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Abstract

This paper contributes to the literature on topology identification (TI) in distribution networks

and, in particular, on change detection in switching devices’ status. The lack of measure-

ments in distribution networks compared to transmission networks is a notable challenge. In

this paper, we propose an approach to topology identification (TI) of distribution systems

based on supervised machine learning (SML) algorithms. This methodology is capable of

analyzing the feeder’s voltage profile without requiring the utilization of sensors or any other

extraneous measurement device. We show that machine learning algorithms can track the

voltage profile’s behavior in each feeder, detect the status of switching devices, identify the

distribution system’s typologies, reveal the kind of loads connected or disconnected in the

system, and estimate their values. Results are demonstrated under the implementation of

the ANSI case study.

1 Introduction

Traditional planning and design of distribution networks and power distribution grids make

use of the so-called "fit-and-forget" strategy [1], whereby networks are minimally monitored,

and activation and sensing are insignificantly applied. With the increase in the demand for

electricity and the number of end-use users, however, the operation and control of power

grids have become more and more complex and challenging. Primary among these challenges

are the scantness of the communication infrastructure to provide measurements or dispatch

real-time commands; the large-scale permeability of the micro-generators from the fluctuating

energy resources such as penetration of wind turbine; the local over-voltage and power-line

congestions problems [2], in distributed power generation, in particular within the strongly

radial, resistive, low-voltage networks; and the connection of dispatchable loads to the power

distribution network, concerning, for example, the problem of plugging in the smart buildings

as well as electric vehicles. Modern power distribution grids would experience serious conges-

tion problems in case of non-enforcement of appropriate scheduling and coordination proto-

cols [3,4]. In response to these challenges and issues in the power distribution networks and
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the need for deeper integration, information, and control technologies, the emphasis has

shifted away from the conventional approach and moved toward applying novel ideas and

paradigms.

Recently, a large amount of research has been devoted to developing and engineering solu-

tions to such challenges without interrupting the grid reliability and efficiency. Most of these

studies consider the question of topology identification (TI) of the power distribution grid a

necessary preliminary issue to be dealt with [5,6]. Several methods have been suggested for

topology identification (TI) of the power system, including the rule method [7–9], the artificial

neural network method [10], the minimum information loss method [11], the normalized

Lagrange multiplier method [12], the transfer power flow approach [13,14], and the residual

error method [15], among others. However, these techniques may not be immediately utilized

for topology identification (TI) of the distribution system due to the absence of real-time mea-

surement in the distribution system. Other techniques, such as the voltage estimation method

suggested by [16], fail in the distribution grid with limited sensor data or partially frequent

topological modifications [17–20]. A MIQP-based topology identification (TI) method which

shows good performance under limited real-time measurement as well as pseudo-measure-

ments data has been put forward by [21,22], based on [23,24], where topology identification

(TI) is viewed as a basis for the analysis and calculation of the distribution network such as the

state estimation, fault location, network reconfiguration, and power flow calculation [21,22]. A

data-driven strategy has been applied to topology identification for distribution networks with

low-voltages (LVs), including the load phase connectivity from the energy measurement time

series. This strategy applies Principal Component Analysis (PCA) and derives its graph-theo-

retic interpretation for inferring a steady-state network topology from the smart-meter energy

measurements [25]. A topology identification technique based on the multi-agent for outage

area in the distribution network has been proposed [26]. According to this method, the distri-

bution of topology information is performed in all intelligent terminals, and therefore, termi-

nals may exchange information by the peer-to-peer network. In case of faults, the master-

intelligent terminal in the outage area achieves the topology-units information, which has

been stored in other terminals and produces a topology structure of the outage area through

the connection of each of them. A procedure of topology identification (TI) has been recog-

nized by means of three types of agents (external topology-calling agents, topology-generation

agents, internal topology publishing-agents), resulting in an outage area topology that may be

effectively and rapidly produced by their interaction [26]. The topology error identification of

the distribution network has also been the subject of investigations [27,28]. However, topology

error identification based on the state estimation outputs requires the state estimation that

enhances the computation and time period. Moreover, in a power distribution network, the

network topology information would be required to have effective operations. Hence, the net-

work connectivity information is not frequently provided at low-voltage levels because of the

un-informed modifications, which occur from time to time. It is also well-known that some

techniques are suitable for distribution grids based upon selective assumptions. For instance,

[29–31] assume the availability of each switch location and seek a proper combination. On the

other hand, state estimation-based procedures [32,33] and power flow-based techniques [34]

assume admittance matrix availability as well as infrequent topology changes. However, these

hypotheses are not fit in the newly re-configured and added distribution network, as knowl-

edge of the circuit breakers or admittance matrix information cannot be available.

The topology identification (TI) problem has been regarded as one of the unknown param-

eter identification problems, which shows the need for studying the parameter identifiability

problem for the network systems. From this perspective, [35] has devised a nonlinear adaptive

observer with global convergence for jointly estimating the states as well as the uncertain
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constant parameters, while [36], following [35], has presented an adaptive observer for a class

of nonlinear systems with a general nonlinear parameterization under the assumption of

boundedness of the state and unknown parameter of the system.

This paper complements the extant literature by approaching the grid topology’s identifica-

tion issue via machine learning (ML) algorithms. The rest of the paper is organized as follows.

In Section 2, a brief review of ML algorithms is discussed. In Section 3, we present and discuss

the main results. Finally, Section 5 summarizes our conclusions.

2 Materials and methods

2.1 Machine learning

Machine learning (ML) can be described as the process through which a machine (i.e., a com-

puter) can learn to perform a task with new data or configurations without the need for re-pro-

gramming [37–39]. The technique is tailored to uncover structure in complex data and

efficiently describe it with minimal parameters [37]. The concept of ML originates from the

recognition of the pattern and computational learning theory in the artificial intelligence field

[40]. Algorithms developed with ML methods are expected to provide learning to perform a

task concerning future data that is not present to the algorithm during the training process

[41].

2.2 Algorithms grouped by learning style

There are different kinds of algorithms or techniques that can model a mathematical or statis-

tical problem depending on the interaction with experiences or environments, or in general,

what is called the input data. In other words, depending on the task and purpose of the prob-

lem, we may categorize ML algorithms into different classes. A general typology of ML algo-

rithms based upon the learning styles include, among others, the following [42]: a) supervised

machine learning (SML) algorithms; b) unsupervised machine learning (UML) algorithms; c)

semi-supervised machine learning (S-SML) algorithms; d) reinforcement machine learning

(RML) algorithms. In SML, the algorithmic program is "trained" on a pre-defined set of “train-

ing examples,” which then facilitate its ability to reach an accurate conclusion when given new

data. In contrast, in UML, the program is given data and must find patterns and relationships

therein. The S-SML approach takes advantages of both supervised and unsupervised

approaches by the ability to work on labeled and unlabeled datasets. Finally, in an RML setting,

which is modeled on reinforcement psychology, an agent repeatedly interacts with the envi-

ronment: at each time step, the agent (a) observes a state of the environment; (b) chooses an

action based on its policy—a mapping from the observed states to the actions to be taken; and

(c) receives a reward and observes next state. This process continues until a terminal state is

reached. As our main interest in this paper lies in the SML algorithms’ context, we first briefly

introduce the basic concepts of this class of ML algorithms.

2.3 Supervised learning

The supervised case assumes prior knowledge of the underlying phases of the system and, as

such, supervised approaches rule out the possibility of learning unknown phases. Contrary to

the supervised case, unsupervised methods learn the structure from the data itself without the

need for prior labeling [37–38]. In the supervised learning approach, certain inputs and a

group of labeled outputs (targets) are provided as well as a certain output in the training pro-

cess. The algorithm then uses machine inference to develop a function capable of emulating

the process and mapping the new input data to the predicted output. In supervised learning,
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the input data are called the training data with a given label or real outputs like spam or not-

spam or a stock price at a time. In the training process, a model is prepared wherein anticipa-

tions are necessary, and it is corrected in case of the wrong prediction. Therefore, the training

procedure proceeds until the model obtains the proper precision level on the training data.

Classification and regression problems are two important examples of supervised learning

[42].

The classification problem aims to categorize existing samples or data into a different kind

of class. In this group, the existing target value or output samples(label) are discrete or categor-

ical data, and the modeled machine is called a classifier. At first, in such a problem, by using

inputs and their label outputs(targets), a trained machine model is provided, and then the

machine predicts new data into a different class. In a regression problem, the target value or

existing label is a continuous variable, and the modeled machine is called a predictor, thus for

the input variable, the machine predicts their actual target value [42]. We provide the algo-

rithm with a certain input, a certain output, and a group of labeled training data in supervised

learning. The algorithm then uses machine inference to develop a function capable of emu-

lating the process and mapping the new data. In other words, supervised learning algorithms

aim to model the association of target prediction output with input characteristics to enable us

to predict output values for novel data according to the mentioned associations those relation-

ships that it has learned from earlier datasets. Examples of supervised machine learning algo-

rithms include: 1) K-Nearest Neighbors (KNN); 2) Support Vector Machine (SVM); 3)

Decision Trees (DT); and 4) Ensemble Learning (EL).

2.3.1 K-Nearest neighbors (KNN). It is well known that the K-Nearest Neighbors algo-

rithm (KNN) for machine learning (ML) has been introduced as the non-parametric approach

employed to classify and regress areas [43]. Within these two areas, the input data includes k-

closest training samples in the feature space. Therefore, output based on if the KNN is utilized

to classify or regress is categorized into two parts as below:

1. In k-NN classification, the output is a class membership. An object is classified by a plural-

ity vote of its neighbors, with the object being assigned to the class most common among its

k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply

assigned to that single nearest neighbor’s class.

2. In k-NN regression, the output is the property value for the object. This value is the average

of the values of k nearest neighbors.

Moreover, according to the KNN classification, the output is a class membership. An object

is categorized by a plurality vote of its neighbors so that the object has been allocated to the

class that is the commonest among its k-nearest neighbors (k represents a positive integer, usu-

ally small). Therefore, if k = 1, then the object is readily allocated to the class of that single-

nearest neighbor. Besides, KNN has been presented as one of the types of sample-based learn-

ing or lazy learning wherein the function is merely estimated locally, and each computation

would be deferred till classification" [43].

2.3.2 Support vector machine (SVM). Vapnik and Cortes (1995) introduced SVM theory

in which a hyperplane or a series of hyperplanes is constructed and utilized for both classifica-

tion and regression [44,45]. By considering the labeled training set S = (xl, yl); l = 1;. . .; L of

size L, and yl 2 1,-1. The SVM can be obtained by solving:

min
w;b;x

1

2
wTwþ

XL

i¼l
xl ð1Þ
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subject to

yiðw
T�ðxlÞ þ bÞ � 1 � xl ð2Þ

xl � 0; l ¼ 1; . . . ; L ð3Þ

where ϕ(xl) represents a nonlinear transformation mapping xl in a high dimensional space that

is called kernel function. The slack variable ξl represents nonlinearly separable training sets,

and C denotes the parameter of a tunable positive regularization. To achieve a distributed

SVM, (1) can be rewritten as follows:

min
wi ;bi ;xi

1

2

XN

i¼1
wT

i wi þ C
XN

i¼1

XL

l¼l
xil ð4Þ

subject to

yilðw
T
i �ðxilÞ þ biÞ � 1 � xil ð5Þ

xil � 0; i ¼ 1; . . . ;N; l ¼ 1; . . . ; L ð6Þ

where N denotes the number of groups working together to train the SVM and wi represents

the parameter of the local optimization for each group. By introducing a global variable z, the

(4) can be reformulated as:

min
z;wi ;bi ;xi

1

2

XN

i¼1
zTzi þ C

XN

i¼1

XL

l¼l
xil ð7Þ

yilðw
T
i �ðxilÞ þ biÞ � 1 � xil ð8Þ

xil � 0; z ¼ wi ð9Þ

i ¼ 1; . . . ;N; l ¼ 1; . . . ; L ð10Þ

To solve (7) distributively, variables {z, wi} i = 1,. . ., N can be partitioned into two sets rep-

resented by {z} and {wi}, i = 1,. . . N, and the Alternating Direction Method of Multipliers

(ADMM) can be applied to solve the problem. Specifically, the scaled augmented Lagrangian

function can be expressed as follows:

l z;wi; xi; r;mif g ¼
1

2

XN

i¼1
zTzi þ C

XN

i¼1

XL

l¼l
xil þ

r

2
k wi � z þ mi k

2

2
ð11Þ

where ρ denotes the step size and μi represents the scaled dual variable. At each iteration k,

{wi},{z}and μi can be updated as follows:

wi kþ 1½ � ¼ arg min
wi ;bi ;xi

C
XL

i¼1
xil þ

r

2
k wi � z k½ � þ mi k½ � k

2

2
ð12Þ

yilðw
T
i �ðxilÞ þ biÞ � 1 � xil ð13Þ

xii � 0; l ¼ 1; . . . ; L: ð14Þ

Note that the process of updating the wi can be done locally in the ith group. Moreover, it

involves the fitting of a SVM to the local data using an offset in the quadratic regularization
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term. The vector {z} is expressed as:

ki kþ 1½ � ¼ argmin
z

1

2
zTz þ

r

2
k wi kþ 1½ � � z þ mi k½ � k

2

2
ð15Þ

which can be solved analytically as:

z ¼
Nr

1

r
þ Nr

�w kþ 1½ � þ �m k½ �ð Þ ð16Þ

in which �w ¼ 1

N

PN
i¼1

wi and �m ¼ 1

N

PN
i¼1

mi. Finally, the scaled dual variable μi can be updated

by:

mi½kþ 1� ¼ mi½k� þ wi½kþ 1� � z½kþ 1� ð17Þ

In constructing historical data, since the number of classes in topology samples depends on

the number of switches, so the number of classes can be more than two groups, therefore a

multi-class SVM is used [46,47], and for each nonlinear classifier, Gaussian kernel is applied in

which δ is a mutable parameter. The main factors affecting the performance of SVM comprise

kernel function and its parameters as well as the soft margin parameter C. The optimal Gauss-

ian kernel parameter and soft margin (C) can be used for improving the efficiency of nonlinear

SVM. Gaussian kernel, which has a single parameter (γ), is a typical choice for SVM [48]. The

common practice for finding the best values of C and γ is to conduct a grid search, i.e., repeat

the calculations with different C and γ combinations and determine the values yielding the

best accuracy through cross-validation [49]. In Step 1, historical data are prepared by the inde-

pendent system operator (ISO). In Step 2, the local and global optimization parameters are ini-

tialized. Step 3 comprises two parts. First, the local optimization parameter wi is obtained by

solving the optimization problem defined in (12) under constraints (13) and (14). Then, the

global optimization parameter z is optimized in (16), where �w and �m are obtained by in-net-

work processing through messages that were only exchanged among neighboring groups. Fol-

lowing the optimization solution and the achievement of convergence of wi by each group, the

local and global optimization parameters, i.e., wi and z, respectively, are returned in Step 4.

2.3.3 Decision Tree (DT). A Decision Tree (DT) is a predictive model where supervised

learning and non-parametric methods with a hierarchical structure are used to classify differ-

ent data types, and results are delivered in a flowchart with a tree-like structure. According to

the dependent variable type, this algorithm is divided into two categories: regression trees for

continuous variables and classification trees for discrete variables. In the DT algorithm, frag-

mentation of data is implemented using the features as a tree, and for better understanding, it

is written using if-then rules [50]. Depending on the training data, a feature for the data is

selected at each stage of this method, and the data set is decomposed into a further class group-

ing based on chosen features. This process continues until all the data in a category has a single

label.

2.3.4 Ensemble Learning (EL). Ensemble Learning (EL) methods represent a machine

learning approach in which multiple learning algorithms are used in a parallel fashion to

achieve more acceptable predictive functions in comparison to the situation that may be

obtainable from each constituent learning algorithm [51,52]. While in statistical mechanics, a

statistical ensemble is generally infinite, an ML ensemble contains a finite set of alternative

models. This, in turn, leads to a structure with higher flexibility than the individual alterna-

tives. Ensemble methods are meta-algorithms that combine several machine learning tech-

niques into one predictive model to decrease variance (bagging), bias (boosting), or

correlation (random subspace).
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2.3.5 Bagging algorithm. Bagging, also known as bootstrap aggregation, is a machine

learning ensemble meta-algorithm designed to improve machine learning algorithms’ stability

and accuracy in statistical regression and classification. Moreover, the algorithm can decrease

the variance and prevent overfitting. Leo Breiman (1994) proposed bagging to improve the

classification by combining classifications of randomly produced training sets. The bagging

method is modeled based on the instability of base learners, which can be utilized to modify

such unstable base learners’ predictive performance. The main idea is that, given a training set

S of size n and a learner L, which commonly is a decision tree, bagging creates m new training

sets Si with replacement. Then, the bagging algorithm applies L to each Si to build m models.

The final output of bagging is based on simple averaging [53].

Even though it is commonly used in combination with DT methods, bagging can be applied

with any kind of technique. In fact, bagging is a special case for the model averaging approach

[52].

2.3.6 Boosting algorithm. In ML, boosting is an ensemble meta-algorithm designed pri-

marily to reduce bias [54], and variance in supervised learning includes a family of ML algo-

rithms that convert weak learners into strong ones [55]. Boosting is based on the question first

posed by [56,57]: "Can a set of weak learners create a single strong learner?" A weak learner is

defined to be a classifier that is only slightly correlated with the proper classification (although

it can label examples better than random guessing). In contrast, a strong learner is a classifier

that is arbitrarily well-correlated with the true classification. While boosting is not algorithmi-

cally constrained, most boosting algorithms consist of learning weak classifiers concerning dis-

tribution and adding a final strong classifier. After the addition, the weak learners are

weighted in a way related to the weak learners’ accuracy, and the data weights are readjusted, a

process is known as “re-weighting.” Misclassified input data gain a higher weight while exam-

ples that are classified correctly lose weight. Thus, future weak learners focus more on the

examples than on previous misclassified weak learners.

2.3.7 Random subspace algorithm. In ML, the random subspace method, also called

attribute bagging or feature bagging, is an ensemble learning method that attempts to reduce

the correlation between estimators in an ensemble by training them on random samples of fea-

tures instead of the entire feature set. The random subspace method is similar to bagging,

except that the features are randomly sampled with the replacement for each learner. Infor-

mally, this prevents individual learners from over-focusing on features that appear highly pre-

dictive/descriptive in the training set but fail to be as predictive for points outside that set. For

this reason, random subspace algorithms are an attractive choice for problems where the num-

ber of features is much larger than the number of training points. The random subspace

method has been used with DT. When combined with "ordinary" bagging of decision trees,

the resulting models are called random forests. The method has also been applied to linear

classifiers, support vector machines, k-nearest neighbors, and other types of classifiers [58].

Fig 1 summarizes the main classification of SML.

2.4 Dataset

2.4.1 Description of the dataset used to test the method. We consider 7 switch devices

in simulation, implying 7 states for possible events, and correspondingly, 7 voltage curves in

the related time domain for 15 seconds (the simulation time duration). We set the voltage

changes per second as a first feature. Maximum and minimum of the instantaneous voltage

are considered as second and third features. Hence, the first column of Excel files in the sup-

plementary material describes when the event occurs. Voltage changes, its maximum, and

minimum are featured in the second, third, and fourth columns. Each excel file indicates one
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state of event or fault, including transient voltage and type of fault. The excel file is available at:

https://doi.org/10.6084/m9.figshare.14123018.v2.

2.4.2 Rationale for choosing a dataset. The power system analysis is generally done by

monitoring of current status and computing several distinct parameters. One of the most

important parameters in the power system is the transient voltage. As is well known, any

change in the network, such as line and generation outages, affects the network operation sta-

tus and its parameters, such as voltage in transient and steady-state mode. Thus, the tracking

of the status of the current power system requires the analysis of the transient voltage. To sim-

ulate the fault in the network, we used the switch, so that when a switch is disconnected, a line

or generation unit is disconnected from the network. This in turn implies that the analysis of

the power system where the fault occurred requires tracking the changes in the network tran-

sient voltage. The changes and faults that occurred in the network are exactly proportional to

the voltage changes, which means that the machine learning process can learn all the voltage

changes in all possible fault scenarios and, after the training process, can detect the type of

fault and the fault scenario that occurred.

2.4.3 The source of the data and how it was obtained. We simulated a real standard

power distribution system in ETAP software. To simulate the fault, we used 7 power switches,

Fig 1. Classification of SML algorithms. These methods are in a supervised paradigm.

https://doi.org/10.1371/journal.pone.0252436.g001
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and, consequently, any switch disconnecting is considered a network fault. We simulated the

fault in the network and recorded the transient voltage after the fault. For each fault, we

obtained a transient voltage from the power grid. Hence, the labels define the type of fault,

while the output is represented by the transient voltage. We recorded a series of transient volt-

ages for all possible faults until we could train the machine learning process using these tran-

sient voltages and types of faults.

3 Results and discussion

3.1 Tracking the switching devices

First, we analyze each switching device’s status, such as the circuit breaker and its impact on

the main feeder’s voltage profile. Fig 2 shows an ANSI case study as an example distribution

network, including the main bus as a utility and three sub-bus and several AC and DC sub-net-

work. In this case study, we consider seven switching devices such as, i.e., the circuit breaker,

which can be seen in red color in Fig 2. Thus, we apply 7-class supervised learning. We define

an event for each device separately and analyze the transient stability of the system in ETAP

Fig 2. An ANSI case study. This case study is considered a distribution network.

https://doi.org/10.1371/journal.pone.0252436.g002
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software. We assume all devices in t = 5 are opened, in t = ten are closed, and in t = 15 are

opened again separately. For some switching devices, voltage profiles in different buses were

analyzed. Figs 3–7 show the voltage profiles related to each switching event. According to

these graphs, each voltage profile characteristic at the switching time is more important than

the switching time since each circuit breaker or other switching devices may be switched sev-

eral times over the same period of time.

Moreover, the voltage profile related to each typical switching event displays intermittent

nature. According to each switching event’s voltage profile, we categorize them into seven clas-

ses to model a trainable machine. Therefore, our model categorizes events into 7 clusters since

we have seven switching devices, resulting in a trainable machine as a 7-class machine. Fig 3

indicates the voltage profile in Bus Sub2A when circuit breaker CB1 is switched. According to

Fig 2, after switching CB1, Bus A (Sub2A) is disconnected from the main bus, and only one

transformer goes out of the circuit. According to Fig 3, the voltage drop is like a pulse.

Figs 4 and 5 indicate the voltage profile in Bus Sub2B and Bus Sub3 when circuit breaker

CB3 and switch S2 are switched, respectively. According to Fig 2, after switching CB3, Bus 2

(Sub2B) is disconnected from Bus 3, and not only one transformer goes out of the circuit, but

also the switching of the DC source affects Bus 2B since the voltage profile in Bus 2B looks like

a parabola as Fig 4. Fig 5 shows a similar situation. Figs 6 and 7 show the voltage profile in

Bus3 when switching S3 and S1 are switched, respectively.

In summary, using the supervised paradigm, we can detect which circuit breaker or other

switching devices are switched, and we can identify which switch has been connected or dis-

connected. Fig 8 displays the topology identification (TI) process and its performance of the

two tasks: 1) detection of switch number and 2) detection of the state of switching.

Fig 3. Voltage profile related to switching Sub2A-CB1. This shows the voltage curve when circuit breaker CB1 is

switched.

https://doi.org/10.1371/journal.pone.0252436.g003
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Fig 4. Voltage profile related to switching Sub2B-CB3. This shows the voltage curve when circuit breaker CB3 is

switched.

https://doi.org/10.1371/journal.pone.0252436.g004

Fig 5. Voltage profile related to switching Sub3-S2. This shows the voltage curve when switch S2 is switched.

https://doi.org/10.1371/journal.pone.0252436.g005
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Fig 6. Voltage profile related to switching Sub3-S3. This shows the voltage curve when switch S3 is switched.

https://doi.org/10.1371/journal.pone.0252436.g006

Fig 7. Voltage profile related to switching Sub3-S1. This shows the voltage curve when switch S1 is switched.

https://doi.org/10.1371/journal.pone.0252436.g007
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Tables 1–3 show the KNN, SVM, and EL algorithms’ performance, respectively, in the test

process and after the training process. In the test, the process machine is evaluated by the sam-

ples which have not been observed before. The accuracy of the learning algorithm is com-

monly evaluated according to the following formula:

Accuracy in percentð Þ ¼
correct predicted samples

all samples

� �

� 100 ð18Þ

The more the machine detects the correct samples, the more accurate it will be. The results

clearly indicate that supervised algorithms can identify switches’ status and the system’s topol-

ogy with a significant robustness degree. According to Tables 1 and 2, all of the KNN and

SVM algorithms display a proper performance and can be viewed as a suitable algorithm for

topology identification with high accuracy and low time duration. According to Table 3, the

EL algorithms (bagging and random subspace KNN) also display a high performance. How-

ever, the accuracy metric for boosting and RUS boosted tree is not as good as expected.

Fig 8. Machine Learning (ML) process. The methodology of topology identification.

https://doi.org/10.1371/journal.pone.0252436.g008

Table 1. Percentage error of alternative KNN algorithms.

Method Accuracy Time (in seconds)

Fine KNN 98.2% 5s

Medium KNN 97.6% 4s

Cubic KNN 96.7% 9s

Coarse KNN 90.2% 10s

https://doi.org/10.1371/journal.pone.0252436.t001

Table 2. Percentage error of alternative SVM algorithms.

Method Accuracy Time (in seconds)

Linear SVM 100% 8s

Quadratic SVM 100% 10s

Cubic SVM 100% 9s

Gaussian SVM 100% 13s

https://doi.org/10.1371/journal.pone.0252436.t002
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Fig 9 shows the classification error of 10-fold cross-validation for EL with the KNN sub-

space method. As we see, by selecting the number of learners equal to 100, we have proper

accuracy in our model. According to Fig 9, the error rate is 5.5% in the test process, suggesting

that we can detect any switching event and identify the distribution network’s topologies with

a satisfactory degree of accuracy.

3.2 Tracking of the special load switch

It is possible that after any switching event, several loads are disconnected from the system at

the same time. In this section, we show that our approach is capable of detecting switching

events when only one load is connected to the switch. We assume several switches even though

only one type of special load is connected to these switches, e.g., after switching event, only

one of them is connected or disconnected to the feeder. We consider three different types of

loads, i.e., induction motor, static load, and electric vehicle. The main goal is to categorize the

voltage profile related to these three different types of loads. Figs 10–12 show voltage profiles

Table 3. Percentage error of alternative Ensemble algorithms.

Method Accuracy Time (in seconds)

Boosting 21% 10s

Bagging 95.8% 11s

Subspace KNN 94.5% 13s

RUS Boosted Tree 21% 15s

https://doi.org/10.1371/journal.pone.0252436.t003

Fig 9. Error classification for KNN random subspace method. This curve indicates the performance of the

algorithm.

https://doi.org/10.1371/journal.pone.0252436.g009
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related to these switching events. Fig 10 indicates the voltage profile when the event is on the

static load. In other words, when the switch for the static load is disconnected or connected

from the rest of the grid.

Fig 11 indicates the voltage profile when the event is on the induction motor, resulting in

being disconnected from the grid twice. Fig 12 shows the voltage curve, a parabola, indicating

that a DC source has been disconnected from the network. Table 4 shows the accuracy results.

We conclude that the proposed methodology can accurately detect the type of load connected

or disconnected to the distribution system. Fig 13 shows the percentage error of ensemble

learning with the KNN random subspace method. The model has a satisfactory topology iden-

tification (TI) performance by selecting the number of learners equal to 100. As one can

observe, the error is below 6 percent.

According to Fig 13, the test process presents an error rate of 5 percent. This result suggests

that we can detect any switching event on various loads and track the special load switch.

4 Conclusions

This paper proposes an approach to topology identification (TI) of the distribution system

based on machine learning algorithms. This methodology does not require any sensors and

measurement devices to analyze the feeder’s voltage profile. This stresses this point since

switching devices’ changes affect the feeder’s voltage profile in the distribution network. We

show that by tracking the voltage profile’s behavior in each feeder with an ML algorithm, we

can detect switching devices’ status and identify the distribution system’s typologies. It should

Fig 10. Voltage profile for switching the static load. This curve indicates the voltage curve when the static load is

disconnected from the system.

https://doi.org/10.1371/journal.pone.0252436.g010
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Fig 11. Voltage profile for switching the induction motor. This curve indicates the voltage curve when the induction

motor is disconnected from the system.

https://doi.org/10.1371/journal.pone.0252436.g011

Fig 12. Voltage profile for switching the electric vehicle. This curve indicates the voltage curve when the electric

vehicle is disconnected from the system.

https://doi.org/10.1371/journal.pone.0252436.g012
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be noted that the concept of voltage used in the paper is confined to transient voltage. That is,

the transient voltage generated by an event in the network is completely different the one gen-

erated by another event. Alternatively, the voltage across the network is dependent upon dif-

ferent events. The transient voltage is similar to a label for a specific event, which detects

different switching modes by examining the transient voltage and in final analysis diagnosing

the network topology. However, in the case where the voltage is in steady-state mode, the iden-

tification from only the voltage curves cannot solve the non-radiative grid topology. We also

show that by tracking the status of switching devices, the ML approach can detect a high

degree of accuracy, which kind of load is connected or disconnected to the system.
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