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Abstract

Background

The aim of the study was to visualize the global spread of the COVID-19 pandemic over the

first 90 days, through the principal component analysis approach of dimensionality

reduction.

Methods

This study used data from the Global COVID-19 Index provided by PEMANDU Associates.

The sample, representing 161 countries, comprised the number of confirmed cases, deaths,

stringency indices, population density and GNI per capita (USD). Correlation matrices were

computed to reveal the association between the variables at three time points: day-30, day-

60 and day-90. Three separate principal component analyses were computed for similar

time points, and several standardized plots were produced.

Results

Confirmed cases and deaths due to COVID-19 showed positive but weak correlation with

stringency and GNI per capita. Through principal component analysis, the first two principal

components captured close to 70% of the variance of the data. The first component can be

viewed as the severity of the COVID-19 surge in countries, whereas the second component

largely corresponded to population density, followed by GNI per capita of countries. Multi-

variate visualization of the two dominating principal components provided a standardized

comparison of the situation in the161 countries, performed on day-30, day-60 and day-90

since the first confirmed cases in countries worldwide.

Conclusion

Visualization of the global spread of COVID-19 showed the unequal severity of the pan-

demic across continents and over time. Distinct patterns in clusters of countries, which sep-

arated many European countries from those in Africa, suggested a contrast in terms of

stringency measures and wealth of a country. The African continent appeared to fare better
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in terms of the COVID-19 pandemic and the burden of mortality in the first 90 days. A notice-

able worsening trend was observed in several countries in the same relative time frame of

the disease’s first 90 days, especially in the United States of America.

1. Introduction

A local outbreak of viral pneumonia of unknown cause in Wuhan, China was initially reported

to the WHO on 31 Dec 2019 [1]. Within a few weeks, the coronavirus (COVID-19) was dis-

covered in other continents and worldwide. This led to the WHO declaring the novel corona-

virus outbreak a public health emergency of international concern (PHEIC). Although deaths

due to the coronavirus were confined to China at that point of time, confirmed cases escalated

rapidly, especially in the European continent. By the middle of March 2020, Europe had more

reported cases and deaths than the rest of the world combined, except for China. With rising

levels of spread and severity, as well as inaction in many countries, WHO declared COVID-19

a pandemic on March 11 2020 [1].

The WHO has urgently called on all countries to take immediate action to contain the

alarming spread of the virus and minimize the impact on all sectors [1]. Particularly, stringent

nationwide measures were recommended to prevent the spread of the COVID-19 disease and

flatten the curve of new cases. Governments all over the world have heeded the call and taken

measures which include closure policies, restrictions in movement, and testing regimes. How-

ever, different levels of stringency were implemented in different countries. For instance, Sin-

gapore and South Korea have been more proactive and aggressive in tackling the pandemic

than others [2,3].

When examining the correlation between stringent measures and the incidence of

COVID-19 cases, the population density and wealth of a country are potential confounding

factors [4]. However, studies of the association between the spread of COVID-19 and popu-

lation density have not shown consistent findings. The spread of COVID-19 may not be

directly related to the density of a country [5], but in certain parts of the world such as in

India and Algeria, there exists a moderate to strong association between the two [6,7]. On

the other hand, the wealth of a country does play an important role in reducing the spread

of COVID-19, as it determines the bargaining power in attaining resources, such as per-

sonal protective equipment for health-care workers and ventilators for patients [8]. Yet,

there is evidence suggesting that the situation in poorer countries is better, as COVID-19

mortality rate is still highly concentrated in high-income countries [9].

In this context, there has been a strong interest in examining the rapid spread of the

COVID-19 pandemic [10,11], which has resulted in huge impact on human lives and the econ-

omy [12]. This study aims to employ a multivariate approach to visualize the global spread of

the COVID-19 pandemic, also seeking to understand how the disaster has spread since the

first confirmed cases in countries worldwide. We attempt to describe the global situation of

the proliferation of COVID-19 across time, by considering the cases and deaths caused by

COVID-19, the stringency measures taken by countries, and the possible confounding factors

that may work against these measures.

2. Methods

In this section, we describe the dataset of the study, and the principal component analysis tech-

nique as a suitable tool to achieve the objectives of this study.
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2.1 Dataset

We acquired the complete data from the Global COVID-19 Index (GCI) provided by

PEMANDU Associates [13]. The dataset consists of confirmed incidences and deaths due to

COVID-19 cases, and stringency indicators for the first 90 days, starting with the first con-

firmed cases reported for 161 countries (and special administrative regions). This dataset also

includes the data for population density and GNI per capita (USD). The list of countries can

be found in S1 Table.

The GCI engine extracted the daily number of COVID-19 cases and deaths from the

COVID-19 Data Repository provided by the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University. Population density and GNI per capita (USD) for each

country were obtained from the World Bank and were updated as of July 2020. Stringency

indicators for the first 90 days were obtained from the University of Oxford. The Oxford

COVID-19 Government Response Tracker (OxCGRT) systematically collects information on

the stringency of government responses to the pandemic on 18 indicators such as school clo-

sures and travel restrictions [14]. Data from these indicators are aggregated into a set of four

common indices reporting a number between 1 and 100, which indicates the strictness of gov-

ernment policies.

2.2 Data analysis

Principal component analysis (PCA) is a robust multivariate technique for dimensionality

reduction [15,16]. Supposing that there are n observations with measurements on a set of p
variables, the PCA technique derives the principal components by finding a sequence of linear

combinations of the variables, X1,X2,. . .,Xp, that have maximal variance, and are mutually

uncorrelated [16]. The first principal component, Z1, is the direction in space along which pro-

jections have the largest variance. The second principal component, Z2, is the direction which

maximizes variance among all directions, and is orthogonal to the first, Z1. Algebraically, the

first two principal components are given by the following formulae:

Z1 ¼ �11X1 þ �21X2 þ � � � þ �p1Xp

Z2 ¼ �12X1 þ �22X2 þ � � � þ �p2Xp

This technique is based on the decomposition of the original data matrix into the scores

and loadings matrices [16]. The score values (e.g. for Z1: z11,. . .,zn1) classify the samples,

whereas the loading values (e.g. for ϕ1: ϕ11,. . .,ϕp1) classify the variables in terms of their sepa-

ration of the samples. Each of the loadings is referred to as the weight for each variable when

calculating the principal components, and the loading vector is unique up to a sign flip [16].

PCA uses the dependencies between variables to produce a low-dimensional representation

of a dataset, while preserving as much information as possible [15,16]. It also serves as a tool

for data visualization, as it retains trends and patterns, and transforms the data into fewer

dimensions. Trends and correlations which are “hidden” in the data can be visualized and

described in principal component space. More details about the principal component analysis

technique can be found elsewhere [15,16].

For each of the 161 countries, these variables were used in the following analyses: 1) number

of confirmed COVID-19 cases on day-30, day-60 and day-90; 2) number of deaths due to

COVID-19 cases on day-30, day-60 and day-90; 3) stringency indicator on day-30, day-60 and

day-90; 4) population density; and 5) GNI per capita (USD). Due to skewness in the data, the

data was shifted and log-transformed.
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We computed three correlation matrices on three time points: day-30, day-60 and day-

90. This was followed by three separate principal component analyses on similar time

points. The PCA technique was performed using the “prcomp” command of the R statisti-

cal software, after standardizing each variable to have mean zero and standard deviation of

one. Standardization involves rescaling the variables such that each will have the properties

of a standard normal distribution with a mean of zero and a standard deviation of one. Sev-

eral plots were produced from the PCA analysis using the “ggplot2” and “ggrepel” R pack-

ages [17].

3. Results

3.1 Correlation matrices

Correlation values are quite similar on all three different time points (Table 1). Confirmed

cases and deaths due to COVID-19 show strong positive correlation (~ 0.90) with each other.

Both confirmed cases and deaths variables are positively correlated with stringency and GNI

per capita, but the strength of the associations are rather weak (0.20–0.40).

3.2 Proportion of variance explained by principal components

On all three time points, PCA analysis produced somewhat similar proportions of variance

explainable by the five principal components (Table 2). The variance of the data contributed

by the first component is between 42–45%, and the variance contributed by the second com-

ponent is between 22–27%. Taken together, the first two components can explain around 68%

of the variance in the data. Of the remaining variance, the third component captures around

17%, the fourth around 14%, and the fifth around 2%.

Table 1. Correlation matrix.

Day-30

Pop.Den GNI Con.30 Dth.30 Str.30

Pop.Den (Population density) 1.000 0.168 0.038 0.021 -0.132

GNI (GNI per capita) 0.168 1.000 0.329 0.214 -0.198

Con.30 (Confirmed cases day 30) 0.038 0.329 1.000 0.881 0.239

Dth.30 (Deaths day 30) 0.021 0.214 0.881 1.000 0.256

Str.30 (Stringency day 30) -0.132 -0.198 0.239 0.256 1.000

Day-60

Pop.Den GNI Con.60 Dth.60 Str.60

Pop.Den (Population density) 1.000 0.168 0.032 0.012 -0.034

GNI (GNI per capita) 0.168 1.000 0.347 0.347 0.067

Con.60 (Confirmed cases day 60) 0.032 0.347 1.000 0.914 0.258

Dth.60 (Deaths day 60) 0.012 0.347 0.914 1.000 0.247

Str.60 (Stringency day 60) -0.034 0.067 0.258 0.247 1.000

Day-90

Pop.Den GNI Con.90 Dth.90 Str.90

Pop.Den (Population density) 1.000 0.168 0.029 -0.002 -0.056

GNI (GNI per capita) 0.168 1.000 0.279 0.316 0.011

Con.90 (Confirmed cases day 90) 0.029 0.279 1.000 0.920 0.335

Dth.90 (Deaths day 90) -0.002 0.316 0.920 1.000 0.272

Str.90 (Stringency day 90) -0.056 0.011 0.335 0.272 1.000

https://doi.org/10.1371/journal.pone.0252273.t001
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3.3 Principal component loading vectors

There appear to be similar patterns in the first loadings on all three time points (Table 3). The

first loading vector places large, positive, and approximately equal weights on confirmed cases

and deaths. The weights for stringency and GNI per capita are also positive but relatively

smaller. Hence, this first component seems to correspond more towards an indication of the

level of severity of the COVID-19 surge in the country. Countries with large positive scores on

the first component would indicate very serious COVID-19 situations at country level.

As for the second loading vector, population density and GNI per capita have positive pro-

jections whereas stringency has negative projections. The weight for stringency, on day-30

appears to be the largest among these three variables, indicating that countries with large nega-

tive scores on the second component had more stringent measures implemented. Results on

day-60 and day-90 however, show that the weight for population density is the largest. Hence,

the second component at later time points appear to be largely driven by the population den-

sity of the country. Countries with large positive scores on the second component would most

notably indicate higher population density, followed by GNI per capita.

The third loading vector on day-30 also has a different loading pattern as compared to later

time points. Results on day-30 indicate that the third component is largely driven by popula-

tion density, whereas on day-60 and day-90, the component corresponds more towards

Table 2. Proportion of variance explained from PCA analysis.

Proportion of Variance PC1 PC2 PC3 PC4 PC5

PCA Day-30 0.42 0.27 0.17 0.12 0.02

PCA Day-60 0.45 0.22 0.17 0.14 0.02

PCA Day-90 0.44 0.23 0.17 0.14 0.02

https://doi.org/10.1371/journal.pone.0252273.t002

Table 3. Principal component loading vectors from PCA analysis.

Day-30

PC1 PC2 PC3 PC4 PC5

Pop.Den 0.051 0.530 0.846 -0.032 -0.003

GNI 0.291 0.580 -0.356 0.663 0.107

Con.30 0.662 -0.004 -0.047 -0.195 -0.722

Dth.30 0.647 -0.074 -0.003 -0.331 0.683

Str.30 0.237 -0.614 0.394 0.641 0.021

Day-60

PC1 PC2 PC3 PC4 PC5

Pop.Den 0.066 0.796 0.461 0.387 -0.016

GNI 0.375 0.441 -0.142 -0.803 0.003

Con.60 0.626 -0.082 -0.155 0.277 0.708

Dth.60 0.624 -0.094 -0.178 0.269 -0.706

Str.60 0.274 -0.396 0.843 -0.239 -0.010

Day-90

PC1 PC2 PC3 PC4 PC5

Pop.Den 0.043 0.720 0.637 0.269 -0.033

GNI 0.317 0.541 -0.334 -0.703 0.033

Con.90 0.634 -0.065 -0.057 0.296 0.709

Dth.90 0.630 -0.042 -0.155 0.292 -0.702

Str.90 0.315 -0.428 0.674 -0.510 -0.053

https://doi.org/10.1371/journal.pone.0252273.t003
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stringency measures. On the contrary, the fourth and fifth loading vectors are similar on all

three time points. The fourth component appears to be driven more by the GNI per capita of

the country. Lastly, the fifth loading vector places large and approximately equal weights on

confirmed cases and deaths, but both variables have opposing directions.

3.4 Principal component score vectors

We can examine differences between the countries on the three different time points via the

two principal component score vectors as shown in Figs 1–3. These low-dimensional represen-

tations preserve an adequate amount of information, as the first two components capture close

to 70% of the variance of the data [16]. The International Organization for Standardization

(ISO) codes for countries are displayed as coloured text and represent the scores for the first

two principal components. Country coordinates in the plots can be found in S2 Table.

Overall, most countries appear close to the origin (0,0), indicating somewhat moderate lev-

els of severity in the COVID-19 pandemic (Fig 1A and 1B). Countries such as Italy, Spain,

China and Turkey have large positive scores on the first component and appear at the far right

of the plot. This indicates that these countries were experiencing a highly severe COVID-19

surge at that point of time. On the other hand, countries with large negative scores such as the

United States of America and Burundi were in a less severe COVID-19 situation. Most

Fig 1. PCA plot (Day 30).

https://doi.org/10.1371/journal.pone.0252273.g001

Fig 2. PCA plot (Day 60).

https://doi.org/10.1371/journal.pone.0252273.g002
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countries from the African continent appear to cluster below the origin (0,0) of the plot, indi-

cating perhaps more stringent government response to the pandemic, lower GNI per capita as

well as population density.

Large positive scores for Italy and Spain on the first principal component indicate that the

situation had not improved for both countries on day-60 (Fig 2A and 2B). Moreover, there

appears to be a growing cluster of countries from the European continent at the far right of the

plot, which includes France, United Kingdom, Belgium, Germany, Switzerland and the Neth-

erlands. It is also notable that more countries from the other continents have now appear

towards the right side of the origin (0,0), suggesting a surge in severity since day-30 of the

COVID-19 pandemic. These countries include the United States of America, Australia and

Malaysia. Conversely, Macau (China) and Singapore appear at the top left quadrant of the

plot, indicating higher population density and a less severe COVID-19 situation.

Similar cluster of countries can be seen on day-90 of the pandemic (Fig 3A and 3B). Most

countries from the African continent appear towards the left side of the origin (0,0), whereas

the majority from the European continent are towards the right side. Though, the United

States of America has emerged as the new epicentre of the COVID-19 pandemic.

4. Discussion

The availability of a consolidated, comprehensive dataset mapped on a day-by-day basis has

allowed us to track the world-wide spread of COVID-19 from the first human case to have

been determined (with for the moment general accord lent to this) right through to day-90 of

its evolution. In so doing, the intention has been to seek emergent patterns, “hidden” within

several influencing factors. Our study attempts to visualize the surge of the COVID-19 pan-

demic through the principal component analysis approach of dimensionality reduction, and

provides snapshots on three different time points of the pandemic. Our findings reveal rela-

tionships between countries, continents, and the influencing factors.

Compared with previous studies, our findings indicate the unequal severity of the spread of

COVID-19 in different countries [10,11]. In addition, our visualization of the global spread of

COVID-19 shows the unequal severity of the pandemic across continents and over time. Find-

ings reveal rather distinct patterns in clusters of countries, separating many European coun-

tries from those in Africa. Overall, the African continent appears to fare better in terms of the

COVID-19 pandemic and the burden of mortality over the first 90 days, possibly due to the

relatively less equipped health, track and trace infrastructure [18]. However, the opposite can

Fig 3. PCA plot (Day 90).

https://doi.org/10.1371/journal.pone.0252273.g003
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be seen among countries from Europe, particularly for a select few, such as Italy, Spain and

France. These findings appear to corroborate with the timeline of WHO’s response to

COVID-19 [1]. Although the first COVID-19 outbreak occurred in China, Italy has quickly

overtaken China in infections and deaths [19]. As the COVID-19 pandemic surges, its heavy

toll remained concentrated in Europe [9].

Consistent with ideas of others, our multivariate analysis indicate an inverse association

between stringent nationwide measures, and the country’s population density and GNI per

capita [4]. Our findings further suggest a delineation of countries in terms of these factors. A

contrast can be seen, especially between many countries from the African and European conti-

nents, indicating that developed and wealthier countries are more severely affected by the pan-

demic as compared to their poorer and less developed counterparts [9]. This observed contrast

is likely attributed to higher population density and international human mobility, which has

been facilitated by globalization among European countries [7,20–22]. Taken collectively,

these reasons may have propelled the spread of the COVID-19 pandemic in the continent.

On the contrary, the COVID-19 pandemic has been less severe in Africa [9,23]. A plausible

reason for the relatively low mortality burden in Africa is that most African governments have

adopted quick and strict measures to mitigate the spread of COVID-19. Moreover, there has

been substantial public support despite these strict public health and social measures [23].

Other potential reasons for the less severe COVID-19 surge in Africa are likely due to the gen-

erally younger age demographics in Africa [9], and the relatively warmer climate [21,23].

Overall, the other continents do not appear to have fared too badly. One contributing rea-

son may be that several of these countries have adequate capacities and mechanisms for emer-

gency response, as guided by the Asia Pacific Strategy for Emerging Diseases and Public

Health Emergencies (APSED) [24]. As evidence has shown among countries such as Singapore

and South Korea [3,25], rapid detection together with vigorous contact tracing are effective in

mitigating the spread of COVID-19 disease. Though, a slight contrast can be seen in other

countries from the similar region such as Indonesia and India [26]. The cause may be due to

widespread poverty in these countries, and insufficient testing and health-care infrastructures.

Although COVID-19 was first identified in Wuhan, China, the Chinese government’s strict

contact tracing and lockdown measures have effectively mitigated the spread of the pandemic

[27,28]. Conversely, the outbreak in the United States has been relentless since its first con-

firmed COVID-19 case. As was reported, the COVID-19 pandemic had spread to all 50 states

by the middle of March in 2020, and there were more than 5,000 COVID-19 associated deaths

by early April 2020 [29]. Fuelled by widespread community transmission, the COVID-19 pan-

demic has surged exponentially in the United States.

There are limitations in this study. Not all countries have been included in the multivariate

analysis. This is due to reasons such as incomplete data on stringency indicators for the first 90

days, and statistical indicators on population density and GNI per capita (USD) as provided by

the World Bank are not the latest as of July 2020 for several of these countries.

It is also worth noting that the OxCGRT tracks the policy measures implemented by the

various governments around the world [14]. This stringency indicator does not reveal the pub-

lic compliance and enforcement capabilities, which can be made more complex based on the

governance structures and also the available infrastructure. Governments may implement

countermeasures to contain the spread of the COVID-19 disease, but they are not necessarily

able to sufficiently track compliance to these measures. For instance, strict measures have not

effectively mitigated the spread of the disease in countries such as India and Bangladesh [30].

Moreover, the effectiveness of these measures also depends on public and private sector com-

pliance and cooperation to reduce community transmission [24,30]. All in all, stricter
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governance and immense political will are required to rapidly implement aggressive counter-

measures to mitigate widespread community transmission [31].

For future research, there is merit in looking into further granularity, not least within large

countries, including those which have independent governance mechanisms in different states.

That apart, incorporating variables denoting proportions of the older generation may also

reveal interesting findings. Thus far, numerous studies have been done to model the transmis-

sion of COVID-19 in various parts of the world [32–34], as the pandemic continues to wreak

havoc on human lives. Future research may build upon our findings through the extraction of

principal components to be applied in machine learning models, for making predictions of the

spread of COVID-19.

5. Conclusion

This study utilises principal component analysis, an unsupervised learning technique, in order

to provide a visual representation of relationships between countries and several influencing

factors. The objective of this study is not to provide conclusive results. Instead, given a multi-

variate combination of factors, we have produced standardized visual comparisons of 161

countries, and improved on the interpretability of the global spread of the COVID-19 pan-

demic over the first 90 days.

The COVID-19 outbreak has been a pandemic of historic proportions. At the time of the

writing of this paper, the pandemic continues to be a threat to humanity in its entirety. The

devastating impact on lives, livelihoods and social disruption felt all over the world will forever

etch the COVID-19 pandemic into the annals of history. The global community should draw

upon lessons learnt from this COVID-19 pandemic, and be alert and prepared for the next

infectious disease outbreak—lest history repeats itself.
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