2017) of various meta-knowledge (again: citations, abstracts, area

codes) extracted from research papers. Among the meta-knowledge, the citations allow for

understanding of the cohesiveness and network-structural characteristics among papers

belonging to a specific research area; the abstracts are brief summaries of the research papers

and cover the essential contents, including the research findings, the key conclusions of the

research, and the methods used; the area codes account for the degrees of convergence and dif-

fusion of research categories. To those ends, we constructed four training datasets from the

four pairs of data shown in Fig 2 (2006-2007 vs. 2014, 2007-2008 vs. 2015, 2008-2009 vs. 2016,

2009-2010 vs. 2017).

Fig 1. Overview of deep learning model for prediction of future growth potential.

https://doi.org/10.1371/journal.pone.0252753.g001
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Data embedding

The embedding vectors to be used as input variables of the deep learning model were gener-

ated as follows. For the 4,535 technology clusters’ 4 datasets, three embedding vectors were

obtained by performing citation network embedding, abstract embedding, and research-area

embedding. The embedded vectors were then used as the input data for the prediction model.

1) Embedding vectors for citation network. For the network embedding of the technol-

ogy clusters, the citation network was constructed with research papers belonging to each tech-

nology cluster, and then the embedding vector was obtained based on the motif representing

the network as a distribution of subnetworks. To construct the citation network, we calculated

the cosine similarities among the research papers within each cluster using a bibliographic

coupling method and extracted a non-directional binary citation network with 1 if the similar-

ity value was equal to or greater than 0.3, and 0 otherwise. Then, by using the distribution

information of the motif subnetworks in the citation network of each cluster, it was possible to

grasp the structural characteristics of the networks and measure the structural similarities

among those networks. A motif is a subnetwork that is found more frequently in a network

than are random networks of the same size [22]. The motif is one of the important attributes

that reflect the functional characteristics of a network, and is a useful concept for exploring the

principles of the structure of complex networks. If the frequency of expression of subnetworks

in a complex network is above average, it is interpreted as having special functions and mean-

ings. As shown in Fig 3, networks of the same type have similar characteristic motif values that

can be used to understand the characteristics of any of those networks. In general, the mea-

sured frequencies of real motifs are expressed by normalization to the frequency of motifs in

the random network in order to find their relative importance. The network used in this study

is a non-directional binary network; therefore, a distribution of eight motifs consisting of three

and four nodes was used as shown in Fig 4. In this study, we assumed that the growing tech-

nology clusters will have similar motif distributions in the citation-similarity networks.

2) Embedding vectors for abstracts. The abstract of each technology cluster was embed-

ded as a vector using bidirectional encoder representations from transformers (BERT) devel-

oped by Google. BERT is a language representation model that shows very good performance

in various natural language processing problems. Since BERT already has a pre-trained model

obtained by training based on a large amount of text data, it was possible to embed abstracts of

research papers within technology clusters using the pre-trained model [24]. The BERT model

is composed of several encoders of the transformer model, which is trained to output embed-

ding vectors of specific words according to the context [25]. The transformer model is a

machine translation model that models sequence data using the attention technique, which

Fig 2. Construction of training and prediction datasets.

https://doi.org/10.1371/journal.pone.0252753.g002
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outperforms the recurrent neural network (RNN) model. Whereas the RNN model processes

input data sequentially, the transformer model has a structure in which multiple encoder layers

and decoder layers are stacked, and it is designed to process a given sequence at once to

shorten learning time. On the other hand, since the BERT model is pre-trained by predicting

deleted words and predicting the relationship between sentences, it can perform embedding of

words by considering the context before and after, and it can identify the relationship between

words as well as sentences. Using BERT’s pre-learning model, high-performance embedding

vectors for input sentences can be obtained. Therefore, the abstracts of the papers belonging to

each technology cluster were embedded with the pre-trained model, and then the mean vector

of all papers belonging to each cluster was used as the embedding vector of the technology

cluster. As a result, a 768-dimensional abstract embedding vector was extracted for each tech-

nology cluster by year.

3) Embedding vectors for area codes. Each paper in the WoS database was classified into

one of a total of 256 research categories [19]. Therefore, the category frequency distribution of

research papers per technology cluster was calculated and normalized so as to embed the area

Fig 3. Motif distribution examples detected in various fields of network [23].

https://doi.org/10.1371/journal.pone.0252753.g003

Fig 4. Motifs used to embed citation network.

https://doi.org/10.1371/journal.pone.0252753.g004
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codes for each technology cluster. As a result, a 256-dimensional area-code embedding vector

was extracted for each technology cluster by year.

Deep learning model

1) Deep learning structure and training. Deep learning has a feature that models the

complex nonlinear relationship between input and output data [26]. We used the deep learn-

ing model to predict future growth potential because it has shown good performance in many

fields recently [27, 28], and at the same time, it yields the probability that each observation will

be classified into a class. In this study, the probability was redefined as the future growth

potential of each technology cluster, that is the probability that each cluster will be classified

into the growth class, as predicted by the deep learning model. We built a model for prediction

of the future growth potential of each technology cluster based on deep learning incorporating,

as input variables, the embedded citation network, abstract and area-code vectors of the

technology cluster. The derived 16-dimensional citation network embedding vector, the

768-dimensional abstract embedding vector, and the 256-dimensional research-area embed-

ding vector were combined to form one input vector for each technology cluster of each year.

However, the two-year citation network embedding vectors were used as input vectors to

account for the trends of the citation network. Consequently, each input vector consisted of a

16-dimensional network embedding vector, a 768-dimensional abstract embedding vector,

and a 256-dimensional research-area embedding vector for each technology area of each year.

The target value of the deep learning model was not determined based on the absolute criteria

for the individual technology cluster but rather on the relative position of the individual tech-

nology cluster in the distribution of growth rates calculated for all technology clusters. For the

target value, we estimated the slope of the trend line with respect to the logarithm of the num-

ber of papers belonging to each technology cluster using least-squares regression analysis, and

then defined the classes (i.e., growth and non-growth) of the technology clusters based on the

top 30% slope (0.06545). In order to capture the exponential growth pattern of the number of

papers belonging to each technology cluster, the technology growth was calculated using the

logarithm of the number of papers, and the slope of the trend line was used to consider the

change in the number of papers over 7 years. The optimal deep learning structure derived by

finding the optimal parameters through repeated experiments is shown in Fig 5. The hyper-

parameters of the deep learning models included the number of layers, the number of nodes

per layer, the learning rate, and the epoch. As seen in Fig 5, the deep learning structure has a

structure that combines three models based on the embedded values of the citation network,

abstracts, and area codes. Each model for the citation network, the abstracts, and the area

codes have one hidden layer. The optimal number of hidden nodes for the models of the cita-

tion network, the abstracts, and the area codes was 140, 360, and 180, respectively. The outputs

for the models of the citation network (size 140), the abstracts (size 360), and the area codes

(size 180) are concatenated and used as input vector (size 680) for the combined model. The

combined model consists of one hidden layer with 300 optimal hidden nodes and the last soft-

max layer that outputs the probability of each technology cluster being classified into the

growth class. The deep learning model is optimized in an end-to-end manner. To train the

prediction model, RAdam (Rectified Adam) [29] for the optimizer, Binary Cross Entropy

(BCE) for the loss function, ReLU for the active function, and the learning rate = 0.00007 were

used. In addition, we used a dropout method with a drop ratio of 5% to avoid the overfitting

problem and BCE with a weight of 2.4 times for class 1 (growth) to solve the imbalance prob-

lem of the training data.
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2) Evaluation results of deep learning model. To evaluate the generalization perfor-

mance of the deep learning model, we compared the performance of the proposed model to

those of methods in wide use, including logistic regression [30], SVM [31], random forest [32],

deep learning which uses the combined three embedding vectors as input data. For compari-

sons, we used 5-fold cross-validation, dividing the data into training data and validation data

five times. The procedure of 5-fold cross-validation is as follows. First, the entire data are

divided into five subsets of similar size, and the first experiment learns using the first subset as

the validation data and the remaining subsets as the training data. In the second experiment,

the second subset is used as validation data and the remaining subsets are used as training

data. In the same way, the model is evaluated based on the average performance value of the

validation data derived from a total of five experiments. The performance of the trained deep

learning model was evaluated according to the accuracy of the classes (i.e., growth vs. non-

growth) of technology clusters and the F1 measure based on the results predicted by the deep

learning model. The accuracy and F1 measure are defined as follows.

Accuracy ¼
number of correctly predicted technology clusters
total number of predicted technology clusters

F1 ¼
2 � Precision � Recall
Precision þ Recall

ð1Þ

F1 is the harmonic mean of precision and recall. The precision and recall in Eq (1) are

defined as follows.

Precision ¼
number of technology clusters actually grownðnot grownÞ

number of technology clusters predicted to be grownðnot grownÞ

Recall ¼
number of technology clusters predicted to be grownðnot grownÞ

number of technology clusters actually grownðnot grownÞ

Fig 5. Optimal deep learning structure for prediction of future growth potential of technology clusters.

https://doi.org/10.1371/journal.pone.0252753.g005
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The accuracy and F1 for growth and non-growth are summarized in Table 1. F1 for growth

is an F1 measure for the technology cluster with growth class, and F1 for non-growth means

the F1 measure for the technology cluster with non-growth class. From Table 1, we observe

that the proposed deep learning model performs better than the other conventional methods.

Note that the proposed model yields better results than the deep learning model using the

combined three embedding vectors as input data. It shows that properly combining vectors

into the latent feature space is more important than combining them in the input space. For

the proposed deep learning, the accuracy, the F1 measure for growth, and the F1 measure for

non-growth was 0.8672, 0.7428, and 0.9105, respectively.

According to Fye et al. [33], who measured the success rate for each prediction method

applied to 295 verified cases of technology prediction, the method with the highest success rate

was a quantitative trend analysis method, with the success rate of 64.3% and the realization

rate of 67.9%. Meanwhile, the technique based on experts had a success rate of 38.3% and a

realization rate of 75.7%. The average success rate of each prediction technique was 36.9%, and

the average realization rate was 66.1%. The techniques that combined the views of several

experts showed the highest probability that the predicted technology would be realized, but the

prediction accuracy of the realization time was low. On the other hand, in the case of the quan-

titative measurement technique, the prediction of the realization was rather low, but the pre-

diction of the realization time was the highest. The realization rate of predictions discussed in

Fye et al. [33] and the growth potential of the present study are similar. Therefore, the results

of the present study, shown in Table 1, can be said to be competitive when compared to other

prediction methods including the expert-based technique.

Promising technology selection

Promising technology selection process

First, in order to grasp the relationship among all of the technology clusters, the mappings of

technology clusters were performed based on their similarities and abstracts. Those similarities

were calculated by the following procedure. For each article in each cluster technology, the

classification codes (256 WoS categories) for references in each article were investigated, and

then a 256-sized frequency vector for each article was obtained. The vector of each technology

cluster was then derived by summing the vectors for the individual articles belonging to each

technology cluster. Then, the cosine similarities of the vectors among the entire 4,535 clusters

were calculated. The mapping results based on the 4,535 x 4,535 similarity matrix in Fig 6 were

obtained using VOSviewer software [34]. As seen in the figure, all of the technology clusters

were within the five main fields, which were mathematics and computer science, physical sci-

ences and engineering, life and earth sciences, biomedical and health sciences, and social sci-

ences and the humanities. In the map, each technology cluster in CWTS is colored differently

according to the field. In addition, the abstract-based mapping of all technology clusters was

performed based on the 768-dimensional abstract embedding vectors using t-distributed

Table 1. Performance of prediction models.

Models Accuracy F1 for Growth F1 for Non-Growth

Logistic Regression 0.6592 0.5091 0.7389

SVM 0.6892 0.4272 0.7867

Random Forest 0.7472 0.4119 0.8390

Deep Learning 0.8055 0.5841 0.8730

Proposed Deep Learning 0.8672 0.7428 0.9105

https://doi.org/10.1371/journal.pone.0252753.t001
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Stochastic Neighbor Embedding (t-SNE) algorithm [35]. The t-SNE algorithm visualizes high-

dimensional data in two dimensions, and the mapped data points (i.e., technology clusters)

can be clustered based on their similarities. Therefore, t-SNE algorithm can be a useful tool for

automatic visualization and clustering of large data sets [36]. Like the similarity-based map,

each technology cluster in CWTS has a different color depending on the field. As can be seen

in Fig 7, not all technology clusters are clearly classified, but most technology clusters have

been roughly classified into five major fields, similar to the similarity-based map. These results

indicate that while abstract embedding can be an important meta-knowledge that well reflects

Fig 6. Similarity-based mapping of all technology clusters.

https://doi.org/10.1371/journal.pone.0252753.g006

Fig 7. Abstract-based mapping of all technology clusters.

https://doi.org/10.1371/journal.pone.0252753.g007
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the semantic of technology clusters, other meta-knowledges are additionally needed to predict

future growth potential.

Then, by applying the deep learning-based future-growth-potential prediction model to the

total of 4,535 technology clusters, we selected the promising technology candidates with high

seven-years-later growth potential. The 477 technology clusters thus selected by the deep learn-

ing model are shown in Fig 8’s mapping results. The five main fields’ technology cluster ratios

in both the total 4,535 clusters and the 477 clusters predicted to grow in seven years are plotted

in Fig 9. As can be seen, the biomedical and health sciences field’s ratio in the total 4,535 clus-

ters was close to 40%, but fell to about 20% relative to the 477 clusters predicted to grow. The

physical sciences and engineering field had the highest ratio of clusters relative to the 477 clus-

ters predicted to grow, about 48%. Likewise, the life and earth sciences and mathematics and

computer science fields’ technology clusters’ ratios also were higher relative to the 477 pre-

dicted-to-grow clusters than to the total 4,535 clusters. Meanwhile, the opposite trend was

seen for the biomedical and health sciences and social sciences and humanities fields.

In order to identify the overall trends of the 477 technology clusters with high potential for

future growth, mapping analysis based on keyword co-occurrence frequency was performed,

as shown in Fig 10. There were 1,738,632 references in the 477 technical clusters with high

growth potential. There were 1,437,112 author keywords in the references, and 4,758 keywords

that appeared in more than 20 references simultaneously were extracted from 7,716 keywords

that appeared more than 100 times. Among them, mapping analysis was performed on the

4,598 keywords that made up the giant component. The colors of the nodes in Fig 10 were

assigned in the clustering analysis by the co-occurrence link in VOSviewer. In the figure, we

can see, by referencing the links between keywords, the macro trends driving the growth of

technologies. At the bottom left, there is a huge trend named ‘health care / health’. On the

right is a huge ‘materials’ trend including the ‘nano’, ‘new materials’ and ‘renewable energy’

trends. There are also, penetrating from the top left and continuing to the bottom right, huge

‘environment’ trends including ‘response to pollution’, ‘environmental monitoring’ and

Fig 8. Technology clusters with high growth potential (purple nodes).

https://doi.org/10.1371/journal.pone.0252753.g008
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‘response to climate change’. On the other hand, operations-related trends such as ‘hyper-con-

nected society / intelligence’, ‘new social governance’ and ‘energy efficiency’ can be identified

in conjunction with other related giant trends.

To investigate the difference between technology clusters with high growth potential and

those without, the entire group of technology clusters was divided into the technology clusters

with high growth potential [477 candidate groups] and the remaining clusters [non-candidate

groups]. Figs 11 and 12 show the distribution of the cluster size growth rate during the entire

Fig 9. Five fields’ technology clusters: Ratio of number of field’s clusters to total clusters (red color); Ratio of

number of field’s clusters to clusters predicted to have high growth potential (blue color).

https://doi.org/10.1371/journal.pone.0252753.g009

Fig 10. Keyword mapping of technology clusters with high growth potential.

https://doi.org/10.1371/journal.pone.0252753.g010
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Fig 11. Comparison of growth rate distribution of technology clusters with and without high growth potential

over all periods.

https://doi.org/10.1371/journal.pone.0252753.g011

Fig 12. Comparison of growth rate distribution of technology clusters with and without high growth potential

over last 5 years.

https://doi.org/10.1371/journal.pone.0252753.g012
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analysis period [2006-2017] and the last five years [2013-2017], respectively. Candidate groups

predicted to have a high growth potential had higher average growth slopes than did the non-

candidate groups over the entire period and the last five years. To evaluate the difference

between the means of the two populations, the hypothesis t-tests were conducted. A p-value is

used in hypothesis t-test to decide whether to reject the null hypothesis (i.e., H0: μ1 − μ2 = 0).

The p-value is a probability to measure the evidence against H0 provided by the sample [37].

Smaller p-values indicate more evidence against H0. As shown in Figs 11 and 12, the average

growth slopes between the candidate and non-candidate groups were different for the entire

period and the past 5 years, and the p-value for each t-test was less than 0.001. However, the

distributions of the candidate and non-candidate groups overlapped considerably. The vari-

ables used as input in the deep learning model included network embedding, keyword embed-

ding, and research-area embedding vectors, which did not contain any information related to

the past growth trends of the clusters. Therefore, the cluster growth trends could be used as an

additional factor for screening technology clusters with high growth potential. Our forecasting

model focused on the growth of technology, and so a variety of perspectives and criteria related

to promising concepts were not taken into account. In particular, the aspect of future market

value was not considered at all. Additional, market- or industry-related criteria may be applied

to the selection of promising technologies, but were beyond the scope of this study.

Among the first candidates selected by the deep learning-based prediction model, the final

candidates were selected by applying additional criteria related to the growth trends of the

technology clusters. First, the probability of growth in the future, which was the criteria for the

first candidates, was somewhat relaxed from 99.5% to 99.0%, increasing the number of candi-

dates to 604. Among the selected candidates, 43 technical clusters, whose main field was social

sciences and humanities, were excluded. The additional criteria reflecting the growth trends of

the technology clusters were set as follows.

1. Technology cluster size: The number of studies in the selected technology cluster from 2000

to 2018 should exceed 3,900, which is the median of the total technology cluster size.

2. Rise of technology cluster: The growth rate of the last 5 years (2013-2017) of the selected

technology cluster should be higher than that of the last 12 years (2006-2017).

3. Latestness of technology cluster: The average age of studies in the selected technology clus-

ter should be less than the 25th percentile (i.e., 2011.3) of the average age of all of the tech-

nology clusters’ studies.

A total of 24 candidates were selected by applying those additional criteria, and the final 10

technologies were evaluated and selected by conducting the evaluation based on the criteria of

technical ripple effects, compatibility with social issues, and government policy compliance.

Ten promising future technologies

The 10 promising future technologies selected are shown in Table 2, where the number of

studies is the number of papers published between 2000 and 2018, the growth rate is the log

slope of the number of papers from 2013 to 2017, the age is the average publication age of the

papers belonging to the cluster, and the CWTS ID is the unique number of cluster provided by

CWTS. The most prominent trends related to the 10 technologies shown in Fig 10 were energy

efficiency, hyper-connected society/intelligence, and environment. The fact that no technology

corresponding to the health care/health trend appeared among the 10 technologies was due to

the second screening criteria. Among the first candidates, there were 100 technology clusters

belonging to the biomedical and health sciences field; however, the technology clusters in the
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field of biomedical and health sciences had low average slopes in the last five years and high

publication ages, and so most of them were removed in the course of the second screening pro-

cess. Note that our purpose in this study was not to pick out the 10 final, objectively promising

technology clusters. The criteria applied to the selection of the technology clusters are not

absolute; thus, the 10 selected technology clusters could be changed if different criteria chosen

according to the analyst’s personal perspective or specific purpose were applied.

Conclusion

This study developed a deep learning model for prediction of the future growth potential of

technologies and used it to select 10 promising technologies. The key question addressed in

this paper was whether it is possible to predict the future growth potential of technologies

based on data regarding the relevant respective research activities. To answer this question, the

embedding vectors for the citation network structure within the technology cluster, the subject

structure obtained from paper abstracts, and the area codes were used as input variables in the

prediction model. Utilizing this meta-knowledge, the deep learning-based prediction model

showed more accurate performance and correspondingly high potential. There is, in fact, a

need for a methodology and framework that can complement data-driven and expert-driven

predictions. If data-driven predictions are highly accurate, data analysis results can be pro-

vided as objective evidence to reduce the subjectivity of the intervention of experts and

improve overall forecasting accuracy thereby. Conversely, experts’ insights on the directions of

future technologies should be incorporated into data-driven forecasting methods to improve

them as well. In other words, it is necessary to further study and take advantage of the virtuous

cycle by which the results of data-based prediction methods are subjected to expert interpreta-

tion, the results of which are again utilized for data-based prediction methods. Going forward,

it will also be necessary to improve the understanding of deep learning-based prediction by

applying explainable artificial intelligence (AI) algorithms, which in turn will deepen the

understanding of the structure and characteristics of science and technology research

activities.
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Table 2. Performance of deep learning-based prediction model.

Name of technology cluster Number of studies Growth rate Age CWTS ID

Renewable energy storage and conversion technology utilizing hydrogen energy 5,288 0.0996 2012.0 1709

Next-generation eco-friendly heating and cooling system core material technology 5,908 0.1324 2011.8 1495

Carbon dioxide capture and storage technology 9,938 0.2164 2013.2 1489 (2173)

Advanced autonomous vehicle technology 3,949 0.0967 2011.7 2197

AI-based machine vision technology 4,296 0.1227 2012.1 2040

Ultra high performance concrete technology 5,771 0.0912 2011.4 1544

Biodiversity research 10,487 0.1012 2011.7 557

High-voltage, direct current (HVDC) technology 14,385 0.1460 2012.5 209

Humanoid robot technology 4,807 0.0879 2011.6 1862

Hyperspectral imaging technology 13,964 0.1243 2012.4 231

https://doi.org/10.1371/journal.pone.0252753.t002
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