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Abstract

Background

Chest pain is amongst the most common reason for presentation to the emergency depart-

ment (ED). There are many causes of chest pain, and it is important for the emergency phy-

sician to quickly and accurately diagnose life threatening causes such as acute myocardial

infarction (AMI). Multiple clinical decision tools have been developed to assist clinicians in

risk stratifying patients with chest. There is growing recognition that machine learning (ML)

will have a significant impact on the practice of medicine in the near future and may assist

with diagnosis and risk stratification. This systematic review aims to evaluate how ML has

been applied to adults presenting to the ED with undifferentiated chest pain and assess if

ML models show improved performance when compared to physicians or current risk strati-

fication techniques.

Methods and findings

We conducted a systematic review of journal articles that applied a ML technique to an adult

patient presenting to an emergency department with undifferentiated chest pain. Multiple

databases were searched from inception through to November 2020. In total, 3361 articles

were screened, and 23 articles were included. We did not conduct a metanalysis due to a

high level of heterogeneity between studies in both their methods, and reporting. The most

common primary outcomes assessed were diagnosis of acute myocardial infarction (AMI)

(12 studies), and prognosis of major adverse cardiovascular event (MACE) (6 studies).

There were 14 retrospective studies and 5 prospective studies. Four studies reported the

development of a machine learning model retrospectively then tested it prospectively. The

most common machine learning methods used were artificial neural networks (14 studies),

random forest (6 studies), support vector machine (5 studies), and gradient boosting (2
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studies). Multiple studies achieved high accuracy in both the diagnosis of AMI in the ED set-

ting, and in predicting mortality and composite outcomes over various timeframes. ML out-

performed existing risk stratification scores in all cases, and physicians in three out of four

cases. The majority of studies were single centre, retrospective, and without prospective or

external validation. There were only 3 studies that were considered low risk of bias and had

low applicability concerns. Two studies reported integrating the ML model into clinical

practice.

Conclusions

Research on applications of ML for undifferentiated chest pain in the ED has been ongoing

for decades. ML has been reported to outperform emergency physicians and current risk

stratification tools to diagnose AMI and predict MACE but has rarely been integrated into

practice. Many studies assessing the use of ML in undifferentiated chest pain in the ED

have a high risk of bias. It is important that future studies make use of recently developed

standardised ML reporting guidelines, register their protocols, and share their datasets and

code. Future work is required to assess the impact of ML model implementation on clinical

decision making, patient orientated outcomes, and patient and physician acceptability.

Trial registration

International Prospective Register of Systematic Reviews registration number:

CRD42020184977.

Introduction

Complex decision-making amongst uncertainty is at the core of emergency medicine [1].

Emergency physicians must manage parallel and competing demands in an often chaotic and

unpredictable environment. There is an ongoing challenge in identifying patients with poten-

tially life-threatening conditions from more common benign diagnosis. Chest pain exemplifies

this diagnostic challenge.

Chest pain is amongst the most common reason for presentation to the emergency depart-

ment (ED) [2]. There are many causes of chest pain, and it is important for the emergency

physician to quickly and accurately assess, investigate, and diagnose life threatening causes

such as acute coronary syndrome (ACS). ACS encompasses a range of important diagnosis

related to cardiac ischemia including unstable angina (UA), non-ST elevation myocardial

infarction (NSTEMI), and ST elevation myocardial infarction (STEMI) [3]. ACS causes signifi-

cant mortality and morbidity, and outcomes are improved with early recognition and treat-

ment [4].

The majority of patients who present to an ED with chest pain will not have ACS [5]. Risk

stratification is an integral part of the evaluation of chest pain [6]. History and physical exami-

nation alone are unreliable in evaluating patients with chest pain [7]. This has led to the devel-

opment of multiple clinical decision tools such as the TIMI score and the HEART score to

assist clinicians in determining which patients with chest pain are at high risk of acute coro-

nary syndrome [8, 9]. Many of these decision tools have been validated internationally in mul-

tiple prospective trials and the HEART score has achieved good results [10]. Despite these

decision tools, a small number of cases of ACS are still missed [11] There is growing
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recognition that emerging artificial intelligence (AI) technologies will have a significant impact

on the practice of medicine in the near future [12, 13]. There has been longstanding interest in

the application of AI based techniques to chest pain [14].

The field of artificial intelligence can be broadly and pragmatically defined as “the theory

and development of computer systems able to perform tasks normally requiring human intelli-

gence” [15]. Over the last decade a combination of exponential increases in computing power,

the digitalisation of data, and advances in AI algorithms has led to a renaissance in AI research

[16]. Machine learning (ML) is a subfield of AI that uses various methods to automatically

detect patterns in data, then use these patterns to make predictions or decisions [17]. By

repeatedly comparing predictions with results, machine learning models iteratively adjust

their internal parameters (a process called “training”) to improve their performance. A trained

model’s predictions can then be tested on unseen data to ensure that the model can be general-

ised to new data and that it has not become ‘over fit’ to the data that was used to train it. Deep

learning (DL) is a type of ML that uses a large number of interconnected non-linear processing

units to obtain increasingly abstract representations of data, giving it the capability to learn to

model very complex functions [18]. DL algorithms have been used to achieve impressive

results in multiple diverse fields such as image recognition, speech recognition, and natural

language processing [19–22].

State of the art ML technologies are overwhelmingly narrow rather than general in their

current applications but have still achieved great successes, including on some problems previ-

ously thought to be intractable [23]. There are ongoing efforts to create more generalisable

models, however application of already existing narrow ML technologies could still fundamen-

tally change many industries including healthcare [24]. AI techniques have demonstrated

capability to predict patient outcomes and risk stratify patients based on clinical and physio-

logical data [25, 26]. AI techniques have recently been applied with success to the diagnosis of

myocardial infarction [27]. The implementation of artificial intelligence techniques into clini-

cal practice remains a challenge.

This systematic review aims to evaluate the applications of machine learning in undifferen-

tiated chest pain in the ED by answering the following questions.

1. How has ML been applied to adults presenting to the ED with undifferentiated chest pain?

2. Do ML models show improved performance compared to physicians or current risk strati-

fication techniques?

Methods

A systematic review protocol was reprepared in accordance with PRISMA-P guidelines and

registered with the International Prospective Register of Systematic Reviews (PROSPERO) on

08/09/2020 (registration number CRD42020184977) [28]. We conducted and report this

review in line with the PRISMA Reporting Guidelines for Systematic Reviews [29].

We included all journal articles that applied a ML technique to an adult patient presenting

to an ED with undifferentiated chest pain. As this study aims to broadly assess the capability of

ML applied to undifferentiated chest pain in the ED, all outcomes and comparators were

included. Studies that did not use a comparator were still included in our review. We excluded

conference abstracts, studies that did not use ML techniques, studies that did not assess undif-

ferentiated chest pain, studies not based in an ED setting, and studies that focused solely on

using ML for imaging or investigation interpretation.
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The search strategy for this systematic review was developed with input from study authors

and a health sciences librarian with expertise in systematic review searching. We searched

Pubmed (MEDLINE), Cochrane Library, Web of Science, Embase, and Scopus for English lan-

guage articles published from database inception to 11/08/2020. Electronic databases were first

searched on 11/08/2020 and last searched on 15/11/2020. We searched for medical subject

headings (MeSH) words and text keywords related to chest pain, artificial intelligence,

machine learning, deep learning, and emergency medicine. The MEDLINE search strategy is

provided in S1 Appendix. The MEDLINE strategy was adapted to the other databases. Refer-

ence lists of all included studies and authors personal archives were also reviewed for further

relevant literature to ensure literature saturation was achieved.

Citations and abstracts were screened by two reviewers (JS and JL) against predefined inclu-

sion and exclusion criteria. Both of the review authors were blind to the journal titles, study

authors, and institutions. Full text articles were obtained for any articles identified by one

reviewer to meet criteria. Two reviewers (JS and JL) then screened the full text reports against

inclusion and exclusion criteria. Data were extracted by JS and JL using a standardised form.

The form was piloted, and calibration exercises were conducted prior to formal data extraction

to ensure consistency between reviewers. In all cases of conflict or discrepancy, additional

study authors were involved until a decision was reached. Study authors were contacted by

email to resolve any significant uncertainties.

Data extracted included study type, outcomes, population, input data used, ML methodol-

ogy used, number of input variables in the ML model, comparisons, results, public availability

of dataset, and public availability of model code. Risk of bias in studies was assessed by two

authors (JS and JL) and using the Prediction model Risk of Bias Assessment Tool (PROBAST)

[30].

We did not conduct a metanalysis due to a high level of heterogeneity between studies in

both their methods, and reporting. We conducted a narrative analysis of the included studies

to provide further commentary and exploration of the trends and findings.

Results

Study selection

We identified 3590 records following database searching and a further 42 records through

other sources, including authors personal libraries. Following removal of duplicates, 3361 rec-

ords remained and underwent title and abstract screening. 3279 records were excluded. The

remaining 82 full-text articles were assessed for eligibility.

In total, 59 articles were excluded for the following reasons:

13 articles were excluded as they were an abstract only.

11 articles were excluded as they were a commentary or review

1 article was excluded as it focused only on CTCA result interpretation

15 articles were excluded as they did not use ML.

17 articles were excluded as they focused only on ECG interpretation.

2 articles were excluded as they did not focus on undifferentiated chest pain in the ED

Following these exclusions, 23 studies remained for inclusion in our qualitative synthesis.

There was no disagreement between the two reviewers as to study inclusion or results of data

extraction. This process is summarised in a PRISMA Flow Diagram (Fig 1).
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Study characteristics

A summary of the included studies is shown in Table 1. There were 14 retrospective studies

and 5 prospective studies. Four studies reported the development of a machine learning model

retrospectively then tested it prospectively. The most common machine learning methods

used were artificial neural networks (ANN) (14 studies), random forest (RF) (6 studies), sup-

port vector machine (SVM) (5 studies), and gradient boosting (2 studies).

The most common primary outcomes assessed were diagnosis of Acute Myocardial Infarc-

tion (AMI) (12 studies), and prognosis of major adverse cardiovascular event (MACE) (6

Fig 1.

https://doi.org/10.1371/journal.pone.0252612.g001
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studies). Three studies looked at diagnosis of ACS (including unstable angina). The NSTEMI/

STEMI paradigm formally replaced the Q-wave/Non-Q-wave MI paradigm in 2000 [52]. This

review identified 17 studies published since 2000 of which 4 studies excluded STEMI patients

and 13 did not.

Sixteen studies used data from a single site and 7 studies used data from multiple sites. The

largest number of sites used was by Than et al, an international collaboration using 12 cohorts

of patients [27]. They developed their model using training data from 2 cohorts then validated

their models using prospectively collected data from 7 cohorts.

The population size assessed varied greatly. The largest population was 85 254 patients by

Zhang et al., who used data collected from chest pain presentations to three hospitals between

2009 and 2018 [31]. The smallest population assessed was 228 patients by Berikol et al. [36]

Fourteen studies used a population of under 1000, seven studies had a population of between

1001 and 10 000, and two studies used a population of over 10 000.

The most frequently used prediction variables were demographics (21 studies), past medical

history including smoking status and family history (18 studies), and ECG result (17 studies).

Troponin was used in 12 studies. Only one study (Than et al) used serial troponins [27].

Laboratory tests other than troponin were used in 10 studies. Patient symptoms were used

in 12 studies and examination findings were used in 8 studies.

The number of predictor variables used in the ML models varied. The median number of

input variables used in the ML models was 23. Overall, 5 studies used models with 10 or less

input variables, 8 studies used models with 11–30, 7 studies used models with 31–50, and 2

studies used models with more than 50 input variables. The number of variables was unknown

in one study and attempts to contact the study authors to clarify this were unsuccessful. The

largest number of input variables was 95 by Chazaro et al. and the smallest number used by

Than et al. who used only 4 variables (age, gender, paired high-sensitivity troponins, rate of

change of high-sensitivity troponin) [27, 48]. Liu et al found that their 3 variable model pro-

duced better results than their complete 23 variable model in predicting 3-day MACE (AUC of

0.812 vs AUC of 0.736), concluding that “more predictors do not necessarily guarantee better

prediction result” [37].

Diagnosis of AMI or ACS

16 studies used ML algorithms to diagnose AMI or ACS in patients presenting to the ED with

chest pain. Tsien et al. in 1998 and Harrison et al. in 2005 were the only authors to report that

ML techniques did not outperform logistic regression and also suggested that appropriate

models for use in clinical practice may be able to be developed with relatively few data items

[43, 47]. Than et al. used ML to develop their “MI3 clinical support tool” which achieved a

high AUC (0.963) in diagnosing type 1 myocardial infarction in the index admission when

prospectively validated, and achieved similar performance in early and late presenters [27].

Their algorithm incorporated paired high-sensitivity troponins collected at presentation at

another early, yet flexible time point. Their MI3 clinical support tool was designed to be used

as a continuous measure but could also be adapted to work in the current paradigm of low/

high risk chest pain. Using an example low risk threshold (69.5% of patients in their test set)

they achieved a negative predictive value of 99.7% and sensitivity of 97.8%. At a high-risk

threshold (10.6% of patients in their test set) they achieved a positive predictive value of 71.8%

and specificity of 96.7%. At these thresholds their algorithm outperformed the European Soci-

ety of Cardiology 0/3-hour pathway.
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Prognosis (prediction of MACE and mortality)

In total 7 studies used ML algorithms to predict the prognosis of patients presenting to the ED

with chest pain. 6 studies looked at composite prognostic outcomes (MACE) and 1 study

(Zhang et al 2020) looked separately at 30-day all-cause mortality and 30-day AMI following

ED presentation [31]. Prognostication studies varied in the timeframes considered. The lon-

gest time frame assessed was 90-day MACE by Wu et al. [32] Wu et al. used ML to select fea-

tures for their risk stratification model, developing a full model that contained invasive (blood

tests) variables, and a reduced model that only contained non-invasive variables. They also

identify that in their data, QTc prolongation was a potentially novel predictor of MACE. Their

full model achieved an AUC of 0.853 and their reduced model achieved an AUC of 0.808.

The shortest timeframe considered was by Liu et al, who applied ML to select variables

from 8 vital signs 15 heart rate variability parameters to build a model to predict 3-day MACE

[37]. Their top performing model contained only 3 variables and achieved an AUC of 0.812,

outperforming the TIMI score (AUC 0.637) and the modified early warning score (AUC

0.622). Applying an arbitrary low/high risk cut-off score gave a sensitivity of 82.8% and speci-

ficity of 63.4%. The variables required for the model could be quickly and obtained non-inva-

sively through collection of routine vital signs and a 5-minute ECG. In a subsequent paper Liu

et al. developed a ML score that again incorporated vital signs and ECG heart rate variability

data to predict 30-day MACE. Their ML score achieved an AUC of 0.81, again outperforming

the TIMI score (AUC 0.71) [38].

Zhang et al. used a ML algorithm based on demographic information, past medical history

(PMHx), and laboratory tests to predict AMI and all-cause mortality within one month [31].

In prospective validation their RF model achieved an AUC of 0.907 for AMI < 1 month and

an AUC of 0.888 for all-cause mortality< 1 month.

Than et al. conducted a pre-planned secondary analysis on their MI3 algorithm to assess

ability to predict patients who suffered an MI in the 30-days following discharge [27]. Their

MI3 algorithm achieved an AUC of 0.957, and setting (arbitrary) low/high risk threshold val-

ues gave a sensitivity of 96.6% and PPV of 71.9% respectively.

McCullough et al used ANN to predict 30-day MACE based on demographics, PMHx,

estrogen status (women only), patient symptoms, and subjective physician initial assessment

of the chest pain (assessed as either Typical cardiac pain,” “Atypical cardiac pain,” or “Probable

non-cardiac pain.”) [40]. They developed prediction models for male and female patients.

They found that adding the subjective physician assessment to their model improved the per-

formance of the model more for male patients (average improvement of 5%), than for female

patients (average improvement of 1.48%). When their model used all features available and

was trained all available data (male and female) it achieved an AUC of 0.9037 for females and

0.8552 for males. Training the model on only male data improved the AUC for males to 0.87.

Comparisons

The most frequently used comparator was logistic regression (6 studies). The HEART score

was used as a comparator in 4 studies, the TIMI score was used as a comparator in 3 studies.

Other comparators used included (ESC) 1-hour and 3-hour algorithms, the GRACE score,

and MEWS. All existing chest pain risk stratification scores were outperformed by various ML

models in all studies in which they were compared. Two studies compared the performance of

various ML algorithms to one another. Zhang et al. compared RF, SVM, and KNN for AMI

and mortality prognosis [31]. Ha et al. compared Decision tree, SVM, and ANN to diagnose

MI [39]. In both cases decision trees (including RF) outperformed other ML algorithms. LR

was used as a comparator in 6 studies. ML models outperformed LR in four studies. Tsien
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et al. and Harrison et al. reported that their ML models did not show increased performance

when compared to logistic regression [43, 47]. Four studies compared ML to physician. All

four studies compared an ANN to a physician in the diagnosis of AMI. Chazaro found the ED

physician achieved greater sensitivity (87%) than the ANN (85%), however lower specificity

(78% vs 91%) [48]. In the three other studies, the physician was outperformed by the ANN in

all metrics [49–51]. Six studies did not include a comparator.

Integration into practice

Only 2 studies reported integrating the ML model into clinical practice. In 2003 Hollander

et al. evaluated consecutive ED patients with chest pain before and after the implementation of

an ANN [44]. The treating emergency physicians were provided with real-time outputs of the

neural network, which had previously achieved 95% and specificity of 96% in diagnosing acute

myocardial infarction. The implementation of the neural network did not significantly change

admission decisions. There were only 2 patients (<1%) for whom the neural network output

altered the physician disposition decision during real-time use. In a follow-up survey, 70% of

physicians believed the neural network to be correct, and 52% had confidence in the network

output. However only 7% stated they used the network score in their decision making. The

main reasons given for not using the neural network score in their decision making was that

the data were “presented to late’ and that the results ‘confirmed clinical suspicion but did not

alter it”.

In 2020 Zhang et al. retrospectively developed a ML model for predicting MACE in 85,254

patients with chest pain in the EDs of three hospitals [31]. They used 14 clinical variables previ-

ously suggested to predict MACE including demographics, PMHx (defined as diagnosis before

the index visit), and high-sensitivity troponins. They found a RF model using an oversampling

approach outperformed SVM, KNN, and LR. After one month of testing and validation, the

ML model was launched in their Hospital Information System to assist ED physicians with

decision-making in real time. Prospective validation of the AI prediction model by new

patients showed AUCs of 0.907 for AMI within 1 month and 0.888 for all-cause mortality

within 1 month. Their model was able to automatically and rapid capture the necessary vari-

ables (including high sensitivity troponin) from their EHR when the physician requested the

ML prediction. The authors acknowledge that they did not assess the impact of the ML predic-

tion model on clinical practice, and that the impact on emergency physician decision making,

change in clinical practice, and patient outcomes may need by be evaluated in future work.

Availability of code and dataset

Only 2 studies shared their datasets (Table 2). Conforti et al. provided publicly available link to

their dataset, however this link no longer works [42]. Wu et al. stated that their dataset was

available on reasonable request [32]. The code used for the ML models was not publicly avail-

able in any studies. The ML model used by Than et al. is proprietary but is available from the

authors for research purposes on request [27]. Chazaro et al did not share their algorithm how-

ever did provide the numeric values for hyperparameters for their ANN that achieved their

best results [48].

Study quality—Risk of bias within and across studies

A summary of the PROBAST assessment is provided in Table 3. Overall, 16 studies were con-

sidered to have a high risk of bias and 4 low risk of bias. 5 studies had high applicability con-

cerns and 7 studies had low applicability concerns. There were only 3 studies that were

considered low risk of bias and had low applicability concerns. Only 4 studies externally
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validated their ML models. Only one study (Then et al) refers to a previously published or reg-

istered protocol [27]. All but two studies report positive results for machine learning algo-

rithms, which raises the question if reporting bias may be present.

Discussion

Interest and early work

This systematic review has found that there has been long-standing interest in the applica-

tions of ML to undifferentiated chest pain the ED, and that ML techniques have achieved

impressive results both diagnostic and prognostic applications. These results could poten-

tially relieve emergency physicians of diagnostic burden, deliver improved care to patients,

and assist the health systems to provide care with greater efficiency. Over the last decade

there has been rapid growth in technological capability, digitalisation of information, and

dataset size. ML has become increasingly powerful while also becoming more accessible.

Models described by Baxt in 1990 that took up to 48 hours to train would train in seconds

today [14].

Table 2. Availability of dataset and code for included studies.

Study Dataset publicly available Code available

Zhang et al. [31] No No

Wu et al. [32] Yes� No

Mao et al. [33] No No

Wu et al. [34] No No

Than et al. [27] No Yes ^

Liu et al. [35] No No

Berikol et al. [36] No No

Liu et al. [37] No No

Liu et al. [38] No No

Ha et al. [39] No No

McCullough et al. [40] No No

Green et al. [41] No No

Conforti et al. [42] Yes~ No

Harrison et al. [43] No No

Hollander et al. [44] No No

Baxt et al. [45] No No

Baxt et al. [46] No No

Tsien et al. [47] No No

Chazaro et al. [48] No Yes#

Kennedy et al. [49] No No

Baxt et al. [50] No No

Baxt. [51] No No

Baxt. [14] No No

� available on request.

^ Model proprietary but available on request for research purposes.
~ Link provided to publicly available dataset in the paper no longer works.
# partially, configuration and settings provided in text table.

https://doi.org/10.1371/journal.pone.0252612.t002
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Compared to physicians and current standard of care

Pioneering work by Baxt in the 1990s found that “the non-linear artificial neural network per-

forms more accurately than either physicians or other computer-based paradigms” [53].

Despite this, relatively few studies compared ML to physicians, and no study since 1998 has

directly compared ML to physicians for the diagnosis or prognosis of undifferentiated chest

pain in the ED. More recent studies that included comparisons have instead compared ML to

current risk stratification tools such as the TIMI and HEART score. Though routinely used in

clinical practice, there is emerging evidence that the HEART score may not perform better

than clinical gestalt in certain clinical scenarios [54]. As ML tools become integrated into prac-

tice it will continue to be important to compare ML tools to physicians.

Small datasets

ML model performance tends to improve as dataset and model size increases [55]. Large high

quality clinical datasets are difficult to obtain and their size is limited by the number of patient

presentations. There is a trend to supplement real datasets with synthetically realistic generated

data. This allows for arbitrarily large datasets with corresponding improved model perfor-

mance. Class imbalance is also a common problem, with some data classes being abundant

Table 3. PROBAST assessment of the included studies.

Study Risk of Bias (ROB) Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Zhang et al. [31] + + ? + + + + ? +

Wu et al. [32] + ? ? - + ? ? - ?

Mao et al. [33] + ? ? ? - ? ? - -

Wu et al. [34] + + ? - - ? ? - -

Than et al. [27] + + + + + + + + +

Liu et al. [35] + + ? - + + ? - ?

Berikol et al. [36] + ? - - - ? - - -

Liu et al. [37] + + + - + + + - +

Liu et al. [38] + + + - + + ? - ?

Ha et al. [39] - + ? - ? + ? - ?

McCullough et al. [40] + + ? - + + ? - ?

Green et al. [41] + + + - + + + - +

Conforti et al. [42] - - - - + + ? - ?

Harrison et al. [43] + + + + + + + + +

Hollander et al. [44] + + + + + + + + +

Baxt et al. [45] + + + - + + + - +

Baxt et al. [46] + + + - + ? + - ?

Tsien et al. [47] + + ? + + + ? ? -

Chazaro et al. [48] + + ? - + + ? - ?

Kennedy et al. [49] ? + ? - + + ? - ?

Baxt et al. [50] + ? + + + + ? ? ?

Baxt. [51] + ? + — + + ? + ?

Baxt. [14] + ? ? - + + - - -

PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias.

+ indicates low ROB/low concern regarding applicability.

− indicates high ROB/high concern regarding applicability; and? indicates unclear ROB/unclear concern regarding applicability.

https://doi.org/10.1371/journal.pone.0252612.t003
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and other classes such as mortality expectedly being rare. New DL techniques have been devel-

oped to address this problem [56].

Reported ML architectures used by the studies in this review remain small compared to

state-of-the-art architectures used in other fields, and the vast majority of datasets used were

very small by modern machine learning standards. For perspective, State-of-the-art computer

vision models are often trained on a dataset containing more than 14 million images [20]. A

recently developed natural language processing algorithm (GTP-3) uses 499 billion tokens as

input to train [22]. Rajkomar et al. predicted mortality through training on a dataset contain-

ing over 216,000 patients and over 46 billion data points [25]. At these scales, training cost

becomes a significant consideration and prohibitively expensive to many researchers. Though

training large models may be slow and expensive, after training predictions can be delivered

rapidly using much less computational power, such as found in standard computers or mobile

telephone. Zhang et al. reported that the time taken to generate prediction results following

the ED physician clicking the appropriate button was < 1 second [31]. There is potential that

large models could be developed and trained by researchers with the appropriate resources,

then if these models are publicly available, they can be adapted to and validated on local data,

reducing training time and cost. This may be especially important in low-resource settings.

Omitted data categories

Multiple studies achieved impressive results, despite not including some data routinely used

by emergency physicians in the evaluation of undifferentiated chest pain. Almost half (11/23)

of the studies assessed did not take into account patients’ symptoms. Incorporating unstruc-

tured data in datasets remained a challenge. Interpretations of echocardiogram and ECG data

were used in all datasets that included them. No studies used deep learning to incorporate

unstructured image or ECG data, and no studies applied natural language processing to incor-

porate free text clinical notes. Interestingly no studies incorporated chest x-rays, though they

are routinely used in the work up of undifferentiated chest pain in the ED.

McCullough et al. conducted the only study that included emergency physician impression

as an input in a ML algorithm [40]. It is perhaps reassuring that including the emergency phy-

sician impression improved their models results, however interestingly the results were

improved more for male than female patients. Previous work has suggested male and female

patients with chest pain may be treated differently [57]. It is unknown if their result is a reflec-

tion of this disparity. Their model achieved great results for female patients without the inclu-

sion of emergency physician assessment. It is interesting to consider where the emergency

physician is left if future studies find they are outperformed by an ML model, and the inclusion

of their subjective assessment is not found to improve the model. The future role of the emer-

gency physician may move from diagnosis of undifferentiated cases to interpreting and com-

municating results to patient and participating in shared decision making. It unlikely that ML

models will be able to encroach on the emergency physician’s many other roles including

resuscitation, practical skills, and team management.

Predictor variables

As is common in ML research, multiple studies experimented with different numbers of input

variables and found that more variables did not necessarily improver results, or the addition of

more variables only marginally improved performance. Liu et al astutely suggested that a sim-

ple model using non-invasive variables could play a role in patient triage [37]. ML also showed

potential to identify and incorporate novel risk variables such as heart rate variability parame-

ters and correct QT interval in ECG [34]. Troponin is an important component of the
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universal definition of MI [3]. The study cohorts were patients presenting with a symptom of

myocardial ischemia (chest pain), and so all those with a rise and/or fall of troponin values

(with at least 1 value above the 99th percentile) will meet current definitions for MI. Including

a variable used in the definition of MI as an input in a ML model to predict MI is problematic

and will likely lead to optimistic estimates of model performance [30]. In many cases, initial

troponin measurements are likely to have formed part of the information used to determine

the outcome.

Human interpretability

Though there are differing opinions, it is generally accepted that ML model output will need to

be interpretable to be accepted and used in the health care setting [58]. There is now consider-

able research focusing on developing “explainable AI” [59]. No studies provided a human

interpretable output of the diagnostic reasoning of their algorithms alongside their output.

Than et al. developed an app mock-up that make the results human understandable [27]. This

is an important step in communication of results but does not provide glimpse into the ‘black

box’ that is the algorithm. Given the size, complexity and level of abstraction of the underlying

models, interpretation is generally infeasible [24]. It may not be possible to achieve any more

than an illusion of understanding. However, emergency physicians routinely prescribe medi-

cation with unclear mechanisms of action, but for which there is robust safety and efficacy

data [60]. If a ML model consistently demonstrates predictable accuracy and safety in a wide

variety of circumstances, it may be accepted despite remaining a ‘black box’.

Human factors affecting model implementation

Few studies considered the human factors that are involved in the implementation of ML algo-

rithms into practice. Hollander et al. provided an important singular example of a study that

evaluated the effect of algorithm implantation on clinical decision making, showing that

despite implementing an ANN that was previously reported to outperform clinicians, few used

it and it did not change clinical practice. New ML based diagnostic and prognostic technolo-

gies may be rejected by emergency physicians, especially if the results are not timely and do

not change management [44]. Physicians are likely to remain skeptical of an unexplainable

black box. There has also been no evaluation of ED patients attitudes and opinions on the use

of ML in their care. To achieve physician and patient acceptance of ML technologies will likely

require deep consideration of the human factors involved.

Ethical and legal issues

Zhang et al. point out that the implementation of ML prediction models in healthcare raises

ethical and legal issues, including malpractice liability for both technology manufacturers and

emergency physicians [31]. There is justified concern that important decisions could be based

on output of an algorithm that isn’t or fundamentally can’t be understood by a human [61].

Current legal doctrine is likely to be inadequate to address ML-related medical malpractice

[62].

Sensitivity and specificity

Physician, patient, and institutional risk tolerances differ. Achieving higher sensitivity at the

expense of lower specificity will lead to more false positives, and the resulting over investiga-

tion of these cases can paradoxically cause more harm than if the test wasn’t conducted. The

concept of ‘test-threshold’ shows the point at which risks of harm from false positive tests are
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equal to the risks of not testing [63]. Patients with risk below the test threshold do not benefit

from further testing. This leads to a mathematically optimal miss rate. Kline et al. estimated

that attempting to achieve a miss rate of under 2% for investigating patients with suspected

cardiac chest pain may cause more harm through over investigation [64]. This miss rate may

not be the miss-rate that clinicians are comfortable adopting, and physicians may be doing

more harm than good by adopting unrealistically low miss rates for low-risk patients present-

ing with chest pain [65]. It remains to be seen if ML can solve this dilemma.

Implementation

Despite over 30 years of promising results, integration of ML algorithms into widespread clini-

cal practice is yet to occur. Heterogeneity amongst healthcare systems is likely a significant

barrier. Zhang et al. were able to deploy their model into practice, but also note that while pro-

viding a proof of concept, the model may not be generalisable to other hospitals [31]. They

suggest that re-training and testing in other hospitals could overcome this issue. A mock-up

app developed by Than et al. shows thoughtful consideration of how a centralised ML algo-

rithm could be used in a low-resource setting, and how the results may be presented through a

phone application to both physicians (diagnostic metrics) and patients (graphical format) [27].

Implementation of ML algorithms will require health system monitoring, oversight and devel-

opment of algorithm stewardship frameworks to ensure that algorithms are used safely, effec-

tively, and fairly in diverse patient populations [66].

ML reproducibility crisis, algorithm ownership

Reproducibility is a foundation of the scientific method. There is growing recognition that ML

research is suffering from a reproducibility crisis [67]. This review found that few studies pub-

licly shared their code or dataset. Furthermore, methodological details were insufficiently doc-

umented to allow for replication in many studies. Recent medical ML studies have been

criticised for lacking sufficiently detailed methods, and not sharing data, algorithm code, or

details of the computational environment that generated the published findings [68]. Sharing

of data and code is widely viewed as important, and the lack of such sharing undermines the

scientific value of the research [68]. Previously identified barrier to transparent and reproduc-

ible ML research include the privacy and ethical implications of sharing patient data, and the

economic disincentives of sharing proprietary models [69].

Despite facing similar privacy challenges, the biomedical literature has shown some

improvements in certain key indicators of reproducibility and transparency, and clear,

detailed, and enforced guidelines have allowed for genomics researchers to share complex

computational pipelines and sensitive datasets [68–71]. Solutions may involve creating a

research culture that favours openness and replication, demonstration of the model on public

datasets, or the ability of independent investigators able to access the data and verify the analy-

sis prior to publication [68]. No studies identified by this review were replication studies.

Ongoing effort to manage the tension between patient privacy, open science, and private

enterprise is required.

Future direction

There have not been any randomised clinical trials comparing a ML algorithm to physicians or

current risk scoring tools for the risk stratification of chest pain. No studies have have evalu-

ated for a change in patient orientated outcomes following the implementation of a ML algo-

rithm into clinical practice. It remains essential to assess the impact these tools have on clinical

decision making. ML algorithms have potential to both decrease or increase bias and any
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future implementation of such must be conscious of this and develop appropriate algorithm

stewardship frameworks [66]. There is significant scope to incorporate further input variables

into machine learning models including physician assessment, free text clinical notes, raw

ECG data, point of care echocardiogram, and chest x-ray. There will likely be an increasing

emphasis on model explainability, though it should be remembered that this may only give the

illusion of understanding through abstraction of the underlying complexity. Despite using

broad search terms such as “Chest Pain”, all studies included in this review focused only on

MI/ACS and MACE. No studies attempted to diagnose other life-threatening cause of undif-

ferentiated chest pain (such as pulmonary embolism or aortic dissection). Future research may

attempt to broaden the scope of ML in undifferentiated chest pain.

Patients with acute coronary artery occlusion benefit from emergent reperfusion therapy

[72]. Currently these patients are mainly identified by the presence of ST-elevation on ECG.

There is a subset of patients with acute coronary artery occlusion who are not identified by the

STEMI/NSTEMI paradigm [72]. While some studies used angiogram results as part of their

outcome definition, no studies have attempted to identify patients with acute coronary artery

occlusion. Future studies may use ML to attempt to identify patients who have acute coronary

artery occlusion but who do not meet current STEMI criteria.

Limitations

Limitations—Study level

There are a number of limitations to this review. The majority (87%) of included studies were

assessed to have either a high risk of bias, or high applicability concerns, and their results may

not be generalisable to other settings. The majority of studies were also single centre, retro-

spective, and without prospective or external validation. The definition of MI and biomarkers

used to define MI has also changed over time. The extended timeframe of this review means

that many studies were done before the introduction of high sensitivity troponins and so

results from earlier studies may not be applicable to the modern setting. Since being intro-

duced into the definition of MI in 2000, few studies (4/17) excluded patients with STEMI. The

clinical usefulness and applicability of ML scores to patients with STEMI is likely very low as

they are often quickly identified on the basis of ECG alone, and there are well established exist-

ing treatment pathways for these patients (emergency reperfusion). There was inconsistent

reporting of methods and results among studies. ML reporting guidelines are not well estab-

lished or adhered to, though efforts are ongoing to change this [73–75].

Limitations—Review level

Publication bias is known to be widespread in the medical literature. While there is no empiri-

cal evidence that it is present ML research, it is likely to be present, as in other fields of

research. All but two study reported positive results for machine learning. Despite significant

effort to develop broad and relevant search terms, some relevant research may be published

under terms not included in the search. The search strategy also excluded abstracts, non-

English articles. Quantitate synthesis was not performed due to a high level of study heteroge-

neity. Although this was expected and outlined in the research protocol, it means that this

review does not provide a high level of evidence for the use of ML in undifferentiated chest

pain. Machine learning is an evolving concept without a precise and universally accepted defi-

nition. Some definitions of ML include logistic regression, however, following common usage,

this review did not consider it a ML technique.
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Conclusion

Research on applications of ML for undifferentiated chest pain in the ED has been ongoing for

decades. ML has been reported to outperform emergency physicians and current risk stratifi-

cation tools to diagnose AMI and predict MACE but has rarely been integrated into practice.

Many studies assessing the use of ML in undifferentiated chest pain in the ED have a high risk

of bias. It is important that future studies make use of recently developed standardised ML

reporting guidelines, register their protocols, and share their datasets and code. Future work is

required to assess the impact of ML model implementation on clinical decision making,

patient orientated outcomes, and patient and physician acceptability.
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