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Abstract

Since the financial system has illustrated an increasingly prominent characteristic of inextri-

cable connections, information theory is gradually utilized to study the financial system. By

collecting the daily data of industry index (2005-2020) and region index (2012-2020) listed in

China as samples, this paper applies an innovative measure named partial mutual informa-

tion on mixed embedding to generate directed networks. Based on the analysis of nonlinear

relationships among sectors, this paper realizes the accurate construction of “time-varying”

financial network from the perspective of risk spillover. The results are presented as follow:

(1) interactions can be better understood through the nonlinear networks among distinct

sectors, and sectors in the networks could be classified into different types according to their

topological properties connected to risk spillover; (2) in the rising stage, information is trans-

mitted rapidly in the network, so the risk is fast diffused and absorbed; (3) in the declining

stage, the network topology is more complex and panic sentiments have long term impact

leading to more connections; (4) The US market, Japan market and Hongkong market

have significant affect on China’s market. The results suggest that this nonlinear measure

is an effective approach to develop financial networks and explore the mechanism of risk

spillover.

Introduction

Over the past decades, the network theory has been applied to understand and explain some

real-world systems, consisting of a large number of components that interact with each other

[1–4]. The network, based on the connectivity, is constructed by linking any two nodes when

exploiting significant information between them and the topological properties in real-world

social networks differ from the random graph or the regular graph [1, 2]. When it comes to the

study of financial networks, both theoretically and empirically, it contributes to the research of

the financial risk since the financial system has illustrated an increasingly prominent charac-

teristic of inextricable connections [2, 5]. The reason for this is that with description of fluctua-

tion interdependence of the asset prices, the impact of individual characteristics in the

network, at the micro level, is the root of the system fluctuation and becomes system risk
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through cumulative fluctuations [5–7]. Risk spillovers, corresponding to crisis events, usually

demonstrate clear burst associated volatility dependence.

The literature of this study has covered the financial networks in the description of financial

risk spillover. The network structure can magnify system risk [8–10]. According to Curme

et al. (2015), the stock network has different topological properties in different periods, the effi-

ciency and instability have been growing in the stock market [11]. As it is studied by Han et al.

(2017), the network has different structures around the financial crisis and may be fragile to

targeted attacks [12]. From the contagion pattern, the risk center of system could be discovered

[13]. Based on the studies above, we can find that these networks, correlation based, are devel-

oped by filtering the complexity of financial dependencies [5, 14–16].

Two types of networks are mainly constructed based on the sort of connections, in the form

of undirected and directed. As for undirected networks are developed by symmetric correla-

tions with extraction of essential information from the associated networks. There are three

major methods to get the undirected graph by filtering the crucial information from a com-

plete graph, namely the minimum spanning tree(MST) [15, 17], planar maximally filtered

graph(PMFG) [2] and threshold graph [15, 18]. To be more specific, MST extracts a general

hierarchical structure [19] and PMFG favors connections formed by cliques [20] while thresh-

old graph is determined by a threshold value [15]. According to Onnela et al. (2004), he con-

structed a stock network using the stock trading price data of the New York Stock Exchange

and found that the stock network showed more obvious cluster characteristics where the

important nodes contained most of the effective information [14]. Tumminello et al. (2005)

analyzed the formed clusters based on a filtered network, which keeps the same hierarchical

tree to the corresponding MST [20]. Birth et al. (2015) discovered that less unconnected links

were found in the period of recovery than the period of crisis [18]. In light of the findings

above, this kind of networks do not contain the direction information of links, but the direc-

tion of information spillover in stock market is very important. We can find that undirected

network lacks clear economic meaning.

Compared with undirected graph, directed networks have clearer economic significance.

The Granger causality test is utilized to build directed links through the causal property [21].

Yao et al. (2016) confirmed that the causal property can explain the routes of risk transmitting

between banks, securities, hedge funds and some other financial agencies [22], and the

Granger causality test considers the pairwise correlation between variables. Diebold and Yil-

maz(2014) analyzed connectedness of major US financial institutions’ stock return volatility

on the basis of variance decompositions [23]. The measure of impulse response is also applied.

According to Alter and Beyer (2014), they captured changes of interdependence among sover-

eigns and banks over time and potential systemic risk increased with a clear upward trend of

growing interdependence between banks and sovereighs [24]. These networks are constructed

through vector autoregressive model, the limitation of which in this study is that it can only

suit the low dimensional model. So Demirer et al. (2018) proposed to use Least Absolute

Shrinkage and Selection Operator (LASSO) to reduce the dimension when constructing high

dimensional network [25], though LASSO performs poorly when the variables are highly

correlated.

With the capital and business exchanges reaching a certain density and depth, the financial

system has showed more complicated associations [26]. Considering the limitation of vector

autoregressive model, recently, this study makes several attempts to extend the linear to non-

linear and extend the low dimension to high dimension have been proposed. Hence, informa-

tion-theoretic approaches are increasingly applied for network construction since they can

measure nonlinear interrelationships properly [27–31]. The mutual information has been used

measure the degree of interaction between each variable and its parent variables [27]. In
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financial system, the mutual information has also been used to develop stock network to detect

the violent fluctuation of stock prices [32], which also suits analysis of high-frequency data

[33]. Based on Sandoval(2014), the study by using transfer entropy(TE), there are causal rela-

tionships between stocks to assess influences within financial sectors and the network is very

different from correlation-based network [26, 34]. but the researches on indirect coupling are

few when the interdependence between two variables under the influences of other variables,

namely confounding variables. Considering the influences of confounding variables, partial

transfer entropy(PTE) is multivariate extension of TE [35, 36]. Also partial symbolic transfer

entropy(PSTE) performs well with the non-stationarity time series but not effective with only

linear couplings [37]. And conditional mutual information(CMI) [38, 39] are developed to dis-

cover nonlinear correlations with complex underlying properties. It is worthy mentioning that

these measures are effective on low-dimensional systems but less sensitive to high-dimensional

systems [40].

In order to overcome the limitations of bivariate causality and problematic for high dimen-

sional data sets, the measure of partial mutual information on mixed embedding(PMIME) can

be used to analyze couplings among multi-dimensional time series [41, 42]. PMIME is a sort

of information theoretic measure based on transfer entropy, frequently used to process a large

number of observed variables as well as high dimensional variables but fewer spurious causal

effects, which outperforms standard linear conditonal Granger causality index and PTE [41,

43]. And PMIME is not rely on significance test [43, 44].

In this perspective, our object is to specify the nonlinear and multivariate coupling among

different sectors in China’s security market and describe the risk contagion in the resulting

networks by using PMIME. The following part of this paper is to be presented as follows: Sec-

tion 2 briefly presents the causality measure of PMIME and develops the stock networks based

on the measure. Section 3 introduces the financial data an related procession. Section 4 reports

the results and related discussion, and conclusion is presented in section 5 afterwards.

Methodology

Approach of PMIME

PMIME is an information-based measure, which can effectively discover the connectivity pat-

terns of multivariate systems. Suppose that a dynamical system could be reconstructed by an

univariate or multivariate time series, to form a state space in a way, more information about

the original dynamics can be represented. In a system represented as {X1, X2, . . .Xm}, a subsys-

tem observed through X1 drives a direct effect on response subsystem X2 under the influence

of other subsystems Z = {X3, . . .Xm}, where the observed variables in Z are referred to as con-

founding variables. The main idea of this measure is to reconstruct a joint state space through

embedding lagged variables of X1, X2, Z to explain the evolution of X2.

The key factor of this measure is identification of the embedding dimension of variables

and their lags. Derived from Takens’ embedding theorem [45], the uniform embedding

scheme for a given time series fxtg
N
t¼1

is described as X = (xt, xt−τ, . . ., xt−(p−1)τ), where p is the

number of delayed components in {xt} and τ is the delayed time. Similarly, for multivariate

time series fxi;tg
n
t¼1

, i = 1, . . ., m, the uniform reconstructed state space vector is extended as

the form

xt ¼ ðx1;t; . . . ; x1;t� ðp1 � 1Þt1
; x2;t; . . . xm;t� ðpm � 1Þtm

Þ ð1Þ

with the embedding dimension vector p = (p1, . . ., pm) which is the indication of components

from each time series, and
Xm

i¼1

pi is the dimension of system. In addition, a time delay vector τ
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= (τ1, . . ., τm), varied τi for each time series, depends on different cases. The future of xi,t is gen-

erally defined as xTi;t ¼ ðxi;tþ1; . . . ; xi;tþTÞ. A major issue in the multi-variate state space is identi-

fication. For the univariate time series, the embedding vectors are uniquely defined by a given

value τ. But multivariate data would have different levels of τ, and all possible combinations of

components for the determination of the optimum embedding would be computationally dif-

ficult when the embedding dimension and the number of time series get large, although non-

uniform scheme for multivariate embedding may filter the redundant information than the

embedding with fixed lags. For the empirical analysis in this study, we set τi = 1, i = 1. . .m.

And Vlachos and Kugiumtzis(2010) proposed a measure to confirm the minimum adequate

dimension to sufficiently detect interdependence [46].

The embedding scheme is described as follow: Let D is a candidate set with the maximum

lags Li for each time series, i = 1, . . ., m,

D ¼ ðx1;t; x1;t� 1; . . . ; x1;t� L1
; x2;t; . . . xm;t� LmÞ ð2Þ

and the embedding vector would be selected from set D. With ideas developed for the state

space reconstruction from multi-variate time series, the reconstructed vector would satisfy two

properties that its components should be least dependent to each other and it will explain the

dynamics of the system best. The proposed scheme starts from an empty vector d0 = ;. For xT1;t ,
We obtain the component in D being most correlated to it by estimation of mutual informa-

tion, d1
t ¼ argmaxd�DIðx

T
1;t; d

1
t Þ, then we confirm d1

t ¼ ½d
1
t �. The iterative process would be

repeated, a new component would be added to the existing vector at each step. Suppose we

have selected j − 1 components dj� 1
t , dj

t would be accepted significantly and proceeded to the

next embedding cycle if

IðxT1;t; d
j
tjdj� 1

t Þ=Iðx
T
1;t; d

j
t; dj� 1

t Þ � b ð3Þ

b = 1 − α, otherwise dj
t ¼ dj� 1

t .

Depending on the form of D and xT1;t , this measure can be used for reconstruction of multi-

variate state space. However, it is difficult to estimate the mutual information of driving vec-

tors and response vector because of multi-dimension, the nearest neighbors method [47] is

applied, instead of the binning estimation [32]. Given the obtained set D, PMIME has been

developed as the mixed embedding vector which can best describe the future of X1, defined as

follow:

PX2!X1 jX3 ;...;Xm
¼

IðxT1;t; d
x2
t jd

x1
t ; d

x3
t ; . . . dxm

t Þ

IðxT1;t; dtÞ
ð4Þ

The numerator of Eq (4) is the conditional mutual information of the future response xT1;t
and the part of embedding vector developed by lags of the driving variable dx2

t based on the

rest part of embedding vector. Then it is normalized by the mutual information of the future

response xT1;t and the whole embedding vector. So P takes value in [0, 1], where there exists

nonlinear relationship with positive value. The Eq (4) describes a subsystem that driving vector

X2 has a certain effect to the response vector X1 based on the embedding vector.

Test for nonlinear relationship using TE and PTE have been also suggested in terms of

entropies. The TE quantifies the amount of information explained in X1 at T steps ahead from
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X2 based on the concurrent state of X1, expressed as

TEX2!X1
¼ Iðx1;tþT ; x2;tjx1;tÞ ¼ Hðx1;tþTjx1;tÞ � Hðx1;tþT jx2;t; x1;tÞ ð5Þ

In the Eq (5), I(x1,t+T;x2,t | x1,t) is the conditional mutual information of x1,t+T and x2,t

accounting for x1,t, and H(x1,t+T|x1,t) is the conditional entropy of x1,t+T accounting for x1,t.

The PTE is the extension of the TE by estimating the nonlinear relationship of X2 to X1 based

on the rest variables in the system, namely Z

PTEX2!X1 jZ
¼ Hðx1;tþTjx1;t; ztÞ � Hðx1;tþTjx2;t; x1;t; ztÞ ð6Þ

The comparative analysis between PMIME and PTE will be done in the later section.

Measures of network topology

Based on the estimated analysis of PMIME, we can get a filtered adjacency matrix represented

as Am×m = (ai,j) with i, j = 1, . . .m, where the element ai,j indicates causality from node i to j
and m stand for the number of nodes in the network. In this study, all results are extracted

from binary directed networks, where there is a connection from i to j if ai,j 6¼ 0. A variety of

statistics have been applied to analyze the network topology. Considering the mechanism of

market risk spillover, we will introduce several measures to study the network topology.

Node degree. Node degree, the number of corresponding connections associated with a

node, is a fundamental topology property of network. In the directed network, the degree can

be classified into outdegree and indegree according to the direction of associations, and they

are not symmetric. Outdegree of a certain node is defined as connections from it to other

nodes while indegree is vice versa, respectively characterizing the influential and influenced

effect. In this study, outdegree of the node can explain the extent of risk diffusion, correspond-

ingly, indegree can describe the risk absorption.

In order to determine the importance and property of a node, some measures are proposed.

For example, degree ratio has been proposed to rank the nodes, and discriminate influential

nodes and influenced nodes [48]. From the perspective of risk propagation, we propose degree

centrality to discriminate different properties of nodes, namely the outdegree centrality index

and indegree centrality index. The outdegree centrality index of node i is calculated as the sum

of PMIME value from it to other nodes and normalized.

OCi ¼
Xm

j¼1

aij;

OCIi ¼
OCi � MinfOCig

MaxfOCig � MinfOCig
;

ð7Þ

where OCi is outdegree centrality of node i and OCIi is its normalized value. Similarly, the

indegree centrality index of node i is calculated as the sum of PMIME value from other nodes

to it and normalized.

ICi ¼
Xm

j¼1

aji;

ICIi ¼
ICi � MinfICig

MaxfICig � MinfICig
:

ð8Þ

Here, ICi is indegree centrality of node i and ICIi is its normalized value.
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Distance. In order to investigate the information transition within the network, the dis-

tance di,j is defined as the length of the shortest path from node i to j, which is calculated as the

minimum connections to reach between two nodes. The mean distance of the whole network

is
P

i6¼j
di;j

NðN� 1Þ
(exclusion of unreachable node pairs). Usually, the average distance can describe

the efficiency of information diffusion within the network.

Betweenness. Betweenness is an important global feature quantity in the network. If node

i is passed by many other shortest paths, it means that the node is very important in the net-

work. Its importance or influence can be expressed by Bi ¼
P

j6¼i6¼l
njlðiÞ
njl

, where njl is the number

of shortest paths between nodes j and l and njl(i) is the number of the shortest path between

nodes j and l through node i. It can be seen that the betweenness of i is the ratio of the number

of nodes passing through the shortest paths in the network. Although the degree of some

nodes is very small, it may be an intermediary between two communities. If this node is

removed, the connection between the two communities will be interrupted.

Clustering coefficient. The clustering coefficient of the graph reflects the characteristics

of the small world. For a node i, its degree is ki, which means ki nodes connect to it. Then the

amount of possible connections of this node is ki(ki − 1)/2, while the actual number of connec-

tions is Ei. The clustering coefficient of node i is the ratio of actual number of connections and

possible number of connections, called CCi. The formula is represented as CCi ¼
2Ei

kiðki � 1Þ
. Then

the average clustering coefficients of all nodes in the network is called the average clustering

coefficient of the network, recorded as CC, and 0� CC� 1. When CC = 1, any two nodes in

the complex network are connected and become a complete network. When CC = 0, all the

nodes in the network are isolated.

Clique formation. Based on the clustering coefficient, the clustering structure in network

is that nodes in the network can be divided into several groups with dense intra-group and

sparse inter-group connections. Clustering is an essential symbol in financial system, which is

investigated in terms of the clique. A clique, represented as Kq (q� 3), is generally fully con-

nected subgraph composed of three or more nodes [49]. For example, K3 contains three nodes,

any two of which are connected to each other. Nodes in the same clique would have stronger

mutual influences than the nodes outside of this clique.

Data and variables

Data sources

This study makes empirical analysis of industry index and region index in the stock market. A

sample for empirical analysis needs to be chosen properly as all indexes have the same conse-

cutive trading period. Therefore, we construct networks with two data sets, which consist of

daily prices of industry indexes and region indexes in China Stock Exchange. According to

ShenWan Industry classification standard, there are 28 sectors including Shery(SY), Mining

(MI), Chemicals(CHE), Steel(STE), Non-ferrous Metals(NFM), Electronics(ELE), Household

Appliances(HA), Food & Beverage(FB), Textile and Garment(TG), Light Industry

Manufacturing(LIM), Pharmaceutical Biology(PB), Utilities(UT), Transportation(TS), Real

Estate(RE), Commercial Trade(CT), Leisure Services(LS), Composite(CP), Construction

Materials(CM), Construction Decoration Materials(CDM), Electrical Equipment(EE),

National Defense & Military(NDM), Computer(CPT), Media(MED), Communications

(CMM), Banks(BA), Non-Bank Financial(NBF), Auto(AU) and Machinery & Equipment

(ME). The period of sample spans from June 01, 2005 to May 29, 2020. When it comes to

region indexes, they include 36 regions composed by CNI Shenzhen Innovation DEMO(SZI),

Shenzhen Enterprises Composite(SZEC), Yangtze, Zhujiang, Bohai, Anhui A Share, Beijing A
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Share, Fujian A Share, Gansu A Share, Guangdong A Share, Guangxi A Share, Guizhou A

Share, Hainan A Share, Hebei A Share, Henan A Share, Heilongjiang A Share, Hubei A Share,

Hunan A Share, Jilin A Share, Jiangsu A Share, Jiangxi A Share, Liaoning A Share, Inner Mon-

golia A Share(Inner Mongo), Ningxia A Share, Qinghai A Share, Shandong A Share, Shanxi A

Share, Shaanxi A Share, Shanghai A Share, Sichuan A Share, Tianjin A Share, Tibet A Share,

Xinjiang A Share, Yunnan A Share, Zhejiang A Share and Chongqing A Share. This process of

data collecting started from December 29, 2012 and ended on May 29, 2020 because most

region indexes were disclosed since then. It is noted that during the sample period, China secu-

rity market experienced several notable ups and downs, so we divide some subsamples in con-

sideration of the rise and fall of market index in order to compare the diverse topologies of

stock networks at different stages. The data have been collected from wind database.

Since we attempt to figure out the relationship between stock price fluctuation and market

risk, the daily return volatility should be applied to replace closing price. In order to contain

more information, we usually refer to formula proposed by Garman and Klass to obtain the

daily return volatility [50],

s2
it ¼ 0:511ðhit � litÞ

2
� 0:019½ðcit � oitÞðhit þ lit � 2oitÞ�

2ðhit � oitÞðlit � oitÞ� � 0:383ðcit � oitÞ
2
;

ð9Þ

where oit, hit, lit, cit respectively stand for logarithm value of the opening, highest, lowest and

closing price of the listed financial institution i at time t.

Descriptive statistics of variables

We can respectively get daily return volatility for Shanghai composite index, industry index

and region index based on Eq (9), and they are demonstrated in Fig 1. The volatility of indus-

try index and region index have similar trend with the volatility of Shanghai composite index.

The detailed description of volatility of indexes are presented in Table 1. However, the distri-

butions of volatility have significant differences of certain degree of skewness and serious

Fig 1. Comparison of volatility. Daily return volatility for Shanghai composite index(red), industry index(blue) and region index(dark).

https://doi.org/10.1371/journal.pone.0252601.g001
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kurtosis. According to the combination of the information in Fig 1 and Table 1, it is not diffi-

cult to find that the volatility of the stock market has the characteristics of high peak and heavy

tail, and the volatility is agglomerative. By explanation, the less larger volatility follows the

large volatility, and smaller volatility follows small volatility.

Since 2005, China’s stock market has experienced two rounds of notable bullish and bear-

ish. On June 1, 2005, the stock market closed at 1039.1870 points. Since then, the stock index

gradually went up, and rose to 6124.044 points on October 17, 2007, reaching the peak of the

bull market, and the index rose six times. However, the index then began to jump, and the US

subprime mortgage crisis in 2008 further accelerate the downward trend of China’s stock mar-

ket. Since then, China’s stock market entered the long-term downturn. In September 2014, the

stock index rose gradually again and reached 5146.9490 points on June 8, 2015. But the China

Securities Regulatory Commission prohibited securities companies from providing conve-

nience for over-the-counter capital allocation, the stock index plummeted. After another

round of bull market to bear market, the market entered a long recovery period. To compare

the difference between risng market and falling market, we construct stock networks over dif-

ferent periods according to the stock market index fluctuation. The description above illus-

trates that the research period includes two rising periods and two falling periods. From June

2005 to May 2020, there are totally 3649 consecutive trading daily price. We divide the whole

sampling period into four stages, including bullish trend(06/2005–10/2007), downturn(10/

2007–03/2014), rapid increase(03/2014–06/2015) and falling(06/2015–05/2020) over the sam-

ple period.

Parameter setting

In the process of the implementation of PMIME, several free parameters need to be identified,

namely, the maximum time lags for each variable(LX), the threshold in the termination crite-

rion, T representing the time ahead of time horizon, and the choice of these parameters

depends on the specificity of dynamics. Since our observations are discontinuous time series,

choosing a small lag in the process of implementation is much efficient but a larger lag is at the

cost of unnecessary computations. According to [42, 43], Lmax = 5 is set for all variables in

view of the case. Besides, the threshold, an inherent parameter of PMIME, should work well

for true direct couplings. According to a simulation study [46], the significance level for the

termination is set as α = 0.05. The number of nearest neighbors for the estimation is k = 5,

which is considerably stable. In addition, the choice of future time T is also dependent on

dynamics, T = 1 is widely applied in linear and nonlinear causality measures in case of discon-

tinuously sampled time series.

Results and discussions

Topology of industry index networks

In view of network topology, an adjacency matrix Am×m is calculated for industry index net-

work by PMIME, in which ai,j means the interaction from node i to j and m is the number of

Table 1. Description of indexes’ volatility.

Index Average Volatility Standard Error Skewness Kurtosis Maximum Value Minimum Value

Shanghai Composite Index 0.000168 0.000303 6.0575 56.2694 0.0041 0.00000257

Industry Index 0.000381 0.000447 3.7111 24.6196 0.005 0.00000886

Region Index 0.000197 0.000364 6.5308 60.4881 0.0051 0.0000113

https://doi.org/10.1371/journal.pone.0252601.t001
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nodes in the network. We can find that the adjacency matrix is unsymmetric as the connec-

tions in the network represent directed effects. Therefore, the topology of directed network is

different from undirected network. We construct industry index networks over four segments

using PMIME (Fig 2, S1–S3 Figs). Fig 3 and Table 2 demonstrates networks topologies over

four segments.

Fig 2. Industry index network. The industry index network is constructed by using PMIME over segment of June 2005–October 2007.

https://doi.org/10.1371/journal.pone.0252601.g002

Fig 3. The topology of networks based on 28 industry sectors over four segments. The curve with circle represents the first segment, the

curve with cross represents the second segment, the curve with asterisk represents the third segment and dotted curve represents fourth

segment. a–d are respective distributions of outdegree, indegree, clustering coefficient and betweenness over four segments.

https://doi.org/10.1371/journal.pone.0252601.g003
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Degree, a common statistics of network, is classified into outdegree and indegree in

directed graph. Outdegree means risk diffusion while indegree means absorption. The outde-

gree distribution differs widely over four segments, especially during the falling segments.

Therefore, most sector nodes absorb the risk while only a few nodes play a role to transit risk.

In another words, only a few nodes are driving nodes and have strong influences during falling

segments. Compared with the first falling segment, the second falling segment witnesses a

moderate increase in mutual interaction. As is shown in Fig 3, different driving nodes in varied

segments, such as Construction Materials, Construction Decoration Materials, Electrical

Equipment are strong over all segments while the extent is less strong in sectors like Computer,

Non-Bank Financial, Auto, National Defense & Military. With respect to indegree, the changes

can be seen over four segments with wide range of fluctuations in falling segments. Most

nodes are prone to be affected, among which Composite, Chemicals and Shery sectors are

more easily affected compared with other nodes.

The clustering coefficient has varied from 0 to 0.5 over four segments, during which the fall-

ing segments have a bit higher extent of clustering and slight changes among all sectors. By

contrary, the clustering coefficient has large fluctuation over the first and third segment, and

even some sectors have no clustering effect. Especially, the sectors of Shery, Steel, Non-ferrous

Metals, Transportation, Leisure Services, Construction Materials, National Defense & Military,

Computer and Auto have higer level of clustering effect.

In the distance of four segments, the average distances (except unreachable pairs), ranging

from 2.1975 to 3.0044, have slight differences. In these four segments, there are similar dis-

tances in two rising periods but an increase is detected during the first downturn period and

the distance in the fourth segment is smallest. With the development of stock market, the

more interactions are found, so the information transmission is faster in the fourth segment

compared with the second segment.

Based on the distance, we can get the betweenness of each sector over four segments. The

significant changes of betweenness can be seen over the second and fourth segment, especially

during the second segment. Since more interactions have been found in the network, each seg-

ment has similar betweenness over the fourth segment while there is no betweenness in some

sectors over the first three segments. The sectors of Construction Decoration Materials, Elec-

trical Equipment, Communication, Auto have larger betweenness over rising segments while

sectors of Mining, Electronics, Real Estate and Machinery & Equipment have larger between-

ness over falling segments. And National Defense & Military sector has the largest betweenness

over all segments.

In the varied segments, the number of edges in the network are respectively 99, 126, 99 and

145, about 3m − 5m(m is the amount of nodes in the network). In the first period, there are 7

4–clique and 18 3–clique. In the second period, there are only 5–clique, 11 4–clique and 19 3–-

clique. In the third period, the number of 4–clique is 4 and 3–clique is 16. In the fourth period,

Table 2. Results of industry index over four segments.

Segment Outdegree Std(Out)a Std(In)a Clustering Coefficient Distance Betweenness

06/2005–10/2007 3.5357 4.2468 1.4006 0.1774 2.7897 26.1429

10/2007–03/2014 4.5000 4.8496 2.0458 0.1945 3.0044 48.3214

03/2014–06/2015 3.5357 3.2601 1.2615 0.1543 2.7875 39.9643

06/2015–05/2020 5.1786 3.7914 1.4415 0.2011 2.1975 37.1786

astd(Out) and std(In) are respective standard deviation of outdegree distribution and indegree distribution.

https://doi.org/10.1371/journal.pone.0252601.t002
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more cliques are formed in terms of 1 6–clique, 3 5–clique, 8 4–clique and 15 3–clique. Com-

pared with PMFG, it can only supply cliques constructed with 3 nodes and 4 nodes by con-

necting 3(m–2) edges. Using PMIME, as the number of cliques varies with time, fewer cliques

are formed during rising time while more and larger cliques are constructed during the falling

periods because mutual interactions get more.

In order to trace the relationship between risk spillover and topological changes of the secu-

rity market, we will take more segments into consideration. The appropriate time series length

should not be less than 250 since the setting n = 250 is about trading days in a year. Consider-

ing the embedding vector and nonlinear relationship, we think that n = 500 (about two years)

may be the proper length for estimation. We select a rolling window of 50 days(almost two

months) and make the detailed comparison from the perspective of time and varied sectors.

From the perspective of time, average indegree is equal to average outdegree, so we do not

report average indegree in Fig 4a. In Fig 4b, average indegree distribution is different in each

sector and is correlated to risk input, so we report it. And the distance for some sectors is

unreachable, then this statistics is omitted in Fig 4b.

The outdegree distribution fluctuates obviously both over the varied periods or on identical

sectors, ranging from 1.2500 to 5.6071 over the varied periods, and an increase of the outde-

gree is observed during the rapid rising and slumping periods. The mean outdegree for each

sector shows that outstanding driving sectors are Construction Materials, Construction Deco-

ration Materials, Electrical Equipment, Computer, National Defense & Military, Communica-

tions, Machinery & Equipment and Auto. These industries can be regarded as risk output

since their fluctuations can affect other industries significantly. With respect to indegree, sec-

tors of Chemicals, Textile and Garment, Light Industry Manufacturing, Commercial Trade

and Machinery & Equipment are more likely to be affected, so they are regarded as risk

absorption sectors. It is noteworthy that some industries are the type of both risk output and

input, such as Machinery & Equipment, Communications. According to the calculation, the

Fig 4. Network topology of industry index over rolling windows. a Shows distributions of the clustering coefficient(solid curve), the

distance(dashed curve), the outdegree(dotted curve) and the betweenness(dash-dot curve) over different periods where the clustering

coefficient, distance and outdegree are referred to the left Y-axis and average betweenness is referred to the right Y-axis. b Shows

distributions of clustering coefficient(solid curve), indegree(dashed curve), outdegree(dotted curve) and betweenness(dash-dot curve) for

each industry sector during the whole period where the clustering coefficient, the indegree and the outdegree are referred to the left Y-

axis and the betweenness is referred to the right Y-axis.

https://doi.org/10.1371/journal.pone.0252601.g004
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distribution of average distance is relative stable over the whole period, about 2–2.5 steps

among reachable pairs. The distribution of betweenness is quite consistent with the distribu-

tion of outdegree. It gets larger during the rapid rising and slumping periods. Averagely, the

sectors of Construction Materials, Electrical Equipment, National Defense & Military, Com-

puter, Machinery & Equipment, Auto have larger betweenness. To investigate the risk property

of varied sectors, we classify nodes into four types, risk-outgoing, risk-incoming, risk-bridging

and risk-bordering, considering each sector has different role in the process of risk propaga-

tion. According to Eqs (7) and (8), the average outdegree centrality falls in [0.1104, 0.5105]

and only 21% of sectors are over 0.4. The average indegree centrality falls in [0.2461, 0.5480]

and 21% are over 0.5. It is observed that the outdegree and indegree centrality are not equal in

each sector. Then these sectors are divided into different types and Table 3 shows the results of

classification. Among all these sectors, only a few nodes are risk-output type and most nodes

are risk-input type. Still some nodes have function of both risk-output and risk-input, called

bridging nodes while only one node has weak connections with other nodes, called bordering

node.

Due to the development of economic globalization, the stock markets over the world have

stronger interactions than before. In order to trace the mutual influence among other security

markets and China’s security market. We have selected three indexes including Dow Jones

Industrial Average Index, Nikkei Index, Heng Seng Index, which are strongly correlated to

the China’s stock market. As shown in Fig 5, four distinct market indexes have the common

Table 3. Classification of nodes.

Type Sectors

Risk Outgoing(only OCI� 0.4) CM, CDM, EE, NDM, CPT, MED, AU

Risk Incoming(only ICI � 0.5) MI, CHE, NFM, FB, ELE, HA, CT, LIM, TG, PB, UT, CP, STE, RE, TS, LS

Risk Bridging(OCI � 0.3&ICI� 0.4) SY, ME, CMM, NBF

Risk Bordering(OCI< 0.3&ICI< 0.3) BA

https://doi.org/10.1371/journal.pone.0252601.t003

Fig 5. Comparison of volatilities in four stock markets. Daily return volatility for Dow Jones Industrial Average Index(blue), Nikkei

Index(red), Heng Seng Index(green) and Shanghai Composite Index(dark).

https://doi.org/10.1371/journal.pone.0252601.g005
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characteristic that the fluctuations are clustered over the same segments and are relatively

intensive.

A mixed network has been constructed by the 3 international indexes and 28 industrial

indexes. By selecting a rolling window of 24 days(almost trading days in a month) over the

whole sample period, we get topologies of network from the perspective of time and varied

indexes (Fig 6). According to the topology of the mixed network, the indexes could be dis-

tinctly divided into two groups which are market indexes and industrial indexes. Averagely,

these three market indexes have more directed links with each other and less with the 28

industry indexes. Among the three market indexes, Dow Jones Industrial Average has the

biggest outdegree and Nikkei Index has the second biggest outdegree. Therefore, the impact

mechanism of overseas stock markets on China’s stock market is first transmitted to some

sectors and then to the whole market. Over the whole sample period, the volatility of Dow

Jones Industrial Average has mainly affected industrial sectors such as Electronics, National

Defense & Military, Computer and Machinery & Equipment. The volatility of Nikkei Index

can cause the significant fluctuations of industrial sectors such as Household & Appliance

and Light Industry Manufacturing. The Heng Seng Index has more direct influence on

industrial sectors, especially on Steel, Food & Beverage, Computer, Communications and

Machinery & Equipment. But these 28 industry indexes do not have much directed influence

on other market indexes. The degree distributions among 28 industrial indexes are similar to

the results above. The distribution of distance is similar to that of outdegree, but the volatility

is small.

Topology of region index networks

We collect region indexes of 1800 consecutive trading days from December 2012 to May 2020.

Similarly, there have been three subsamples in the sample of region indexes whose period are

divided as downturn period(12/2012–03/2014), rapid increase period(03/2014–06/2015) and

downturn period(06/2015–05/2020). Then we study networks (S4–S7 Figs) of the whole period

and three divided periods by using PMIME.

Fig 6. Network topology of industry index over rolling windows. a Shows distributions of outdegree and indegree over different periods.

b Shows outdegree and indegree for different indexes during the whole period.

https://doi.org/10.1371/journal.pone.0252601.g006
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Based on PMIME, we get results of three segments and over the whole period. Because the

first period(12/2012- 03/2014) is the beginning of region index compilation, less information

is revealed. Therefore, we report the results for the whole period, the second and the third

period (Table 4). The outdegree of the third period is largest, ranging from 0 to 19, but only 4

region nodes have a degree of more than 10. In the long run, the average outdegree is 5.2222,

smaller than that of falling period. The indegree and distance distributions have slight changes

over three periods. In the third period, clustering coefficient is the largest but betweenness is

the smallest. Region nodes have more connections in the falling period but only a few nodes

act as a way to convey information. The falling period has the smallest betweenness but the

largest connections in the network, where most nodes are risk absorbent. Therefore, the topol-

ogy of region index network is similar to the industry index network. The information trans-

mission is effective in the rising period while more connections are found in the downturn

period.

The networks are respective constructed by 161 and 198 edges over the rising and down-

turn periods. During the rising period, there are 7 4-clique and 21 3-clique while 2 5-clique, 12

4-clique and 21 3-clique are formed during the downturn period. We found that there are

fewer cliques during rising time but more and larger cliques during down turn period. This

result is similar to the situation of industry index cliques, which display Shenzhen Enterprises

Composite, Bohai, Qinghai, Chongqing and Shaanxi have more cliques during the rising

period while Shenzhen Inno, Yangtze, Guizhou, Inner Mongo, Ningxia have more cliques.

To study the dynamic relationship among region sectors, we take n = 300 as a segment

length and 60 days as a sliding window(Fig 7). In terms of time, the mean outdegree varies

violently over different segments, ranging from 0.5278 to 4.6389, and it is higher during the

period when the market index fluctuates intensely. The change of betweenness is quite consis-

tent with the distribution of outdegree, and it gets larger during the rapid rising and slump

periods. The averaged distance among reachable pairs and clustering coefficient distribution

are quite stable. From the region perspective, the distributions of outdegree, indegree and

betweenness have large fluctuations, showing that each region plays a different role in the net-

work. According to Eqs (7) and (8), the average outdegree centrality takes value in [0.1200,

0.4147] while the average indegree centrality takes value in [0.2524, 0.6468]. It is a bit different

from industry sector network, the region sectors are only classified into types of risk incoming

and bridging. The regions sectors of Shenzhen Innovation, Shenzhen Enterprises Composite,

Yangtze, Bohai, Beijing, Shanxi, Inner Mongo and Shanghai are the type of risk bridging while

the other region sectors are the type of risk incoming. From the perspective of region sectors,

only a few region sectors have strong influence on other sectors, meanwhile they are influ-

enced by other sectors as well. Most sectors are likely to be influenced, consistent with China’s

regional economic development.

Robustness test

Since the rising period is longer than the downturn period in China’s security market, the

result based on the measure PMIME might be affected by the length of time series. In order to

Table 4. Results of region index over three periods.

Segment Outdegree Std(out) Std(in) Distance Clustering Coefficient Betweenness

12/2012–05/2020 5.2222 3.5141 1.3961 2.2524 0.1467 44.8056

03/2014–06/2015 4.4722 3.2992 1.1829 2.3746 0.1396 50.0556

06/2015–05/2020 5.5000 4.4175 1.3202 2.2524 0.1797 39.4722

https://doi.org/10.1371/journal.pone.0252601.t004
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test the robustness of measure PMIME, we further divide the decrease segment into slumping

and downturn segments according to the fluctuation of market index. Then the whole period

is divided into 6 segments, namely, June 2005-October 2007(rising), November 2007- March

2010(slumping), April 2010–August 2012(downturn), February 2013–June 2015(skyrocket),

July 2015–November 2017(slumping) and December 2017–April 2020(downturn). As is illus-

trated in Table 5, the slumping segments are discovered to have more interactions than rising

and downturn segments and the latest slumping segment has the most interactions. For the

segments with the same trend, the latest one has more interactions. During the segment of

April 2010–August 2012, the difference of indegree is the largest of all. These results are consis-

tent with the results above, so the measure PMIME can better explore the interactions among

sectors over varied segments and is robust in the respect of the length of time series.

Discussion

The findings of empirical analysis from above provide evidence that the networks generated

by PMIME reveal dissimilar topologies over different segments, which can indicate the

Fig 7. Network topology of region index over rolling windows. a Shows distributions of the clustering coefficient(solid curve), the

distance(dashed curve), the outdegree(dotted curve) and the betweenness(dash-dot curve) over different periods where the clustering

coefficient, distance and outdegree are referred to the left Y-axis and average betweenness is referred to the right Y-axis. b Shows

distributions of clustering coefficient(solid curve), indegree(dashed curve), outdegree(dotted curve) and betweenness(dash-dot curve) for

each industry sector during the whole period where the clustering coefficient, the indegree and the outdegree are referred to the left Y-

axis and the betweenness is referred to the right Y-axis.

https://doi.org/10.1371/journal.pone.0252601.g007

Table 5. Results of industry index over six segments.

Segment PMIME Outdegree Std(Out) Std(In) Distance Edges

06/2005–10/2007 0.1352 3.5357 4.3600 1.4006 2.7897 99

11/2007–03/2010 0.1248 4.2800 4.1789 1.3012 2.3597 120

04/2010–08/2012 0.2041 3.9643 3.5011 2.2523 2.0528 111

03/2013–06/2015 0.1431 4.0714 3.1848 1.3313 2.2825 114

07/2015–11/2017 0.1025 4.8929 2.9230 2.0965 2.1429 137

12/2017–04/2020 0.1540 4.2500 3.6780 1.2360 2.2531 119

https://doi.org/10.1371/journal.pone.0252601.t005
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financial risk spillover through the interaction of fluctuations. The identical levels of the risk

spillover effect over different segments, showing that the structure during the bear market is

very different from that during the bull market. During the rising stage, the response of the

market is relatively effective and the interaction of fluctuations between varied sectors are very

active and rapid. But during the decline stage, the interaction of fluctuations seems to be more

complicated, there are more connections and the great difference in degree distributions of

nodes. The strengthening of risk spillover among sectors will lead to the increase of network

density in the process of market collapse, which is consistent with research [51]. China’s stock

market has been driven by capital in the process of rising, with all sectors rising sooner or

later. In the process of falling, the withdrawal of funds from the market, coupled with the

impact of market sentiment. Since panic sentiments are not easy to be digested by the financial

market, the ineraction of fluctuations would last for a long time and all stocks fall in response.

During the recovery period following the rapid decline, market performance is most correlated

with economic fundamentals.

In each network, only a few nodes have higher degree while most nodes have lower degree.

Therefore, we can find that both industry indexes and region indexes networks have similari-

ties that all sectors perform significant price fluctuations over varied periods but only a few

sectors dominate the market and only a few sectors have essential roles in the network while

most sectors are influenced. This demonstrates that the network becomes local centralized,

which is mainly reflected in the risk diffusion effect of some crucial nodes and the importance

of their neighbors. The centralization of network makes the systemic risk greatly depend on

the risk status of individual nodes. The nodes in the connected position are forced to fluctuate

with the fluctuation of the central nodes. In the long term, the connection between sector

nodes increase and the characteristics of risk spillover become more prominent. For industry

index network, only a few sectors are risk outgoing while most sectors are risk incoming. But

for region index network, most region nodes are both of risk outgoing and incoming. From

the perspective of time, more connections are significantly presented during the latest period

and fewer connections at the beginning since we get samples over the comparable long time,

which means the complexity of financial system has been considerably increasing. When the

risk spreads through the nonlinear correlation of stocks in the network, it causes a chain reac-

tion and finally infects the whole network.

Considering the risk spillover from international markets, China’s security market has been

closely linked to the markets from US, Japan and Hongkong. Among these three security mar-

kets, Dow Jones Stock Index has the strongest power, which has been considered to be a cen-

tral place in the world compared to the other two indexes. Therefore, Dow Jone Stock Index

has played a predictive role in the performance of global security markets. And Nikkei Index

has less power while Heng Seng Index has least influence to China’s security market. However,

the risk spillover from Dow Jone Stock Index has transfered through only a few industry

indexes of China’s security. By comparison, the volatility of Heng Seng Index can cause more

response of industry indexes.

We make comparison of PTE and PMIME by using sample of industry index. Several

free parameters should identified, embedding dimension m = 5, time step ahead T = 1, the

number of nearest neighbors for the estimation k = 5. We study the nonlinear correlation

among industry sectors over four segments of bullish trend(06/2005–10/2007), downturn

(10/ 2007–03/2014), rapid increase(03/2014–06/2015) and falling(06/2015–05/2020). As is

illustrated in Table 6, the results are similar to those of the PMIME. The distribution of out-

degree is not uneven while the distribution of indegree has fewer differences. The falling

segments have more connections compared with rising segments. The networks constructed

by PTE and PMIME have a few differences on some connections, since the PMIME takes
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the lagged variables into considerations. Concerning the measures, the PMIME outperforms

the PTE. The PTE fails to detect the relationship with lagged variables. And the PMIME

suits to the large data set and high dimensional case, although there might be slightly differ-

ent number of connections when applying different length of rolling window. In real appli-

cations, especially in financial time series, stock price fluctuations have characteristics of the

time lag.

Conclusion

The measure of PMIME has been utilized effectively in analysis of risk spillover in the financial

market since it can better explain the nonlinear correlation. So far we have constructed indus-

try index and region index networks based on this nonlinear measure and have made the

comparison with the PTE. Through this explored measure, the interrelationships have been

investigated between any two distinct vectors under the condition of embedding vectors and

the direction of interrelationships has been specified. We can capture the risk source and make

a better understanding of risk transmission in the stock market and the mechanism of risk

spillover among diverse markets. Through the analysis, we found it is a fairly new area of

research to develop the financial network. The financial system is fast evolved with the time, as

our current work describes dynamic in the way of rolling windows and real-time evolution

should be considered in the network in future. Furthermore, we should consider more market

indicators instead of the only price index when we discuss the risk spillover effect in financial

system, such as volume and volatility [52]. Therefore, our future work could focus on the con-

struction of weighted directed network to precisely measure the risk transmission but under

the condition that more indicators are involved.

Supporting information

S1 Fig. Industry index network. The industry index network is constructed by using PMIME

over segment of October 2007–March 2014.

(TIF)

S2 Fig. Industry index network. The industry index network is constructed by using PMIME

over segment of March 2014–June 2015.

(TIF)

S3 Fig. Industry index network. The industry index network is constructed by using PMIME

over segment of June 2015–May 2020.

(TIF)

S4 Fig. Region index network. The region index network is constructed by using PMIME

over period of December 2012–May 2020.

(TIF)

Table 6. Results of industry index over four segments based on PTE.

Segment Outdegree Std(Out) Std(In) Clustering Coefficient Distance Betweenness

06/2005–10/2007 3.7143 4.3449 1.4620 0.1930 2.2531 25.1786

10/2007–03/2014 4.5357 4.9701 1.5512 0.1941 2.2156 36.6786

03/2014–06/2015 3.5000 3.1091 1.1386 0.1457 2.3095 41.2143

06/2015–05/2020 5.1786 3.7024 1.0905 0.2003 2.0608 29.6071

https://doi.org/10.1371/journal.pone.0252601.t006
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S5 Fig. Region index network. The region index network is constructed by using PMIME

over period of December 2012–March 2014.

(TIF)

S6 Fig. Region index network. The region index network is constructed by using PMIME

over period of March 2014–June 2015.

(TIF)

S7 Fig. Region index network. The region index network is constructed by using PMIME

over period of June 2015–May 2020.

(TIF)

S1 Data.

(RAR)

Author Contributions

Conceptualization: Wei Liu.

Funding acquisition: Weibo Li.

Investigation: Weibo Li.

Methodology: Weibo Li, Lei Wu, Xue Guo.

Supervision: Lei Wu.

Validation: Lei Wu.

Writing – original draft: Weibo Li, Xue Guo.

Writing – review & editing: Wei Liu, Xue Guo.

References

1. Newman MEJ, Watts DJ, Strogatz SH. Random graph models of social networks. Proc Natl Acad Sci

USA. 2002 99(1): 2566–2572. https://doi.org/10.1073/pnas.012582999 PMID: 11875211

2. Tumminello M, Matteo TD, Aste T, Mantegna RN. Correlation based networks of equity returns sampled

at different time horizons. Eur Phys J B. 2007; 55(2): 209–217. https://doi.org/10.1140/epjb/e2006-

00414-4

3. Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002; 74(1): 47–97.

https://doi.org/10.1103/RevModPhys.74.47

4. Barabasi AL, Albert R. Emergence of Scaling in Random Networks. Science. 1999; 286(5439): 509–

512. https://doi.org/10.1126/science.286.5439.509 PMID: 10521342

5. Mantegna RN. Hierarchical structure in financial markets. Eur Phys J B. 1999; 11(1): 193–197. https://

doi.org/10.1007/s100510050929

6. Stavroglou SK, Pantelous AA, Stanley HE, Zuev KM. Hidden interactions in financial markets. Proc Natl

Acad Sci USA. 2019; 116(22): 10646–10651. https://doi.org/10.1073/pnas.1819449116 PMID:

31085649

7. Acemoglu D, Carvalho VM, Ozdaglar A, et al. The network origins of aggregate fluctuations. Econome-

trica. 2012; 80(5): 1997–2016.

8. Allen F, Gale D. Financial contagion. J Polit Econ. 2000; 108(1):1–33. https://doi.org/10.1086/262109

9. Elliott M, Golub B, Jackson MO. Financial networks and contagion. Am Econ Rev. 2014; 104(10):

3115–3153. https://doi.org/10.1257/aer.104.10.3115

10. Acemoglu D, Ozdaglar A, Tahbaz-Salehi A. Microeconomic origins of macroeconomic tail risks. Am

Econ Rev. 2017; 107(1): 54–108. https://doi.org/10.1257/aer.20151086

11. Curme C, Tumminello M, Mantegna RN, Stanley HE, Kenett DY. Emergence of statistically validated

financial intraday lead-lag relationships. Quant Financ. 2015; 15: 1375–1386. https://doi.org/10.1080/

14697688.2015.1032545

PLOS ONE Risk spillover networks in financial system based on information theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0252601 June 18, 2021 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252601.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252601.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252601.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252601.s008
https://doi.org/10.1073/pnas.012582999
http://www.ncbi.nlm.nih.gov/pubmed/11875211
https://doi.org/10.1140/epjb/e2006-00414-4
https://doi.org/10.1140/epjb/e2006-00414-4
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
https://doi.org/10.1007/s100510050929
https://doi.org/10.1007/s100510050929
https://doi.org/10.1073/pnas.1819449116
http://www.ncbi.nlm.nih.gov/pubmed/31085649
https://doi.org/10.1086/262109
https://doi.org/10.1257/aer.104.10.3115
https://doi.org/10.1257/aer.20151086
https://doi.org/10.1080/14697688.2015.1032545
https://doi.org/10.1080/14697688.2015.1032545
https://doi.org/10.1371/journal.pone.0252601


12. Han RQ, Xie WJ, Xiong X, Zhang W, Zhou WX. Market correlation structure changes around the great

crash: a random matrix theory analysis of the chinese stock market. Fluct Noise Lett. 2017; 16(2):

1750018. https://doi.org/10.1142/S0219477517500183

13. Yang Z, Zhou Y. Quantitative easing and volatility spillovers across countries and asset classes. Man-

age Sci. 2017; 63(2): 333–354. https://doi.org/10.1287/mnsc.2015.2305

14. Onnela JP, Kaski K, Kertesz J. Clustering and information in correlation based financial networks. Eur

Phys J B. 2004; 38(2): 353–362. https://doi.org/10.1140/epjb/e2004-00128-7

15. Onnela JP, Chakraborti A, Kaski K, Kertesz J, Kanto A. Asset trees and asset graphs in financial mar-

kets. Phys Scripta. 2003; 106: 48–54. https://doi.org/10.1238/Physica.Topical.106a00048

16. Chi KT, Liu J, Lau FCM. A network perspective of the stock market. J Empir Financ. 2010; 17(4): 659–

667. https://doi.org/10.1016/j.jempfin.2010.04.008

17. Aste T, Matteo TD, Hyde ST. Complex networks on hyperbolic surfaces. Phys A Stat Mech Its Appl.

2004; 346(1-2): 20–26. https://doi.org/10.1016/j.physa.2004.08.045

18. Birch J, Pantelous AA, Soramaki K. Analysis of correlation based networks representing DAX 30 stock

price returns. Comput Econ. 2016; 47(4): 501–525. https://doi.org/10.1007/s10614-015-9481-z

19. Bonanno G, Caldarelli G, Lillo F, Mantegna RN. Topology of correlation based minimal spanning trees

in real and model markets. Phys Rev E. 2003; 68(4): 046130. https://doi.org/10.1103/PhysRevE.68.

046130 PMID: 14683025

20. Tumminello M, Aste T, Matteo TD, Mantegna RN. A tool for filtering information in complex systems.

Proc Natl Acad Sci USA. 2005; 102(30): 10421–10426. https://doi.org/10.1073/pnas.0500298102

PMID: 16027373

21. Geweke JF. Measurement of linear dependence and feedback between multiple time series. J Am Stat

Assoc. 1984; 77(378): 304–313. https://doi.org/10.1080/01621459.1982.10477803

22. Yao CZ, Lin JL, Lin QW, Zheng XZ, Liu XF. A study of causality structure and dynamics in industrial

electricity consumption based on Granger network. Phys A Stat Mech Its Appl. 2016; 462: 297–320.

https://doi.org/10.1016/j.physa.2016.06.100

23. Diebold FX, Yilmaz K. On the network topology of variace decompositions: measuring the connected-

ness of financial firms. Phys J Appl Econ. 2014; 182(1): 119–134.

24. Alter A, Beyer A. The dynamics of spillover effects during the European sovereign debt turmoil. J Bank

Financ. 2014; 42: 134–153. https://doi.org/10.1016/j.jbankfin.2014.01.030

25. Demirer M, Diebold FX, Liu L, Yilmaz K. Estimating global bank network connectedness. J Appl

Econom. 2018; 33(1): 1–15. https://doi.org/10.1002/jae.2585

26. Sandoval L. Structure of a gloval network of financial companies based on transfer entropy. Entropy.

2014; 16: 4443–4482. https://doi.org/10.3390/e16084443

27. Campos LMD. A scoring function for learning bayesian networks based on mutual information and con-

ditional independence tests. J Mach Learn Res. 2006 Oct; 7: 2149–2187.

28. Junior LS, Mullokandov A, Kenett DY. Dependency relations among international stock market indices.

J Risk Financ Manag. 2015; 8(2): 227–265. https://doi.org/10.3390/jrfm8020227

29. Corso G, Ferreira GMF, Levinsohn TM. Mutual information as a general measure of structure in interac-

tion networks. Entropy. 2020; 22(5): 528. https://doi.org/10.3390/e22050528 PMID: 33286300

30. Si S, Wang B, Liu X, Yu C, Ding C, Zhao H. Brain network modeling based on mutual information and

graph theory for predicting the connection mechanism in the progression of Alzheimers disease.

Entropy. 2019; 21: 300. https://doi.org/10.3390/e21030300

31. Fiedor P. Networks in financial markets based on the mutual information rate. Phys Rev E. 2014; 89:

052801. https://doi.org/10.1103/PhysRevE.89.052801 PMID: 25353838

32. Guo X, Zhang H, Tian TT. Development of stock correlation networks using mutual information and

financial big data. Plos ONE. 2018; 13: e0195941. https://doi.org/10.1371/journal.pone.0195941

PMID: 29668715

33. Sharma C, Habib A. Mutual information based stock networks and portfolio selection for intraday traders

using high frequency data: an Indian market case study. Plos ONE. 2019; 14: e0221910. https://doi.

org/10.1371/journal.pone.0221910 PMID: 31465507

34. Kyrtsou C, Kugiumtzis D, Papana A. Further insights on the relationship between SP500, VIX and vol-

ume: a new asymmetric causality test. Eur J Financ. 2019; 25(15): 1402–1419. https://doi.org/10.1080/

1351847X.2019.1599406

35. Vakorin VA, Krakovska OA, McIntosh AR. On complexity and phase effects in reconstructing the direc-

tionality of coupling in non-linear systems. J Neurosci. 2014; 184: 137–158.

PLOS ONE Risk spillover networks in financial system based on information theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0252601 June 18, 2021 19 / 20

https://doi.org/10.1142/S0219477517500183
https://doi.org/10.1287/mnsc.2015.2305
https://doi.org/10.1140/epjb/e2004-00128-7
https://doi.org/10.1238/Physica.Topical.106a00048
https://doi.org/10.1016/j.jempfin.2010.04.008
https://doi.org/10.1016/j.physa.2004.08.045
https://doi.org/10.1007/s10614-015-9481-z
https://doi.org/10.1103/PhysRevE.68.046130
https://doi.org/10.1103/PhysRevE.68.046130
http://www.ncbi.nlm.nih.gov/pubmed/14683025
https://doi.org/10.1073/pnas.0500298102
http://www.ncbi.nlm.nih.gov/pubmed/16027373
https://doi.org/10.1080/01621459.1982.10477803
https://doi.org/10.1016/j.physa.2016.06.100
https://doi.org/10.1016/j.jbankfin.2014.01.030
https://doi.org/10.1002/jae.2585
https://doi.org/10.3390/e16084443
https://doi.org/10.3390/jrfm8020227
https://doi.org/10.3390/e22050528
http://www.ncbi.nlm.nih.gov/pubmed/33286300
https://doi.org/10.3390/e21030300
https://doi.org/10.1103/PhysRevE.89.052801
http://www.ncbi.nlm.nih.gov/pubmed/25353838
https://doi.org/10.1371/journal.pone.0195941
http://www.ncbi.nlm.nih.gov/pubmed/29668715
https://doi.org/10.1371/journal.pone.0221910
https://doi.org/10.1371/journal.pone.0221910
http://www.ncbi.nlm.nih.gov/pubmed/31465507
https://doi.org/10.1080/1351847X.2019.1599406
https://doi.org/10.1080/1351847X.2019.1599406
https://doi.org/10.1371/journal.pone.0252601


36. Papana A, Kugiumtzis D, Larsson PG. Detection of direct causal effects and application to epileptic

electroencephalogram analysis. Int J Bifurcat Chaos. 2012; 22: 1250222. https://doi.org/10.1142/

S0218127412502227

37. Papana A, Kyrtsou S, Kugiumtzis D, Diks C. Detecting causality in non-stationary time series using par-

tial symbolic transfer entropy: evidence in financial data. Comput Econ. 2016; 47: 341–365. https://doi.

org/10.1007/s10614-015-9491-x

38. Yan Y, Wu BY, Tian TH, Zhang H. Development of stock networks using partial mutual information and

Australian stock market data. Entropy. 2020; 22: 773. https://doi.org/10.3390/e22070773

39. Tao Y, Fiedor P, Holda A. Network analysis of the Shanghai stock exchange based on partial mutual

information. J Risk Financ Manag. 2015; 8(2): 266–284. https://doi.org/10.3390/jrfm8020266

40. Papana A, Papana-Dagiasis A, Siggiridou E. Shortcomings of transfer entropy and partial transfer

entropy: Extending them to escape the curse of dimensionality. arXiv. 2020; 2004.11760.

41. Papana A, Kyrtsou S, Kugiumtzis D, Diks C. Financial networks based on Granger causality: A case

study. Phys A Stat Mech Its Appl. 2017; 482: 65–73. https://doi.org/10.1016/j.physa.2017.04.046

42. Kugiumtzis D. Direct coupling information measure from non-uniform embedding. Phys Rev E. 2013;

87(6): 062918. https://doi.org/10.1103/PhysRevE.87.062918

43. Papana A, Kyrtsou C, Kugiumtzis D, Diks C. Simulation Study of direct causality measures in multivari-

ate time series. Entropy. 2007; 15(7): 2635–2661.

44. Pitti A, Lungarella M, Kuniyoshi Y. Information transfer at multiple scales. Phys Rev E. 2007; 76(5),

056117. https://doi.org/10.1103/PhysRevE.76.056117 PMID: 18233728

45. Takens F. Detecting strange Attractors in Turbulescence. Lecture notes in mathematics 898. In: Rand

D. A. and Young L. S., Eds. Lecture notes in mathematics. Springer, New York. 1981; 898: 365–381.

46. Vlachos I, Kugiumtzis D. Nonuniform state-space reconstruction and coupling detection. Phys Rev E.

2010; 82: 016207. https://doi.org/10.1103/PhysRevE.82.016207 PMID: 20866707

47. Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. Phys Rev E. 2004; 69(6):

066138. https://doi.org/10.1103/PhysRevE.69.066138

48. van den Brink R, Rusinowska A. The degree ratio ranking method for directed graphs. Eur J Oper Res.

2020.

49. Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex net-

works in nature and society. Nature. 2005; 435(7043): 814–818. https://doi.org/10.1038/nature03607

PMID: 15944704

50. Garman MB, Klass MJ. On the estimation of security price volatilities from historical data. J Bus. 1980;

53(1): 67–78. https://doi.org/10.1086/296072

51. Tamakoshi G, Hamori S. An asymmetric dynamic conditional correlation analysis of linkages of Euro-

pean financial institutions during the Greek sovereign debt crisis. Eur J Financ. 2013; 19(9-10): 939–

950. https://doi.org/10.1080/1351847X.2012.712921

52. Zheng Z, Gui J, Qiao Z, Fu Y, Stanley HE, Li B. New dynamics between volume and volatility. Phys A

Stat Mech Its Appl. 2019; 525: 1343–1350. https://doi.org/10.1016/j.physa.2019.03.100

PLOS ONE Risk spillover networks in financial system based on information theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0252601 June 18, 2021 20 / 20

https://doi.org/10.1142/S0218127412502227
https://doi.org/10.1142/S0218127412502227
https://doi.org/10.1007/s10614-015-9491-x
https://doi.org/10.1007/s10614-015-9491-x
https://doi.org/10.3390/e22070773
https://doi.org/10.3390/jrfm8020266
https://doi.org/10.1016/j.physa.2017.04.046
https://doi.org/10.1103/PhysRevE.87.062918
https://doi.org/10.1103/PhysRevE.76.056117
http://www.ncbi.nlm.nih.gov/pubmed/18233728
https://doi.org/10.1103/PhysRevE.82.016207
http://www.ncbi.nlm.nih.gov/pubmed/20866707
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1038/nature03607
http://www.ncbi.nlm.nih.gov/pubmed/15944704
https://doi.org/10.1086/296072
https://doi.org/10.1080/1351847X.2012.712921
https://doi.org/10.1016/j.physa.2019.03.100
https://doi.org/10.1371/journal.pone.0252601

