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Abstract

The five Platonic solids—tetrahedron, cube, octahedron, dodecahedron, and icosahe-

dron—have found many applications in mathematics, science, and art. Path planning for

the Platonic solids had been suggested, but not validated, except for solving the rolling-

cube puzzles for a cubic dice. We developed a path-planning algorithm based on the

breadth-first-search algorithm that generates a shortest path for each Platonic solid to

reach a desired pose, including position and orientation, from an initial one on prescribed

grids by edge-rolling. While it is straightforward to generate triangular and square grids,

various methods exist for regular-pentagon tiling. We chose the Penrose tiling because it

has five-fold symmetry. We discovered that a tetrahedron could achieve only one orienta-

tion for a particular position.

Introduction

The history of the Platonic solids—tetrahedron, cube, octahedron, dodecahedron, and icosa-

hedron—can be traced back to over 2000 years ago. In ancient Greece, Pythagoras

(c.570-c.495 BC) knew of the tetrahedron, cube, and dodecahedron [1]. Plato (c.427–347 B.C),

to whom the names of these five regular polyhedra are attributed, assigned them to the four

basic elements—fire, air, water, and earth—as well as the heavens [2]. In the 1600s, Kepler pro-

posed a model of the solar system consisting of the Platonic solids set inside one another, dis-

tanced by the inscribed and circumscribed spheres of each solid [3]. The Platonic solids are all

convex polyhedra bounded by a finite number of regular polygons. Being highly symmetric,

the Platonic solids have found many applications in mathematics, science, and art. For exam-

ple, in studying molecules, they were used to predict material structures of crystals [4] or to

reconstruct colloidal crystals from symmetric hard particles [5]. In mathematics, each Platonic

solid was used for a 3D billiard table to model how a cue ball moves to hit every face and return

to its starting point [6].

Planning techniques are categorized into different aspects. The basic idea of discrete path

planning in the most cases is that state-space models will be used to demonstrate the distinct

situation in which the task of a planning algorithm solves the sequence actions transforming

from a initial state to other states [7]. For example, Thomas [8] applied Delaunay triangula-

tions to discretize the environment, and cubic spline representations are proposed to meet
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robot kinematic constraints. Considering the continuous curvature on smooth curves has

been integrated within the probabilistic approaches in order to compute the piecewise smooth

paths for a car-like vehicle as a four-dimensional system [9]. Whereas, dealing with nonholo-

nomic constraints, a sampling-based road map technique was proposed in [10]. Based on

decomposing space into cells [11], a potential field without local minima was assigned with

polygonal partitions of planar environments to solve the Laplace’s equation problems in each

cell exist.

The fundamental robotic path planning problem is to represent the environment as a graph

involving the set of possible robot location and a set of edges that can generate the paths. The

popular method for determining the least-cost paths is A� as Heuristic based search algorithm

in [12–14]. The search algorithm must expand the fewest possible nodes in order to make

searching for an admissible path. Then the evaluation of available nodes is needed to deter-

mine the next efficient nodes. The initial search approached by A� takes two steps to generate

an optimal path in which receiving information from one of the initial cells in free space and

replanning from scratch when the environment has changed to expand a new cell. However,

the A� computation process needs high configuration processors to successfully reach various

nodes. In the real world scenarios, the search operating sometimes may be performed with

inaccurate planning graphs.

Literature on path planning for polyhedra by edge-rolling is scarce. An attempt was made

to plan a path for an octahedron edge-rolling on a plane from an initial pose (position and ori-

entation) to a desired pose, which, unfortunately, failed due to errors propagating from the

algorithm [15]. In graspless manipulation, two movable parallel plates working as a robotic

end-effector rolled a cubic dice by edges [16], but this work did not discuss how to generate

the desired path. The rolling-cube puzzles, which focus on how to roll a cubic dice on a board

consisting of labeled and white cells, were solved by detecting a Hamiltonian path in grid

graphs as an NP-hard problem [17]. In this work, we propose a path-planning algorithm using

tree exploration for each of the five Platonic solids starting from an initial pose to a desired

pose by edge-rolling on different prescribed grids. We believe this is the first work that solves

this problem.

This article is organized as follows. Firstly, the geometrical parameters for the Platonics sol-

ids and the different patterns of grids are briefly reviewed. Secondly, the path planning algo-

rithm is described. Then, the simulations for the proposed algorithm is presented. Finally, this

article is concluded.

Background

This section provides an overview of the properties of the Platonics solids and different pat-

terns of grids used to implement a path planning algorithm.

Properties of polyhedron

Each of the Platonic solids can be unfolded into non-overlapping edge-joining polygons (Fig

1). The cube is constructed by 6 squares; the tetrahedron consists of 4 equilateral triangles

joined at their edges into a triangular pyramid; the octahedron has a double-pyramid structure

with 8 equilateral triangles; the icosahedron has 20 equilateral triangles; and the dodecahedron

is composed of 12 regular pentagons (Table 1). The total number of vertices (V), edges (E),

and faces (F) of the Platonic solids satisfy Euler’s formula: V − E + F = 2 [18].
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Discretized grids

A plane can be discretized into a square, triangular, or pentagon grid, depending on the face of

a Platonic solid in contact with it (Fig 2). At any instant, a cube has 4 edges in contact with the

plane, which indicates 4 possible directions of edge-rolling on the square grid; a tetrahedron,

octahedron, or icosahedron has 3 edges in contact with the plane, which indicates 3 possible

directions of edge-rolling on the triangular grid; a dodecahedron has 5 edges in contact with

the plane, which indicates 5 possible directions of edge-rolling on the pentagon grid.

There are many options for discretizing a plane into a pentagon grid. Regular pentagons til-

ing a plane will leave symmetric gaps without overlap (Fig 3). A variety of patterns exist, such

as those developed by Dürer (Fig 3(a) and 3(b)) [19], Caris (Fig 3(c)–3(e)) [20], and Penrose

(Fig 3(f)) [21]. The Dürer and Caris tiling uses multiple twins of regular pentagons to tile a

plane, in which rhombi remain between pentagons in various positions. The Penrose tiling

attaches five regular pentagons onto the initial one along its edges to form a new larger

Fig 1. Five models of the Platonic solids and their unfolding geometry. (a) Cube. (b) Tetrahedron. (c) Octahedron. (d) Icosahedron. (e) Dodecahedron.

https://doi.org/10.1371/journal.pone.0252613.g001

Table 1. Properties of polyhedron.

Platonic solids Faces (F) Edges (E) Vertices (V) Edges on each face (ef) Faces meeting at each vertex (fv)

Tetrahedron 4 6 4 3 3

Cube 6 12 8 4 3

Octahedron 8 12 6 3 4

Icosahedron 20 30 12 3 5

Dodecahedron 12 30 20 5 3

https://doi.org/10.1371/journal.pone.0252613.t001
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pentagon, which generates gaps in the shapes of rhombi, pentacles, and half-pentacles. These

gaps are partially filled by inserting pentagons following substitution rules (Fig 4) [22]. To

facilitate path planning, we chose Penrose tiling because it has five-fold symmetry, which oth-

ers lack.

Rotation matrix

In this paper, the Rodrigues’ rotation matrix from the axis-angle representation [23] was used

to calculate the orientation of a Platonic solid from a current position to next position after

edge-rolling. A unit vector ω 2 R3 and a rotation angle β, which are specific with respect to

each Platonic solid, were used to generate a rotation matrix R 2 SO(3) (Eq (1)). The coordi-

nates of the Platonic solids before and after edge-rolling were represented by matrices M and

M0, where M0 = MR, respectively. In a three-dimensional Euclidean coordinate system, an

axis-angle representation is given by a unit vector ω ¼ ðox;oy;ozÞ 2 R
3 and an angle β. The

rotation angle β of each Platonic solid is the supplementary angle of the dihedral angle α,

which is the angle between two intersecting faces, as in Table 2. The rotation matrix R can be

obtained as:

R ¼ ebSω

¼ I þ sSo þ ð1 � cÞSω
2

¼

ox
2 þ ð1 � ox

2Þc oxoyð1 � cÞ � ozs oxozð1 � cÞ þ oys

oxoyð1 � cÞ þ ozs oy
2 þ ð1 � oy

2Þc oyozð1 � cÞ � oxs

oxozð1 � cÞ � oys oyozð1 � cÞ þ oxs oz
2 þ ð1 � oz

2Þc

2

6
6
6
4

3

7
7
7
5

ð1Þ

Fig 2. Direction of grids. Three different patterns of grid of the plane for the Platonic solids. (a) A square grid for the cube with 4 edge-rolling directions.

(b) A triangular grid for the tetrahedron, octahedron, and icosahedron with 3 edge-rolling directions. (c) A pentagon grid using Penrose tiling for the

dodecahedron with 5 edge-rolling directions.

https://doi.org/10.1371/journal.pone.0252613.g002
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where s = sinβ, c = cosβ, the 3 × 3 identity matrix I, and the following skew-symmetric matrix

Sω (2):

Sω ¼

0 � oz oy

oz 0 � ox

� oy ox 0

2

6
6
4

3

7
7
5 ð2Þ

Fig 3. Patterns of the regular pentagon tiling. (a), (b) Two patterns of pentagon tiling from Durer including a five-fold nucleus that is expanded by

multiple twins of five-fold symmetry (reconstructed from [6]). (c)-(e) Three patterns of pentagon tiling in art proposed by Caris (reconstructed from

[7]). (f) Penrose tiling with five-fold symmetry generated by attaching multiple groups of a pentagon to the initial one (reconstructed from [8]).

https://doi.org/10.1371/journal.pone.0252613.g003

PLOS ONE Path planning for the Platonic solids on prescribed grids by edge-rolling

PLOS ONE | https://doi.org/10.1371/journal.pone.0252613 June 2, 2021 5 / 12

https://doi.org/10.1371/journal.pone.0252613.g003
https://doi.org/10.1371/journal.pone.0252613


Path planning algorithm

The proposed algorithm generates paths for each Platonic solid edge-rolling from an initial

pose to a desired pose on a plane. While at rest, a face of a Platonic solid is in contact with the

plane, and the algorithm determines the edge, and subsequently the direction, of rolling.

The tree exploration

The planning algorithm employs tree exploration (Fig 5), which is a variation of the breadth-

first-search (BFS) algorithm [24]. Using queues, this algorithm is faster than the A? algorithm,

which uses the priority queue [25], for the unweighted graph. Another advantage of the BFS

algorithm is that it can find a shortest path where the environment is known. A? can also

implement to find the path but it requires for a more general setting of weighted graphs. Thus,

this paper prefers to use BFS as an efficient search algorithm to find the shortest path for roll-

ing Platonic solids on 2D plane.

Based on tree traversal, BFS search has O(m(n+1)) for time complexity and O(mn) for the

space complexity, which is based on figuring out size of a search tree and the number of nodes

in a tree, where m is the maximum number of nodes in each search level and n is the number

of layers. Depending on the type of the Platonic solids, O(mn) could be between O(2n) and

Fig 4. Substitution rules for Penrose tiling (reconstructed from [9]). (a) A pentagon is partially filled by 6 pentagons. (b) A pentacle is partially filled by 5

pentagons. (c) A half-pentacle is partially filled by 3 pentagons. (d) A rhombus is partially filled by 1 pentagon.

https://doi.org/10.1371/journal.pone.0252613.g004

Table 2. Geometrical parameters of the Platonic solids with inradius (ri), midradius (rm), circumradius (R), dihedral angles (α) and rolling angles (β). In this table,

all the edges of the Platonic solids have the same unit length (l = 1).

Platonic solids ri rm R α β

Tetrahedron
ffiffi
6
p

12

ffiffi
2
p

4

ffiffi
6
p

4
arccos 1

3

� �
2 arctan !ð

ffiffiffi
2
p
Þ

Cube 1

2

ffiffi
2
p

2

ffiffi
3
p

2

p

2

p

2

Octahedron
ffiffi
6
p

6

1

2

ffiffi
2
p

2
arccos � 1

3

� �
arccos 1

3

� �

Icosahedron 1

12
ð3

ffiffiffi
3
p
þ

ffiffiffiffiffi
15
p
Þ 1

4
ð1þ

ffiffiffi
5
p
Þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 2

ffiffiffi
5
pp

arccos �
ffiffi
5
p

3

� �
arccos

ffiffi
5
p

3

� �

Dodecahedron 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
ð25þ 11

ffiffiffi
5
p
Þ

q
1

4
ð3þ

ffiffiffi
5
p
Þ 1

4
ð
ffiffiffiffiffi
15
p

þ
ffiffiffi
3
p
Þ arccos �

ffiffi
5
p

5

� �
arccos

ffiffi
5
p

5

� �

https://doi.org/10.1371/journal.pone.0252613.t002
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O(4n) nodes in each layer. The first node I, which represents the initial pose, is the root of the

tree, from which m nodes in the next layer are generated corresponding to m different direc-

tions of edge-rolling of each Platonic solid (m = 3 for tetrahedron, octahedron and icosahe-

dron, m = 4 for cube, and m = 5 for dodecahedron) (Fig 5). From the newly generated nodes,

each Platonic solid can only roll with (m − 1) directions to avoid going back to the previous

pose in the next layer.

Nodes in the same layer representing the same pose are merged so that the algorithm only

generates distinct paths. The checking condition of nodes’ orientation between the current

node and the previous nodes which have the same position is added in each search iteration.

This step can reduce the latter time and space searching in the main algorithm. The first path

from the initial pose I to reach the desired pose D is a shortest path because of the BFS algo-

rithm. For the stopping criteria, it is applied for only tetrahedron case when the final tetrahe-

dron’s configuration reaches the target position but different orientation. The rest Platonic

solids always reaches the target configuration. It will be explained detail next section.

Simulation environment

We implemented the algorithm in MATLAB1 on a PC with a 3.6 GHz Intel Core i7 processor.

A space frame was fixed at the origin and a body frame was fixed on each Platonic solid; the

plane was then discretized depending on the Platonic solid (Fig 6).

Result

This section introduces the results for the path planning of the Platonic solids on their respec-

tive grids. Fig 6(left) shows how edge-rolling changes the poses of the Platonic solids. Fig 6

(right) shows the respective paths for the Platonic solids from their initial pose to their desired

pose, where an additional Platonic solid shows an intermediate pose in-between.

Fig 5. Tree exploration technique. Based on the BFS method, this algorithm starts from an initial pose represented by the Node I. The branches represent

the rolling directions for each iteration. If some nodes are of the same pose, they are merged to reduce the search space (the green node). The algorithm

stops when the desired pose, represented by the Node D, is reached and a shortest path is generated (colored in red).

https://doi.org/10.1371/journal.pone.0252613.g005
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Fig 6. Platonic solids rolling through their edge MN withdifferent rotation angles shown in Table 2. A body frame

(O − e1 e2 e3) is fixed at the center of each solid (left). After edge-rolling, each Platonic solid reaches a new pose, where

the red curve represents the center’s trajectory of rolling. Path-planning results for the Platonic solids on a plane shown

in the right side. (a) Tetrahedron. (b) Octahedron. (c) Icosahedron. (d) Cube. (e) Dodecahedron.

https://doi.org/10.1371/journal.pone.0252613.g006
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Tetrahedron

A tetrahedron is constructed from 4 incident equilateral triangles, giving 4 vertices (Table 2)

and an edge-rolling angle of 2 arctan ð
ffiffiffi
2
p
Þ (Table 2) on the triangular grid. The symmetry of

the tetrahedron limits its reachable poses, which can be seen as follows (Fig 7). We assume the

surface Sct of the tetrahedron as an initial configuration (bottom of Fig 7(a) and 7(b)) is in con-

tact with the plane where the red arrow points down to the surface contact. Because the tetra-

hedron has 3 incident faces at any vertex, edge-rolling along the edges NO, PO, and MO in

sequence makes the face Sct to be in contact with the plane again. Then, repeating this sequence

of edge-rolling brings the tetrahedron back to the initial pose (more details in Fig 7(a) and

7(b)). As a result, the tetrahedron reaches the same pose after 6 times of edge-rolling around

Fig 7. Symmetric properties of a tetrahedron. (a) A 3D view of edge-rolling 6 times around the vertex O where the red curve indicates the closed-path of

rolling motion. (b) A top view of (a). The surface Sct of the tetrahedron is in contact with the plane in different cell after sequential rolling through the edges

of NO, PO, and MO to reach the same pose. (c) The tetrahedron reaches only one orientation for each cell through edge-rolling.

https://doi.org/10.1371/journal.pone.0252613.g007
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one vertex (Fig 7(b) and 7(c)) because the triangular grid which has 6 equilateral triangle

shapes at any vertex. We conclude that only one pose can be reached for each cell starting

from an initial pose due to the high symmetry brought by the tetrahedron. The shortest path

for the tetrahedron is shown in Fig 6(a) (right).

Octahedron, icosahedron, cube, and dodecahedron

On the other hand, the other 4 Platonic solids can reach an arbitrary desired pose from an ini-

tial one because the increasing number of faces impose decreasing constraints. In these cases,

each position is always reached by different orientation corresponding to various paths

through due to the their symmetrical properties.

An octahedron is constructed from 8 incident equilateral triangles, giving 6 vertices

(Table 1) and an edge-rolling angle of arccos(1/3) (Table 2). The shortest path for the octahe-

dron is shown in Fig 6(b) (right). An icosahedron is constructed from 20 incident equilateral

triangles, giving 12 vertices (Table 1) and an edge-rolling angle of arccos ð
ffiffiffi
5
p

=3Þ (Table 2).

The shortest path for the icosahedron is shown in Fig 6(c) (right). A cube is constructed from

6 incident squares, giving 8 vertices (Table 1) and an edge-rolling angle of π/2 (Table 2) on the

square grid. The shortest path for the cube is shown in Fig 6(d) (right). Finally, a dodecahe-

dron is constructed from 12 incident regular pentagons, giving 20 vertices (Table 1) and an

edge-rolling angle of arccos ð
ffiffiffi
5
p

=5Þ (Table 2). The shortest path for the dodecahedron is

shown in Fig 6(e) (right).

Conclusion

We propose a path-planning algorithm for the Platonic solids from an initial pose to a desired

pose on a plane by edge-rolling. It is straightforward to tile a plane with equilateral triangles for

the tetrahedron, octahedron, and icosahedron and with squares for the cube, but there are a

variety of regular pentagon tiling patterns, which all leave symmetric gaps in the plane. We

chose Penrose tiling because the rhombi gaps exhibit five-fold symmetry, which facilitates the

proposed algorithm. While the cube, octahedron, icosahedron, and dodecahedron can reach an

arbitrary desired pose from an initial one, the tetrahedron can only reach one orientation for a

cell due to the high symmetry brought by the tetrahedron and triangular grid. In this study, we

successfully solved the path-planning problem of the Platonic solids by edge-rolling without

obstacles on prescribed grids. We are currently investigating the possible extension of the opti-

mal searching algorithms to more general convex solids and the optimal searching algorithm.

Supporting information

S1 Video. Tetrahedron rolling. A video of the rolling of tetrahedron following the path from

an initial pose to the desired pose in Fig 6(a-right) was generated from the proposed algo-

rithm.

(MP4)

S2 Video. Octahedron rolling. A video of the rolling of octahedron following the path from

an initial pose to the desired pose in Fig 6(b-right) was generated from the proposed algo-

rithm.

(MP4)

S3 Video. Icosahedron rolling. A video of the rolling of icosahedron following the path from

an initial pose to the desired pose in Fig 6(c-right) was generated from the proposed algorithm.

(MP4)
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S4 Video. Cube rolling. A video of the rolling of cube following the path from an initial pose

to the desired pose in Fig 6(d-right) was generated from the proposed algorithm.

(MP4)

S5 Video. Dodecahedron rolling. A video of the rolling of dodecahedron following the path

from an initial pose to the desired pose in Fig 6(e-right) was generated from the proposed algo-

rithm.

(MP4)
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