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Abstract

Objective

The objectives of this paper are to 1) construct a new network model compatible with distrib-

uted computation, 2) construct the full optimal power flow (OPF) in a distributed fashion so

that an effective, non-inferior solution can be found, and 3) develop a scalable algorithm that

guarantees the convergence to a local minimum.

Existing challenges

Due to the nonconvexity of the problem, the search for a solution to OPF problems is not

scalable, which makes the OPF highly limited for the system operation of large-scale real-

world power grids—“the curse of dimensionality”. The recent attempts at distributed compu-

tation aim for a scalable and efficient algorithm by reducing the computational cost per itera-

tion in exchange of increased communication costs.

Motivation

A new network model allows for efficient computation without increasing communication

costs. With the network model, recent advancements in distributed computation make it

possible to develop an efficient and scalable algorithm suitable for large-scale OPF

optimizations.

Methods

We propose a new network model in which all nodes are directly connected to the center

node to keep the communication costs manageable. Based on the network model, we sug-

gest a nodal distributed algorithm and direct communication to all nodes through the center

node. We demonstrate that the suggested algorithm converges to a local minimum rather

than a point, satisfying the first optimality condition.

Results

The proposed algorithm identifies solutions to OPF problems in various IEEE model sys-

tems. The solutions are identical to those using a centrally optimized and heuristic

approach. The computation time at each node does not depend on the system size, and

Niter does not increase significantly with the system size.
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Conclusion

Our proposed network model is a star network for maintaining the shortest node-to-node

distances to allow a linear information exchange. The proposed algorithm guarantees the

convergence to a local minimum rather than a maximum or a saddle point, and it maintains

computational efficiency for a large-scale OPF, scalable algorithm.

Introduction

In modern societies, demand for electricity is expected to be satisfied continuously via control-

lable generation technologies. An event is a situation in which the demand is not fulfilled.

Ten-in-one, a widely used reliability criterion for events, means that an event should occur just

once in a 10-year span. To meet this standard, system operators schedule the generation port-

folio and the grid systems in advance. For example, a day-ahead unit commitment determines

the 24-hourly dispatches, along with unit commitment decisions, to meet varying hourly

demands. For each hour, the demand profiles are assumed to be constant, which defines the

process’s steady-state operation. In the absence of an unexpected disturbance, stochastic

hourly demand is the unique source of uncertainty in traditional power system operation.

Over the last decade or so, renewable energy resources and smart grid technologies have been

integrated into systems to improve energy efficiency and reduce greenhouse gas emissions.

This integration has introduced uncertainty into the operation of power systems, presenting a

new challenge. If high-precision forecasting could be introduced to estimate future energy

resources and control demand, existing operations’ tools would remain useful, assuming they

could be integrated into the expected effective demand (� demand–expected demand reduc-

tion–expected renewable energy resources). Unfortunately, even though the precision of fore-

casting tools has improved, the errors in their long-term forecasts, for a day ahead, for

example, are not yet sufficiently small for reliable operation. Frequent decisions are a potential

way to accommodate the uncertainty. For example, a day-ahead 24-hour unit commitment

(UC) decision is made once in a daily cycle. If the errors in 2-hour ahead forecasts are small

enough, then the UC decision with a forecast every 2 hours would still be a reliable tool for the

power system’s operation. The computational capability to support such decisions plays a key

role in this process.

Optimal power flow (OPF) is a backbone in the steady-state operation of power systems.

The characteristics of OPF are highly nonlinear and nonconvex. The computational complex-

ity associated with these characteristics makes power flow (PF) analysis a non-deterministic

polynomial-time (NP)-hard problem [1]. In most operational practices, a linear approximation

of OPF, namely, direct current (DC) OPF, is pursued. Although easy to solve, DC OPF does

not address voltage problems, losses, and the dispatch of reactive power generation. Due to

these issues, DC OPF may not be feasible. To address the problem correctly, it is ideal to aim

for a nonlinear and nonconvex OPF. In addition to the nonconvex nature of the full OPF,

uncertainties increase the number of variables in traditional, central decision-making pro-

cesses. Therefore, frequent but short-term decisions concerning large-scale power systems can

be challenging. With the recent advancements in hardware in multi-core machines, distrib-

uted computation becomes an attractive approach for enhancing computational efficiency. An

exemplary area in power system analysis concerns the use of distributed computation for OPF.

Motivated readers can find information related to distributed approaches to solving OPF prob-

lems [2, 3]. Within distributed computation, the alternating direction method of multipliers
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(ADMM) has gained popularity due to its straightforward implementation and its provable

convergence (if the original problem is convex). For a linear DC OPF, the ADMM approach

can result in successful convergence to a global solution [4–6]. A full OPF problem on a radial

network can be relaxed to a convex semidefinite programming (SDP) problem, and the relaxed

problem is exact if optimal power injections lie in a region where the voltage upper bounds do

not bind [7, 8]. Several studies have used the ADMM approach to solve OPF problems in a

radial network [9–11]. OPF problems usually involve the operation of mesh transmission sys-

tems, but an SDP solution for a mesh network may not be physically meaningful [2].

A nodal OPF would be the most intuitive approach to extending a central OPF in a distrib-

uted fashion. In the nodal OPF [12], the information exchange among the nearest neighbors

leads to high communication costs. The maximum node-to-node distance (also termed the

path length (PL) [13]) plays a key role in the communication costs. The convergence tends to

be very slow due to the contaminated information received from local decisions during com-

munications. To the best of our knowledge, there has been no report of the successful conver-

gence of this approach for any mesh networks.

The PL can be reduced when a clustering approach is undertaken for a mesh network via

the partitioning of a system into multiple subsystems [14–19]. Two adjacent subsystems share

some nodes and branches between the nodes; thus, the PL is small, keeping the communica-

tion costs manageable. The primary and the dual variables at the shared nodes and branches

are constrained equally. This approach can be efficient if the shared nodes adequately repre-

sent the other nodes in the same subsystem. Several studies have proposed an efficient algo-

rithm for partitioning a system so that the ADMM converges to a solution [16, 17, 19, 20]. In

contrast to a study by Sun, Phan, and Ghosh [12], the flow constraints can be integrated for

the lines of intra-subsystems. In two studies, Erseghe [14, 15] integrated the flow limits of the

lines of inter-subsystems by redefining the subsystems to overlap the lines. Guo, Hug, and

Tonguz [16] report that the inclusion of the limit still yields a solution. However, the approach

has several shortcomings that contribute to computational inefficiency: 1) the low quality of

the solution, 2) the need for a warm starting point for convergence, and 3) the communication

costs. In addition, the convergence behavior is not reported, so it is not possible to discuss the

computational efficiency. The solutions presented in several studies [14–17] are low-voltage,

inferior solutions due to increased losses. Engelmann et al. [18] added a significantly large

term regarding reactive power injections that affects the optimality conditions and, as a result,

the distributed problem is different from the original one. The necessity of a solution for the

nonconvex PF as a starting point increases the computational costs. Even though the PL

decreases in comparison to the nodal OPF in the study by Sun, Phan, and Ghosh [12], the

communication costs increase the computational costs due to the tradeoff discussed by Guo,

Hug, and Tonguz [16]. These shortcomings make the benefit of distributed computation ques-

tionable. The distributed SDP approach by Madani, Kalbat, and Lavaei [19] yields the global

(and therefore identical) solution to the central SDP approximation to the OPF problem

because the problem is convex, but the solution may not be physically feasible. In addition to

the computational inefficiency, there is no approach that can theoretically yield an optimal bal-

ance between the computational cost for one subsystem and the communication costs of the

subsystems. Another study by Guo, Hug, and Tonguz [20] proposes a heuristic approach for

selecting subsystems, but it does not yield a unique choice because its initialization is based on

the local solution for the nonconvex OPF. In several studies [14, 17, 18, 20], a positive correla-

tion was observed between the system size and the number of nodes in the largest subsystems

(see Fig 1). The PL depends linearly on the number of subsystems n, which depends inversely

on the size of the largest subsystem (Nsub), i.e., n� Nb/Nsub, where the equality holds when the

sizes of the subsystems are uniform. Fig 1 indicates a positive correlation between Nsub and Nb.
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The dotted line indicates that the best linear fit for the relationship is Nsub/ Nb0.88. If the opti-

mization problem is solved by SDP, the computation time is found in W N3
sub

� �
[21] that yields a

computation time that is proportional to ϑ(Nb2.64). In addition, the approaches require signifi-

cant communication costs as well. Therefore, the overall computation cost is much higher

than that of the central optimization. In addition to the computational efficiency, it is not

guaranteed that the voltages at the boundary of each subsystem represent the voltages of other

nodes inside the same subsystem correctly. If they do not, convergences may not be observed

because the information exchange is limited to the boundary buses. The slow convergences

and/or non-monotonous convergences reported in previous studies [14–17] indicate the

insufficient representativeness of the boundary buses. A relatively fast convergence is reported

by Engelmann et al. [18] in exchange of per-step communication costs by sharing the sensitivi-

ties in addition to the local primal variables. The increase in the communication cost is found

in W
X

i
n2

i

� �
where ni is the dimension of the local gradient at the ith group. Although the

progress at each iteration is faster than those of other ADMM approaches, the communication

cost itself is much higher than the total computation costs of the nonconvex heuristic solvers

or of the SDP solvers. As a result, although these studies are worth exploring, we conclude that

the aggregation approach is not practical in terms of computational efficiency and the inferior

quality of the solutions for a scalable algorithm due to the tradeoff issue, nonconvexity, and

the modeling problem. A new network model for OPF is necessary for the distributed

computation.

The contributions of this paper are 1) a new network model that yields direct communica-

tion among nodes regardless of the system size, 2) a distributed, fast, and efficient algorithm to

Fig 1. The largest number of nodes in the partitioned subsystems of various power system test cases reported in

the literature [14, 17–19].

https://doi.org/10.1371/journal.pone.0251948.g001
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solve highly nonlinear and nonconvex OPF problems, and 3) a scalable algorithm that guaran-

tees convergence to a local minimizer. The paper is organized as follows: the theory section

proposes a new network model designed for distributed computation and presents an algo-

rithm to solve a full OPF; the next section describes the details of the implementation of the

proposed algorithm; the results and discussion present the results for the OPF and compari-

sons with those from other studies; the following section provides conclusions and research

directions for further improving the computational efficiency; and the appendices sketch the

proofs of the ranks of the matrices associated with OPF problems and of the convergence.

Theory

Proposed network model and algorithm

We propose a new network model for a nodal OPF to keep communication costs manageable

regardless of the system size. For this purpose, the desired properties of the model are as

follows:

1. The model must be compatible with PF studies for which Kirchhoff’s laws and voltage mag-

nitudes are well defined.

2. Each node is a short distance away from the rest of the nodes to minimize the communica-

tion costs.

3. The voltages at a node and those at the rest of the nodes are linearly related.

In the power flow studies, such as PF, OPF, state estimation, and probabilistic PF, voltages

are the variables. The constraints in the studies consist of the power flows and injections, as

well as the voltage magnitudes in terms of voltages. In the Cartesian coordinate system, the

power flows and injections are quadratic in voltage. For example, the power flow over the line

connecting Nodes i and j at i is f ii� j ¼ vii
�

i� j ¼ vTFi
i� jv, and the power injection at Node i is gi ¼

pi þ jqi ¼ vTSiv where the quantities sandwiched between voltages are in 2Nb-by-2Nb;

Fi
i� j≜ JeieTi� jY

�

brJ
H

where ei-j is a vector with the cardinality of 2Nl of which the element corre-

sponding to the flow over i-j is 1, and all other elements are zeros, Si≜ JeieTi Y
�

busJ
H

; and the

superscript H is the conjugate transpose. The matrices Fi
i� j and Si have two nonzero rows at i

and Nb+i rows due to J ei.

Claim 1: The matrices associated with power flows and power injections are all of rank 4.

Claim 2: The matrices associated with the squares of the voltage magnitudes have rank 2.

See S1 Appendix for the proof of the claims.

For a real-valued symmetric rank-4 matrix Mj, a real-valued eigen pair λ and u exist such

that Mj ¼
X4

k¼1

ljkujku
T
jk ¼

ffiffiffiffiffi
lj1

q
uj1

ffiffiffiffiffi
lj2

q
uj2

ffiffiffiffiffi
lj3

q
uj3

ffiffiffiffiffi
lj4

q
uj4

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fj

IIjF
T
j . Because Mj is a rank 4

matrix, the number of columns in Фj and the number of nonzero diagonal elements in IIj are

both 4. Here, the terms F�Sj
;FŜ j

;F�F jj� l
; and FF̂ jj� l

:F�Sj
refer to the matrices associated with the

real power injection at Node j �Sj≜Re Sj

� �
¼ F�Sj

II
�Sj
j F

T
�Sj

� �
;FŜ j

is associated with reactive

power injection at Node j �Sj≜ Im Sj

� �
¼ F�Sj

II
�Sj
j F

T
�Sj

� �
;F�F jj� l

is associated with real power flow

over the line j-l at the side of Node j �Fj
j� l ¼ F�F jj� l

II
�F jj� l
j� l F

T
�F jj� l

� �

; and FF̂ jj� l
is associated with the
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reactive power flow over the line j-l at the side of Node j �Fj
j� l ¼ F�F jj� l

II
�F jj� l
j� l F

T
�F jj� l

� �

. Note that

the eigenpairs are dependent solely on the system parameters (not on voltages). With the

eigenpairs, the quantities of interest in the PF are the real power injection at Node j pj, the reac-

tive power injection at Node j qj, the real power flow over a line j-l at Node j �f jj� l, the reactive

power flow over a line j-l at Node j �f jj� l, and the squared voltage’s magnitude at Node j Ej.
There are quadratic relationships among them:

pj ¼ �g j �
�dj

� �
¼ aTj II

�Sj
j aj; qj ¼ �g j �

�dj

� �
¼ b

T
j II

�Sj
j bj;

�f jj� l ¼ g
T
j� l;jII

�F jj� l
j� l;jgj� l;j;

�f jj� l ¼ d
T
j� l;jII

�F jj� l
j� l;jdj� l;j; Ej ¼ o

T
j ojð1Þ

Eq (1) expresses Kirchhoff’s laws and the voltage magnitudes. The nodal variables αj, βj, γj-l,
j, δj-l,j, and ωj are defined as follows: the αj are the voltages projected onto the eigenspaces

spanned by the real power injection, and the βj cover the reactive power injection, the γj-l,j
cover the real power flow over j-l at Node j, the δj-l,j cover the reactive power flow over j-l at

Node j, and the ωj cover the voltage magnitudes at the jth node in the same manner. Although

there is one each of αj, βj, and ωj at each node, the nlj of γj-l,j and δj-l,j are defined such that nlj
represents the number of branches that are directly connected to Node j (i.e., l = 1, 2, . . ., nlj).
It is worth noting that the nodal variables are linearly associated with the voltages (the defini-

tions of the nodal variables in Eq (1)), which indicates that PL = 1. Therefore, the nodal vari-

ables satisfy all the desired properties of the new network model.

Next, we let nlj be the number of lines connected to the jth node. Then, the dimensions of α,

β, γ, δ, and ω are 4, 4, 4nlj, 4nlj, and 2, respectively. Note that their dimensions do not depend

on the system size. Let μj be a nodal variable that integrates local generation variables as fol-

lows:

mj ¼ xTj xQT
j mend

h iT
; x8nljþ10

j ¼ aTj b
T
j g

T
jl d

T
jl o

T
j

h iT
; xQ2nljþ2ngj

j ¼ �f jj� l
� �T

�f jj� l
� �T

pTj qTj

� �T

where μend = 1. The generalized PF formulation is listed in previous work [22]. Note that the

cardinality of the variable is fixed—independent of the system size. Therefore, the new net-

work model yields: 1) a fixed number of variables, and 2) a PL of 1.

Proposed network model: A star grid with two channels

In the definition of the local variable xj, it is noticeable that there are three variable types: 1)

power injection and flow variables α, β, γ, and δ, 2) the voltage magnitude variable ω, and 3)

quadratic variables, Q xj comprising power flows �f jj� k; �f
j
j� k

� �
and power generations (gj). The

first two types of variables are linear, and the third type is quadratic, in terms of the voltages.

Once xj (α, β, γ, and δ) is determined, it is straightforward to find the power generations at

Node j with Eq (1) (i.e., xj defines the feasible region of μj). The voltage vp can be reconstructed

from α, β, γ, and δ. The communication path used to collect their values is termed the power

channel. Here, ω is directly associated with the voltage magnitudes, and the values are reported

through another communication path termed the voltage channel to update voltages vm.

Although the voltages vp and vm should be identical, conditions are relaxed so that they can be

different.

Fig 2 illustrates an example of the traditional network model (left) and the proposed net-

work model (right) for a modified 4-bus system that has branches connecting 1–2, 1–3, 1–4,

2–4, and 3–4. In the proposed model, all the nodes are connected to the center node (black dot

at the center) through the power channel (red lines) and the voltage channel (green lines), and
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all the nodes are of distance 1 from the center (PL = 1). The network is a complete bipartite

graph of order 2 with a maximum-diameter star network. All communications between the

variables take place in local nodes (α, β, γ, δ, and ω), and the center node is linear in terms of

voltages.

Nodal OPF with nodal variables and its convex relaxation

Even though we describe the OPF problem in this paper, the same framework is applied to any

other problem, including PF, OPF, state estimation, and probabilistic PF problems, because

they have unified formulas [22]. The central OPF formulation as a nonconvex, quadratically

constrained quadratic problem is given in Eq (3), its distributed optimization problem (nodal

OPF) at each node I is given in Eq (3A), and the nodal OPF is formulated in terms of an

ADMM algorithm in Eq (3B).

min
v;g

�gTdiag að Þ�g þ 2bT�g ; g ¼ �gT �gT½ �
T

ð2Þ

1: vT�Sjv � LT
g �g þ �dj ¼ 0; vT�Sjv � LT

g �g þ �dj ¼ 0 8j 2 B
2: vT�Fi

i� jv � �f ii� j ¼ 0; vT�Fi
i� jv � �f ii� j ¼ 0 8j 2 Br if g

3: f T eleTl þ elþNleTlþNl
� �

f � cap2
l � 0; f ¼ �f T �f T

h iT
8l 2 Br

s:t: 4: gT emeTm
� �

g � pmaxm þ pminm

� �
eTmg þ pmaxm � p

min
m � 0 8m 2 G

5: gT emþNgeTmþNg
� �

g � qmaxm þ qminm

� �
eTmþNgg þ qmaxm � q

min
m � 0

6: vT ejeTj þ ejþNbeTjþNb
� �

v � Emaxj � 0 8j 2 B

7: � vT ejeTj þ ejþNbeTjþNb
� �

vþ Eminj � 0 8j 2 B

Fig 2. A star and linear network for a modified IEEE-4 bus system. The traditional network model is shown on the left (A) and the proposed network model is

presented on the right (B). Red lines indicate the power channel, and green lines are the voltage channel.

https://doi.org/10.1371/journal.pone.0251948.g002

PLOS ONE Distributed OPF

PLOS ONE | https://doi.org/10.1371/journal.pone.0251948 June 18, 2021 7 / 27

https://doi.org/10.1371/journal.pone.0251948.g002
https://doi.org/10.1371/journal.pone.0251948


min
m

L mð Þ ¼ min
m

X

i

Li mið Þ ¼ min
m

X

i

mT
i M

i
obmi ð3AÞ

where Mi
ob ¼

0 0 8nliþ10ð Þ�2 0

0 diag ai 0ð Þ 0 bið Þ
T

0 0 bið Þ 0

2

6
6
4

3

7
7
5 and mi ¼

xi
xQi xið Þ

mi;end

2

6
4

3

7
5

s:t:

1: mT
i ReðII

Sinj
i Þmi þ

�di ¼ 0;mT
i ImðII

Sinj
i Þmi þ

�di ¼ 0; real and reactive power balance

2: mT
i ReðII

Fflow
i� l;i Þmi ¼ 0; mT

i ImðII
Fflow
i� l;i Þmi ¼ 0; j 2 Br if g; definitions for the real and the reactive power flows as shown in 2 ð2Þ

3: mT
i II

Fmaxflow
i� l;i mi � cap2

l � 0; thermal flow limit

4: mT
i Re IIGm;i
� �

mi þ pmaxm;i p
min
m;i � 0; mT

i Im IIGm;i
� �

mi þ qmaxm;i q
min
m;i � 0 real and reactive power generation limits

5: Emini � m
T
i II

Ei
i mi � Emaxi ; limits for the voltage magnitudes

6: AT
j mi � F

T
L vL � F

T
MvM ¼ 0$ xi � F

T
L vL � F

T
MvM ¼ 0; nodal variables in terms of the central voltages

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

where A is a block matrix to collect an element

xj ¼ AT
x
mj;m

nx�1
i ¼ a4�1

i ; b
4�1

i ; g
4nli�1

i� l;i ; d
4nli�1

i� l;i ; o2�1
i ; �f nli�1

i� l;i ; �f nli�1

i� l;i ; g2ngi�1

i ; m1�1
i;end

h i
;

aTi b
T
i

� �T
¼ AT

ab
mi; ðg

T
i� l;i d

T
i� l;iÞ ¼ AT

gdl
mi;

�f i� l;i �f i� l;i
� �T

¼ AT
flmi; gpTi gqTi mi;end

� �
¼ AT

gmmi;

oi ¼ AT
o
mi; Aj ¼ Aab Agd1

� � � AgdBr jf g

h i
;II

Fmaxflow
i� l;i ≜AflAT

fl ; II
Ei
i ≜AoAT

o
;

FL ¼ F�Si
F�Si

F�F ii� 1
F�F ii� 1

� � �F�F i
i� Br if g

F�F i
i� Br if g

h i
; FM ¼ ej þ ejþNb;

IISinjj ≜Aabblockdiagonal
IISjj

jII
�Sj
j

0

@

1

AAT
ab
� 1

2
Ag

0 0 1ngj

0 0 j1

1T j1T 0

2

6
4

3

7
5AT

g ;

IIFflowi� l;i ≜Agdl

II
�F ii� j
i� l;i 0

0 jII
�F ii� j
i� l;i

2

6
4

3

7
5AT

gdl
� 1

2
Afl

0 0 1

0 0 j1

1T j1T 0

2

6
4

3

7
5AT

fl ; and

IIGm;i≜Agm

1 0 � pavm;i
0 j � jqavm;i
� pavm;i � jq

av
m;i 0

2

6
6
4

3

7
7
5A

T
gm; pavm;i ¼ pmaxm;i þ pminm;i

� �
=2, and qavm;i ¼ qmaxm;i þ qminm;i

� �
=2.

min
xi2Xi

X

i

wi xi; y; zið Þ ¼ min
xi2Xi

X

i

fi xið Þ þ gi xi; y; zið Þ½ � ð3BÞ

where y ¼ vTL vTMð Þ
T
, fj xj
� �

≜ min
xi2Xi

X

i

xTi M
i
obxi,g xj; y; zj

� �
¼

rj
2
kxj � F

T
j yk

2
þ zTj xj � F

T
j y

� �
,

or equivalently g xj; y; zj
� �

¼
rj
2
kxj � F

T
j yþ zj=rjk

2
� 1

2rj
kzjk

2
; and Xj is the column space of

Фj. at Node j defined by the constraints listed in 1–5 in (3A).

Note that all A’s are full column rank matrices that collect relevant parts from μi, and that

Фi includes the linear relationships between the local variable xi and the central variable v and

y. Using the definition of the function fj, the following observations are made: 1) fj is a noncon-

vex, but smooth, function that is C1 on an open set containing Xj (defined by the column space
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of Фj), andrfj is Lipschitz continuous on Xj; 2) Xj is nonempty, closed, and convex; and 3) wj

is coercive.

Even though Eqs (3A) and (3B) have low cardinalities in the decision variables due to the

nonconvex nature of the problem, the uniqueness and existence of the solution are not guaran-

teed. To address the complexity issue, a surrogate function hj approximating Eq (3B) is defined

as follows:

H x; y; zð Þ ¼
X

j

hj xj; y; zj
� �

¼
X

j

uj xj
� �

þ gj xj; y; zj
� �h i

where uj xj
� �

¼ SDP of fj xj
� �
ð4Þ

Because uj is the SDP relaxation of fj, it is convex, Lipchitz continuous, and continuously

differentiable on Xj. Note that uj relaxes the rank constraint only; therefore, the first derivatives

of uj and of fj regarding xj are identical (i.e.,rxj
fj xj
� �

¼ rxj
uj xj
� �

). Because the SDP is con-

vex, the solution at the kth iteration is uniquely determined by ~xkþ1
j ≜ arg min

xj2Xj

hj xj; y
k; zkj

� �
at

given yk and zjk. Note that the relaxed nodal OPF is convex and has a small number of vari-

ables; therefore, its computational complexity remains manageable.

Properties of uj, fj, gj, hj, wj. and ~xj

The nodal problem fj is C1 smooth, but nonconvex, and prox-regular at xj relative to f rj
if xj 2 dom(fj), f rj 2 @fj xj

� �
. Further, whenever k�xj � xjk < εproxj and kx̂j � xjk < εproxj ,

there exists εproxj ; rfj > 0: f 1Þfj �xj

� �
� fj x̂j

� �
þ f rj
� �T

�xj � x̂ j

� �
�

rrfj
2
k�xj � x̂jk

2
; and

f 2Þfj xkþ1
j

� �
� fj xkj
� �

þrxj
fj xkj
� �T

xkþ1
j � xkj

� �
þ

dfj
2
kxkþ1

j � xkj k
2
. Statement (f2) holds by

the Descent Lemma [23] with the properties of gj and of hj described below. Its SDP relaxation

uj is strongly convex, Lipschitz continuous, and prox-regular, and its first derivative

equals that of fj (i.e.:u1Þ uj �xj

� �
� uj xj

� �
þ rxj

uj xj
� �h iT

�xj � xj
� �

þ
cuj
2
k�xj � xjk

2

u2Þ uj �xj

� �
� uj xj

� �
þ Lu

j k�xj � xjk; and u3Þ rxj
uj xj
� �

¼ rxj
fj xj
� �

: Whereas the variables

considered in fj and uj are all local primal variables only, ADMM constraint gj depends on the

central variable y and the multipliers z. With the properties of uj, fj, and gj, wj is C1 smooth,

but nonconvex, and prox-regular, whereas hj is strongly convex and Lipschitz continuous.

Because all Xj are bounded sets, wj and hj are coercive and lower-bounded over Xj. Because

~xkþ1
j is the optimizer of convex hj (i.e., ~xkþ1

j ≜ arg min
xj2~Xj; xj2Xj

hj xj; y
k; zkj

� �
), the following holds:

x1Þ rxj
uj ~xkþ1

j

� �
þ zkj þ rj xj � F

T
j y

� �
¼ 0 and

x2Þ hj ~xkþ1
j ; yk; zkj

� �
� hj xj; yk; zkj

� �
� 0 8xj 2 Xj.

Proposed algorithm with provable convergence

Overview of proposed algorithm. Even though the number of variables in the nodal OPF

is much smaller than that in the original problem, the complexity of the problem makes it diffi-

cult to solve the nodal problem due to its nonconvex nature. To manage the nonconvex nature

of the problem, the nonconvex components are relaxed. Once identified, the relaxed solution

is mapped onto the feasible region, to the closest point in the feasible region from the identified

solution. There are three cases: 1) the convexified problem is not feasible, 2) the convexified
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problem is feasible, but the solution to the problem is too far from the feasible region, and 3)

the solution to the convexified problem is sufficiently close. Only if the mapped point is close

enough, the nodal variables are updated and fed to the center node to update voltages.

Proposed algorithm. We propose the following algorithm to solve wj in conjunction with

hj in Eq 5:
Distributed, Regulated, Optimally-Homogeneous, and Scalable (DROHS)
Algorithm
1. Set k = 0, initialize all parameters, such as Δk 2(0,1), yk, ρj,

zkj
n o

2 Null Fj

� �
.

2. If xkj satisfies the termination criteria, terminate the algorithm.

3. Solve the local problems, ~xkþ1
j ≜ arg min

xj2Xj

hj xj; y
k; zkj

� �
.

4. Depending on the solution ~xkþ1
j , determine z

kþ1

j (Fig 3)

• Case 1: ~xkþ1
j is in the real space of convex Xj, i.e., in the column

space of Фj, z
kþ1

j ¼ ~xkþ1
j .

• Otherwise ~xkþ1
j =2Xj

� �
: Find a feasible projection of ~xkþ1

j onto the fea-

sible region Xj, ~zkþ1
j near ~xkþ1

j ;

• Case 2: the projection ~zkþ1
j is close enough to ~xkþ1

j (i.e., k~zkþ1
j � ~xkþ1

j k �

εkj where εkj ≜ tkj k~xkþ1
j � xkj k); accept the solution z

kþ1

j , z
kþ1

j ¼ ~zkþ1
j ;

• Case 3: ~zkþ1
j is not sufficiently close; reject the solution z

kþ1

j ,

z
kþ1

j ¼ xkj;

• update x̂kþ1
j , x̂kþ1

j ¼ xkj þ D
k
z
kþ1

j � xkj
� �

;

• set the error bound asymptotically to vanish as iteration proceeds
(i.e., lim

k!1
tkj ¼ 0).

5. Compute ykþ1 ¼ arg min
y

h x̂kþ1

j ; y; zkj
� �

, and update zkþ1
j ¼ zkj þ rj x̂kþ1

j � F
T
j y

kþ1

� �

accordingly; and D
kþ1
¼ D

k
� a D

k� �2
where a 2 (0.5, 1).

6. Update xkþ1
j so that all x-variables are consistent with global vari-

able y (i.e., xkþ1
j � F

T
j ykþ1 ¼ 0).

7. k  k + 1, and go to 2.

Fig 3 illustrates how the x-optimization process determines the x̂kþ1
j described in Rule 4 of

the algorithm. If the solution ~xkþ1
j is feasible in Xj, x̂kþ1

j is the solution (Case 1). If the solution

~xkþ1
j is not in Xj but the point projected onto the convex region Xj is sufficiently close, x̂kþ1

j is

the projected point (Case 2). For Case 3, where either no solution is identified or the identified

solution is not in Xj, and the distance to the projected point is too far away, the solution is

rejected, and x̂kþ1
j is the point determined in the previous step. Upon the determination of

x̂kþ1
j , the iteration proceeds to a point between the current and the projected point depending

on parameter Δk.
After the x-optimization is performed, y-optimization follows. The y-optimization at given

x̂kþ1
j and zk is a least square problem–convex problem. It should be noted that the solution to

the convex problem is always feasible. Rule 6 is a striking feature of the proposed algorithm

that is critically different from the ADMM approaches. Instead of the locally independent

update of the primal variables in the ADMM approaches, the nodal variables are updated 1)

linearly for the computational efficiency, and 2) with respect to the central variable so that the

update is reasonably agreeable among nodal variables. The proof of the convergence of the

proposed algorithm is presented in this paper’s S2 Appendix.
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Implementation details

Implementation of Rule 4

The local SDP relaxation yields a matrix (known as ~Zkþ1
j ) instead of a vector ~xkþ1

j ; therefore, a

new criterion should be established to compute ~zkþ1
j , as follows: Because ~Zkþ1

j is from SDP, all

the eigenvalues are non-negative (i.e., ~Zkþ1
j ¼ ~zkþ1

j
~zkþ1
j

� �T
þ
Xr

m¼2

c
kþ1

j;m c
kþ1

j;m

� �T
) where c

kþ1

j;m is

the mth column vector, and r is the rank of ~Zkþ1
j :

�
�
�~zkþ1

j
~zkþ1

j

� �T
� ~Zkþ1

j

�
�
� � k~zkþ1

j þ ~xkþ1

j kk
~zkþ1

j � ~xkþ1

j k ð5Þ

To construct an equivalent criterion to k~zkþ1
j � ~xkþ1

j k � ε
k
j with

k~zkþ1
j þ ~xkþ1

j k � 2k~zkþ1
j k þ k

~zkþ1
j � ~xkþ1

j k � 2k~zkþ1
j k þ ε

k
j , we impose k~zkþ1

j
~zkþ1
j

� �T
� ~Zk

j k �

εkj εkj þ 2k~zkþ1
j k

� �
to determine whether or not the feasible projection is acceptable. The

Fig 3. x-update from the result of optimization with 1) a feasible solution ~xnþ1
j , 2) an infeasible solution, but the distance between the solution

and the projection onto the feasible region is close enough k~zkþ1
j � ~xkþ1

j k � ε
k
j , and 3) an infeasible solution in that the projection onto the feasible

region is too far k~zmþ1
j � ~xmþ1

j k � ε
m
j .

https://doi.org/10.1371/journal.pone.0251948.g003
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grouping criterion is simplified to 1

2k~zkþ1
j k

�
�
�
Xr

m¼2

c
kþ1

j;m c
kþ1

j;m

� �T��
� � εkj by invoking εkj � k~z

kþ1
j k.

Let l
m
~Zk
j

be the mth eigenvalue of ~Zk
j . Then, the criterion becomes l

2
~Zk
j
� 2l

1
~Zk
j
εkj .

The definition of εkj ≜ tkj k~xkþ1
j � xkj k is also modified as

εkj ≜ tkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxkj k
2
þ

�
�
�~Zkþ1

j � xkj xkj
� �T��

�

r

� kxkj k

" #

using

k~Zkþ1
j � xkj xkj

� �T
k � 2kxkj k þ k~x

kþ1
j � xkj k

� �
k~xkþ1

j � xkj k.

Choice of parameters

In contrast to the ADMM approaches, only a few parameters are assigned in the proposed

algorithm. Because zkj
n o

2 Null Fj

� �
, and the specific choice of zj is irrelevant, all zj‘s are ran-

dom vectors in the null space of known Fj. It is important to hold
X1

k¼1

kεkk2
<1 to

guarantee the convergence of the proposed algorithm [24]. Due to the fact that
X1

k¼1

kεkk2
� k~xkþ1

j � xkj k
2

max

X1

k¼1

tkmax
� �2

, the maximum τ over all nodes at the kth iteration is set

by tkmax ¼ t
0
max=k: The parameters used were as follows: ρj = 20 for vL and 200 for vM; Δ0 = 0.3;

and the number of maximum iteration = 100; t0
max ¼ 10� 3.

The global variable y is randomly assigned (cold start) to test the algorithm’s robustness. For

comparison, a flat start and a warm start are also attempted. Here, a flat start refers a point at

which real voltages are unity, and imaginary voltages are within [-0.1, 0.1]; and a warm start [20]

is a solution to the PF. It is recognized that a faster convergence is obtained when the initial

point is close to the feasible region, which is commonly observed in numerical iterative methods.

Termination criterion

The algorithm is terminated when no further progress is made. The progress is measured in

terms of the global variable y, and the local variables x and z. After the solution is identified,

the objective function W� is determined according to (3B) where W x; y; zð Þ≜
X

i

wi xi; y; zið Þ,

i.e., W� ¼W x�; y�; z�ð Þ ¼
X

i

w�i x�i ; y
�; z�i

� �
. The interim value of W at the kth iteration is

Wk ¼Wk xk; yk; zkð Þ ¼
X

i

wk
i xki ; y

k; zki
� �

, and the progress measure ηk at the kth iteration is

defined:

Progress measure Zk≜
Wk � W�

W�
ð6Þ

The criterion used in Rule 2 terminates the algorithm if the progress measure is less than

the tolerance (10−7) (i.e., ηk� 10−7).

Results and discussion

Simulation environments

The model systems used in the simulations are available from MATPOWER [25] for 3-, 4-, 9-,

14-, 24-, 30-, 39-, 57-, 85-, 118-, 300-, and 2,000-bus systems. All simulations were performed
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using a Mac pro with 2 × 2.93 GHz 6-core Intel Xeon processors and 6 GB 1333 MHz DDR3

memory. The local SDP problems were solved using the CVX solver [26]. To compare the

results from various systems, the lines in the figures are normalized so that all start at zero. The

initial points for all the cases are cold starting points, and all the real and imaginary voltages

are set to random numbers (not even a flat start). The qualities of the solutions are all numeri-

cally identical to those identified using MATPOWER for the model systems tested (all the

solutions v� are less than 10−4 from the MATPOWER solutions (vMATPOWER), kv� −
vMATPOWERk/kv�k � 10−4). For comparison, we also attempted a flat start and observed that

Niter decreases at least 30%, but the flat start also finds the same solutions.

Subsystems of the test cases

In the ADMM approaches referred to in the literature [14–20], the grid partitioning is per-

formed, but the details of the partitioning are not well listed. In considering the computational

coupling, the partitioning is based on spectral clustering [20, 27] while each subsystem con-

tains at least one generator [14, 20]. The inclusion of a generator in a subsystem seems a natu-

ral choice to fulfill the power balance equality constraints (1 in (3)) within each substation.

However, the inclusion of a generator does not serve the purpose well, because the generator

may not be dispatched if its generation costs are excessively high. The spectral clustering is per-

formed using two different algorithms: 1) unnormalized [27] and 2) normalized [28]. The

algorithms yield different grid clustering. For example, the unnormalized algorithm results in

two clusters for the IEEE 3-bus systems, while the normalized algorithm finds a single cluster

for the same system [28]. Fig 4 illustrates the path length, maximum number of nodes in a sub-

system, and the number of subsystems.

The lines are best-fit lines, showing the positive correlations of path length (red dotted line

path length/ Nb0.30), the maximum number of nodes in a subsystem (green solid line/

Nb0.43), and the number of subsystems (blue broken line/ Nb0.76) based on the unnormalized

algorithm (left plot). The results using the algorithm with a different normalization [28] yield

path length/Nb0.34, the maximum number of nodes in a subsystem/ Nb0.45, and the number

of subsystems/ Nb0.66 (right plot). Even though the results from the two plots are not exactly

the same, the positive correlations with the system size are clear. They affect the computational

efficiency of ADMM [14, 20]; path length affects the communication costs and Niter because

the decision at each subsystem should be delivered to the rest of the system; the number of sub-

systems affects the number of computation cores and the communication costs unless PL

equals one; and the maximum number of nodes affects the computation costs at each subprob-

lem. Therefore, the decrease in the computation costs at each subsystem is achieved in

exchange for the increased costs of communication among subsystems. Because the path

length and number of subsystems increase rapidly with system size, the improvement in

computational efficiency of the ADMM approach is questionable.

Maximum cardinality of nodal variables in the proposed algorithm

The nodal variables in the x-optimization μj are

a4�1
i ; b

4�1

i ; g
4nli�1

i� l;i ; d
4nli�1

i� l;i ; o2�1
i ; �f nli�1

i� l;i ; �f nli�1

i� l;i ; g2ngi�1

i ; m1�1
i;end

h i
. Because μend is unity, the car-

dinality of μj is 10nl + 2ng + 10 where nl is the number of lines connected to the jth node, and

ng is the number of generators located at the node. In determining the voltages through the

power channel, the node with a high value for nl plays a key role. Fig 5 illustrates the maximum

cardinality nmaxvar of μj with the systems’ sizes. The dashed line indicates nmaxvar / Nb1=4. Even

though the positive relationship between nmaxvar and Nb is visible among the model systems, the
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Fig 4. The path length, the maximum number of nodes in a subsystem, and the number of subsystems for the

IEEE 3-, 4-, 9-, 14-, 24-, 30-, 39-, 57-, 85-, 118-, 300-, and 2,000-bus systems. The lines indicate the positive

correlations on the size of the system. The red-dotted line, the blue broken line, and the green solid line represent the

best-fit curves for the path length, the maximum number of nodes in a subsystem, and the number of subsystems,

respectively. Two algorithms are applied for clustering nodes: (A) unnormalized algorithm, and (B) normalized based

on the algorithm in [28].

https://doi.org/10.1371/journal.pone.0251948.g004
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relationship is not necessarily positive. The number of variables in the central OPF is typically

2Nb + 2Ng where Nb and Ng are the numbers of buses and generators in the system, respec-

tively. For small systems, such as 3-, 4-, 9-, 14-, and 24-bus systems, the maximum cardinalities

of the nodal variables are higher than the number of variables in the central OPF; therefore, it

would be challenging to keep the computational costs of the distributed OPF for the small sys-

tems lower than those of the central OPF. It is noteworthy that the communication costs

remain manageable, because each node directly communicates with the central node due to

the fact that PL equals unity.

Distributed OPF for 3-, 4-, 24-, 39-, and 85-bus systems

To examine whether the choice of parameters affects the convergences, optimizations were

executed with many randomly assigned initial points, and uniform convergences were consis-

tently observed (Fig 6). In general, Niter depends on the initial guess of the voltages. As the dis-

tance of the initial point from the solution becomes closer, Niter decreases, which is commonly

observed in numerical iterative methods. All the solutions identified are numerically the same

as the solutions using MATPOWER.

Fig 5. Cardinalities of nodal variables in x-optimization in terms of system size.

https://doi.org/10.1371/journal.pone.0251948.g005
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Fig 6. Convergence of proposed algorithm for selected systems (i.e., IEEE 3-, 4-, 9-, 14-, 24-, 39-, and 85-bus systems).

https://doi.org/10.1371/journal.pone.0251948.g006
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A worst-case convergence was observed for the IEEE 39-bus system. The nodal OPF for the

system involves large negative eigenvalues (i.e., the nodal OPFs are highly nonconvex).

According to Rule 4, a relatively large number of solutions are rejected because they are not

close to the feasible regions and, therefore, Niter becomes large (approximately 40 iterations).

However, the solution identified is a local minimizer, and Niter is still much smaller than the

number of iterations for the ADMM approaches. For the visual presentations of the results

obtained for various systems, the progress is normalized to the 1st iteration (i.e., the curves

begin at 0 for the 1st iteration).

Comparison of convergence to ADMM approaches

The convergence measures were compared to those from the ADMM approaches reported in

multiple studies [14, 17–19]. It is worth noting that Erseghe [14] and Zhang et al. [17] do not

take the flow limits into consideration; the approach of Engelmann et al. [18] involves a high

communication cost; and the approach of Madani, Kalbat, and Lavaei [19] may yield a physi-

cally infeasible solution. We attempted the ADMM approaches with the flow constraints and

feasibility, but our implemented solver failed to converge with any starting points. Instead, we

compared the convergence behaviors of the proposed algorithm to those reported in the previ-

ous [14, 17–19]. For the visual presentation, the convergence behaviors are normalized so that

all the curves begin at the same point (see Fig 7 for the comparison of the convergence).

In the previous research [14, 17–19], the size of the subsystems increased with that of the

system. Therefore, the tradeoff between communication costs amongst the subsystems and the

computation costs for each subsystem make it difficult to develop a scalable algorithm. As the

system size increases, Niter increases significantly for the results in two of the previous studies

[14, 19]. The performance measure in another study [17] fluctuates consistently with various

systems, indicating that the convergence may not be guaranteed. Because the final study [18]

requires the information exchange regarding sensitivities as well as the primal variables, the

computation and communication costs per iteration increase much more rapidly than do the

computation costs of a central OPF solver.

Different from the clustering containing multiple nodes used in the ADMM approach, the

proposed algorithm for each subsystem contains only 1 node regardless of the system size;

each subsystem directly communicates with the rest of the entire system; and the communica-

tion involves only the primal variables. With this difference in mind, the fast convergences

observed in the proposed algorithm are similar to those in two of the previous studies [17, 18],

which are consistently much faster than those in the other two previous studies [14, 19].

Whereas Niter are like those reported by Engelmann et al. [18], the convergences of the pro-

posed algorithm occur more uniformly and consistently.

Many approaches using ADMM do not consider the flow limits [14, 17], and/or feasibility

[19] and, therefore, it is not appropriate to compare the quality of the solutions. Instead, we

compared our solutions with those using a central OPF solver, MATPOWER. For all the cases

described above, they yield numerically identical solutions. It is not clear why the proposed

algorithm finds the same solution as the central OPF solver. We tested with the central SDP-

relaxation for a small-scale system to estimate the “global” solution. Due to the memory issue,

our SDP tests are limited up to 118-bus systems. When the relaxation returns the rank-1 solu-

tion, the solution is global and physically feasible. For several cases, the test cases are of the

global solutions that are also identified by MATPOWER and by the proposed algorithm. How-

ever, there are cases where the SDP relaxation returns a physically infeasible solution. For

these cases, both MATPOWER and the proposed algorithm identify numerically the same

local minimizers that may not be global solutions. MATPOWER finds a point that meets the
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Fig 7. Convergence of proposed algorithm for selected small systems (i.e., IEEE 9-, 14-, 30-, 57-, 118-, and 300-bus systems). The

convergences of the ADMM approaches [14, 17–19], are compared.

https://doi.org/10.1371/journal.pone.0251948.g007
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first-order necessary conditions for optimality [25]. Although it finds a minimizer in most

cases, there is no guarantee that the identified solution is a minimizer—it can be either a maxi-

mizer or a saddle point. On the other hand, the proposed algorithm identifies a solution that

meets the second-order optimality conditions, which guarantees that the solution is a mini-

mizer [29]. From a practical point of view, there are two advantages of the proposed algorithms

over MATPOWER: 1) they are numerically stable and, therefore, robust because all the sub-

problems are convex—no issues regarding the rank-deficient Hessian matrix, and 2) they use

distributed computation and, therefore, manageable computation in each subproblem. How-

ever, there are disadvantages of the proposed algorithm: 1) the requirement of multiple cores

to perform the distributed optimization, and 2) the number of nodal variables can be larger

than that of the central OPF; for example, 3-, 4-, 9-, 14-, and 24-bus (See Fig 5).

Large-scale OPF: 2,000-bus system

We tested the algorithm for a large-scale system, the 2,000-bus system that is a synthetic grid

on a footprint of Texas. Fig 8 presents a convergence pattern. The solution identified is numer-

ically identical to the one found using MATPOWER. Niter remains small, as is the case for the

small systems (See Figs 6 and 7). Note that the nodal OPF includes only 1 bus, and the commu-

nication costs remain small because PL equals unity. If a sufficient number of computation

cores are provided, the proposed algorithm is scalable if the computation cost for solving a

subproblem does not increase significantly as the system size increases.

Different from other algorithms reported in the literature (i.e., [14–18]), the proposed algo-

rithm converges regardless of the initial points, but the number of iterations decreases by at

least a factor of 2 if it uses a flat start. Another shortcoming of the algorithms reported in previ-

ous research [14–18], is the quality of their solutions. Whereas the existing OPFs find low-volt-

age [17] or suboptimal [16] solutions, the proposed algorithm finds the same solution as a

central OPF solver. One previous study [16] claimed that there might be an optimal number of

partitioned subsystems due to the tradeoff between communications and computational costs

used to obtain a local solution. The proposed method keeps the PL = 1, and the central compu-

tation is a simple addition of xj through both the power and voltage channels. From the simu-

lations with various parameter values such as ρj, Δ
k, t1

j , and a, we obtained the same solutions,

indicating that the proposed algorithm is robust as well as efficient. In addition, the proposed

model does not require any partitioning.

Comparison to a heuristic central OPF solver, MATPOWER

In comparing the convergence between the proposed algorithm and the central OPF, the num-

ber of variables and Niter were examined. The maximum cardinality nmaxvar of μj increases with

the system size in nmaxvar / Nb1=4 (See Fig 4). Fig 9 illustrates the number of variables in the cen-

tral OPF as well as the maximum cardinality of the nodal variables. The blue line is the best-fit

line for the central OPF (nOPF
var ¼ 2Nbþ 2Ng / Nb0:96), whereas the red line is the best-fit line

for the distributed algorithm. It is clear that nOPF
var increases with Nb in a much faster way than

nmaxvar does. The black line is the boundary at which nOPF
var equals nmaxvar . If enough computation

cores are available, the proposed algorithm involves reduced computation costs per iteration

for systems larger than or equal to IEEE 24-bus. Whereas nOPF
var almost linearly increases with

Nb because Ng� Nb in most systems, nmaxvar does not necessarily increase theoretically. A key

observation is that the proposed approach can be a scalable algorithm if Niter does not rapidly

increase with the system size.
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Fig 10 presents Niter for the central OPF (Nitcent) and of the proposed algorithm (Nitdist) on

the tested systems. A visible increase in Nitcent is observed with Nb, but the dependence of Nit-
dist on Nb is not evident—the solid lines are best-fit curves (log-log plot) that indicate Nitcent ¼
Nb0:16 and Nitdist = Nb−0.007, respectively. The dotted lines are average Niter, and the values are

15 and 23, respectively.

From the comparisons (the number of variables and Niter), we conclude that the computa-

tion cost of the distributed algorithm increases with Nb at a much slower rate than that of the

central OPF if sufficient computational resources are available.

Scalability of the algorithm

The computation efficiency of a distributed computation depends on the number of iterations

and the computational cost per iteration. The cost is determined by the local computation

Fig 8. Convergence of proposed algorithm for synthetic 2,000-bus system on a footprint of Texas.

https://doi.org/10.1371/journal.pone.0251948.g008
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with the largest number of variables. Fig 10 shows that the number of iterations does not

increase with system size.

Fig 11 illustrates the maximum nodal computation time depending on the maximum cardi-

nality of the nodal variables. This performance dependence on the number of nodal variables

may shed light on the claim by Loukarakis, Bialek, and Dent [30] that a larger system does not

necessarily imply an inferior convergence performance. The dashed line indicates that the

maximum nodal computation time is proportional to the maximum cardinality of the nodal

variables with the power of 2.64. The cardinality to the power of 2.64 observed in this study is

close to the theoretically estimated 3 for the SDP solver. Note that it is not necessary for the

maximum cardinality of the nodal variables to be positively correlated with the system size.

Rather, the maximum cardinality depends on the local grid topology of the system. For the

tested systems, nmaxvar / Nb1=4 and CT / nmaxvar

� �2:64
, which results in CT/ Nb2.64/4. = Nb0.66

where CT represents the maximum nodal computation time. The total computation cost is

bounded by the product between Niter and CT. The total computation cost is bounded by CT
/ ϑ(dNb/NcoreeNb0.66) where Ncore is the number of cores. If the computational resource is

Fig 9. Cardinalities of central OPF and proposed algorithm for the test systems.

https://doi.org/10.1371/journal.pone.0251948.g009
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sufficient, CT/ ϑ(Nb0.66). From this observation, the computation cost increases sub-linearly

for a large-scale network.

If a single core is available for computation, the computation cost is in W Nb1þpSDP=4ð Þ where

pSDP is the computational complexity for a nodal SDP. For the state-of-art central heuristic

OPF solvers, the computation cost is in ϑ(Nb1.5). Therefore, when the computation resources

are highly limited, the proposed algorithm would still be efficient with a convex problem solver

that yields pSDP� 2. A potential improvement in pSDP of the SDP solver is to explore the sparse

structure of the matrices [31] or to utilize a commercial solver such as MOSEK.

Nomenclature

F
Meq
j ;FMin

j eigenvectors of Meq, Min scaled by diag
ffiffiffiffiffiffi
leq

q� �
and diag

ffiffiffiffiffi
lin

p� �

Om;O
c
m Set and the complement of the set of Case m

αj, βj nodal variable associated with real and with reactive power injection, a4�1
j ¼ FT

�Sj
v and

b
4�1

j ¼ FT
�Sj
v

Fig 10. Niter for central OPF and of the proposed algorithm on the tested systems. Dotted lines are averages, and solid lines are best-fit curves.

https://doi.org/10.1371/journal.pone.0251948.g010
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γj-l,j, δj-l,j nodal variable with real and with reactive power flow over the line j-l at the side of

the jth node, g4�1
j� l;j ¼ FT

�F jj� l
v and d

4�1

j� l;j ¼ FT
�F jj� l

v

ωj nodal variable with Ej, o2�1
j ¼ eTj þ eTjþNb

� �T
v

B, Br, G sets of nodes, branches, and generators

Br{j}, G{j} sets of branches and of generators at node j
Ej voltage magnitude square at Node j, vj2

IIeqj ; IIinj diagonal matrix of ±1 associated with equality and inequality constraints

I identity matrix

J matrix [IT j IT]T

Meq, Min symmetric matrices with equality and inequality constraints

Meq
j ¼ F

Meq
j IIeqj F

MeqT
j ;Miin

j ¼ FMin
j IIinj F

MinT
j

Ybus, Ybr nodal and branch admittance matrices

Nb, Nl, Ng number of nodes, lines, and generators at the system of interest

Fig 11. Computation times in seconds for nodal OPF of the maximum cardinality of the nodal variables. Dotted line is the best-fit line with the

slope of 2.64.

https://doi.org/10.1371/journal.pone.0251948.g011
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Niter number of iterations until convergence occurs

capl thermal limit of flow over l
dj real and reactive power demand at j,dj ¼

�dj þ j�dj

ej jth column vector in the identity matrix

f jj� l power flow over j-l at the jth node, f jj� l ¼ �f jj� l þ j�f jj� l
gj generation at the jth node, g j ¼ �g j þ j�g j

j
ffiffiffiffiffiffiffi
� 1
p

nlj, ngj number of lines and generators at Node j
nlmax maximum number among nlj in the system

vL, vM voltages at the power and voltage channels

v, v, vx, vy complex voltage vector, voltage v ¼ vTx vTy
h iT

, real and imaginary part of voltage,

v ¼ vx þ jvy ¼ jTv

x; x; �x; �x complex variable, real, and imaginary parts of x, x ¼ �x þ j�x and x ¼ �xT �xT½ �
T

Nodal variables and their cardinality

a4�1
j nodal variable associated with real power injection at Node j

b
4�1

j nodal variable associated with reactive power injection at Node j

g4�1
jk nodal variable associated with real power flow �f jj� k over a line j-k at the side of Node j

g
4nlj�1

j nodal variable associated with real power flow over the lines connected to Node j
d

4�1

jk nodal variable associated with reactive power flow �f jj� k over a line j-k at the side of

Node j
d

4nlj�1

j nodal variable associated with reactive power flow over the lines connected to Node j
o2�1

j nodal variable associated with the voltage magnitude at Node j
�f jj� k scalar representing real power flow over a line j-k at the side of Node j
� f jj� k scalar representing reactive power over a line j-k at the side of Node j

pngj�1

j nodal real power generation vector at Node j

qngj�1

j nodal reactive power generation vector at Node j

Conclusions and future research directions

From the tensor analysis of the power flow, we developed a star and linear model to achieve a

scalable distributed computation. The new network model allows the direct communication

between the nodal variables and the central voltages. In the model, the PL remains at unity

regardless of the system size. On the other hand, the Kirchhoff’s laws and voltage magnitudes

are expressed in terms of nodal variables that are linear in the voltages. Therefore, the model

makes it possible to keep the size of a nodal OPF small regardless of the size of the system,

while the communication costs remain manageable. This new aspect of the model allows us to

construct a scalable algorithm that converges to the same solution as the nonconvex OPF. We

proposed the DROHS algorithm to find a local minimum using a convex surrogate function.

Among the nodal OPF solutions, only near-feasible solutions (Rule 4) are selected for updat-

ing. In addition to the high quality of the solution, it also achieves computational efficiency

and robustness. We tested the DROHS algorithm for the 3-, 4-, 9-, 14-, 24-, 30-, 39-, 57-, 85-,

118-, 300-, and 2,000-bus systems. The proposed algorithm achieves 1) fast and uniform con-

vergence, 2) provable convergence, 3) the same problem formulation as the central OPF
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problem without ignoring any constraints, 4) guaranteed convergence to a local minimum,

rather than a maximum or saddle point, that meets the first-order necessary conditions for

optimality, and 5) a completely distributed algorithm (i.e., a scalable algorithm, which has

never been achieved before in the literature). The challenges that the proposed algorithm faces

are 1) an increased number of nodal variables that may be higher than that of the variables in

the central OPF for a small system, 2) an increased number of iterations when highly con-

nected nodes involve solutions far from the feasible regions, and 3) a prolonged wait time for

nodes with low cardinalities. Therefore, the proposed algorithm is an efficient alternative to

the central OPF for a large-scale network. Future research directions include the development

of 1) a way to accommodate the impact of the rejected solutions in updating the x-variables if

the corresponding nodes are highly connected, 2) an efficient computation to solve the nodal

SDP, particularly a way to explore the sparse structure of the nodal OPF, and 3) asynchronous

distributed optimization for improving the computational efficiency where the scheduling of

the distributed computation is identified in terms of a knapsack problem. We also present the

proof showing that the surrogate function improves at every iteration and that the iteration

converges to a fixed point of the nonconvex OPF. The numerical results exhibit rapid conver-

gence, and the convergence behavior is discussed.

Supporting information

S1 Appendix. Proof of claims.

(DOCX)

S2 Appendix. Proof of convergence.

(DOCX)

Acknowledgments

We thank Dr. Charles Van Loan who provided insight on tensor computation. We would like

to express our gratitude to Dr. Robert J. Thomas and Mr. Gilbert Bindewald for their expertise

on the computation for the power system analysis during this research, and we also thank 5

anonymous reviewers whose comments and suggestions helped improve and clarify this

manuscript.

Author Contributions

Conceptualization: HyungSeon Oh.

Data curation: HyungSeon Oh.

Formal analysis: HyungSeon Oh.

Investigation: HyungSeon Oh.

Methodology: HyungSeon Oh.

Software: HyungSeon Oh.

Validation: HyungSeon Oh.

Visualization: HyungSeon Oh.

Writing – original draft: HyungSeon Oh.

Writing – review & editing: HyungSeon Oh.

PLOS ONE Distributed OPF

PLOS ONE | https://doi.org/10.1371/journal.pone.0251948 June 18, 2021 25 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251948.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251948.s002
https://doi.org/10.1371/journal.pone.0251948


References
1. Verma DB and A. Strong NP-hardness of AC power flows feasibility. arXiv:151207315.

2. Molzahn DK, Dörfler F, Sandberg H, Low SH, Chakrabarti S, Baldick R, et al. A Survey of Distributed

Optimization and Control Algorithms for Electric Power Systems. IEEE Transactions on Smart Grid.

2017. https://doi.org/10.1109/TSG.2017.2720471

3. Wang Y, Wang S, Wu L. Distributed optimization approaches for emerging power systems operation: A

review. Electric Power Systems Research. 2017. https://doi.org/10.1016/j.epsr.2016.11.025

4. Abboud A, Couillet R, Debbah M, Siguerdidjane H. Asynchronous alternating direction method of multi-

pliers applied to the direct-current optimal power flow problem. ICASSP, IEEE International Conference

on Acoustics, Speech and Signal Processing—Proceedings. 2014.

5. Kraning M. Dynamic Network Energy Management via Proximal Message Passing. Found Trends®

Optim. 2014. https://doi.org/10.1561/2400000002

6. Chakrabarti S, Kraning M, Chu E, Baldick R, Boyd S. Security Constrained Optimal Power Flow via

proximal message passing. 2014 Clemson University Power Systems Conference, PSC 2014. 2014.

7. Gan L, Li N, Topcu U, Low SH. Exact Convex Relaxation of Optimal Power Flow in Radial Networks.

IEEE Trans Automat Contr. 2015. https://doi.org/10.1109/TAC.2014.2332712

8. Peng Q, Low SH. Distributed optimal power flow algorithm for radial networks, I: Balanced single phase

case. IEEE Trans Smart Grid. 2018. https://doi.org/10.1109/TSG.2016.2546305

9. Peng Q, Low SH. Distributed algorithm for optimal power flow on a radial network. Proceedings of the

IEEE Conference on Decision and Control. 2014.

10. Zheng W, Wu W, Zhang B, Sun H, Liu Y. A Fully Distributed Reactive Power Optimization and Control

Method for Active Distribution Networks. IEEE Trans Smart Grid. 2016. https://doi.org/10.1109/TSG.

2015.2396493

11. Dall’Anese E, Zhu H, Giannakis GB. Distributed optimal power flow for smart microgrids. IEEE Trans

Smart Grid. 2013. https://doi.org/10.1109/TSG.2013.2248175

12. Sun AX, Phan DT, Ghosh S. Fully decentralized AC optimal power flow algorithms. IEEE Power and

Energy Society General Meeting. 2013. https://doi.org/10.1109/PESMG.2013.6672864

13. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world9 networks. Nature. 1998. https://doi.org/

10.1038/30918 PMID: 9623998

14. Erseghe T. Distributed optimal power flow using ADMM. IEEE Trans Power Syst. 2014. https://doi.org/

10.1109/TPWRS.2014.2306495

15. T. Erseghe. Distributed processing. http://dgt.dei.unipd.it/pages/read/93/

16. Guo J, Hug G, Tonguz OK. A Case for Nonconvex Distributed Optimization in Large-Scale Power Sys-

tems. IEEE Trans Power Syst. 2017. https://doi.org/10.1109/TPWRS.2016.2613479 PMID: 28824226

17. Zhang M, Kar RS, Miao Z, Fan L. New auxiliary variable-based ADMM for nonconvex AC OPF. Electr

Power Syst Res. 2019. https://doi.org/10.1016/j.epsr.2019.105867

18. Engelmann A, Jiang Y, Muhlpfordt T, Houska B, Faulwasser T. Toward distributed OPF using ALADIN.

IEEE Trans Power Syst. 2019. https://doi.org/10.1109/TPWRS.2018.2867682

19. Madani R, Kalbat A, Lavaei J. ADMM for sparse semidefinite programming with applications to optimal

power flow problem. Proceedings of the IEEE Conference on Decision and Control. 2015.

20. Guo J, Hug G, Tonguz OK. Intelligent Partitioning in Distributed Optimization of Electric Power Sys-

tems. IEEE Trans Smart Grid. 2016. https://doi.org/10.1109/TSG.2015.2490553

21. Vandenberghe L, Balakrishnan VR, Wallin R, Hansson A, Roh T. Interior-point algorithms for semidefi-

nite programming problems derived from the KYP lemma. Lect Notes Control Inf Sci. 2005. https://doi.

org/10.1007/10997703_12

22. Oh H. A Unified and Efficient Approach to Power Flow Analysis. Energies. 2019; 12: 2425. https://doi.

org/10.3390/en12122425

23. Bauschke HH, Bolte J, Teboulle M. A descent lemma beyond Lipschitz gradient continuity: First-order

methods revisited and applications. Math Oper Res. 2017. https://doi.org/10.1287/moor.2016.0817

24. Scutari G, Sun Y. Parallel and distributed successive convex approximation methods for big-data opti-

mization. Lecture Notes in Mathematics. 2018. https://doi.org/10.1007/978-3-319-97142-1_3

25. Zimmerman RD, Murillo-Sánchez CE, Thomas RJ. MATPOWER: Steady-state operations, planning,

and analysis tools for power systems research and education. IEEE Trans Power Syst. 2011. https://

doi.org/10.1109/TPWRS.2010.2051168

26. M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx

PLOS ONE Distributed OPF

PLOS ONE | https://doi.org/10.1371/journal.pone.0251948 June 18, 2021 26 / 27

https://doi.org/10.1109/TSG.2017.2720471
https://doi.org/10.1016/j.epsr.2016.11.025
https://doi.org/10.1561/2400000002
https://doi.org/10.1109/TAC.2014.2332712
https://doi.org/10.1109/TSG.2016.2546305
https://doi.org/10.1109/TSG.2015.2396493
https://doi.org/10.1109/TSG.2015.2396493
https://doi.org/10.1109/TSG.2013.2248175
https://doi.org/10.1109/PESMG.2013.6672864
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1109/TPWRS.2014.2306495
https://doi.org/10.1109/TPWRS.2014.2306495
http://dgt.dei.unipd.it/pages/read/93/
https://doi.org/10.1109/TPWRS.2016.2613479
http://www.ncbi.nlm.nih.gov/pubmed/28824226
https://doi.org/10.1016/j.epsr.2019.105867
https://doi.org/10.1109/TPWRS.2018.2867682
https://doi.org/10.1109/TSG.2015.2490553
https://doi.org/10.1007/10997703%5F12
https://doi.org/10.1007/10997703%5F12
https://doi.org/10.3390/en12122425
https://doi.org/10.3390/en12122425
https://doi.org/10.1287/moor.2016.0817
https://doi.org/10.1007/978-3-319-97142-1%5F3
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2010.2051168
http://cvxr.com/cvx
https://doi.org/10.1371/journal.pone.0251948


27. Von Luxburg U. A tutorial on spectral clustering. Stat Comput. 2007. https://doi.org/10.1007/s11222-

006-9015-6 PMID: 18836571

28. Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. Advances in Neural

Information Processing Systems. 2002.

29. Nocedal J, Wright S. Numerical optimization, series in operations research and financial engineering.

Springer. 2006.

30. Loukarakis E, Bialek JW, Dent CJ. Investigation of Maximum Possible OPF Problem Decomposition

Degree for Decentralized Energy Markets. IEEE Trans Power Syst. 2015. https://doi.org/10.1109/

TPWRS.2014.2365959

31. Molzahn DK, Holzer JT, Lesieutre BC, DeMarco CL. Implementation of a large-scale optimal power

flow solver based on semidefinite programming. IEEE Trans Power Syst. 2013. https://doi.org/10.1109/

TPWRS.2013.2258044

PLOS ONE Distributed OPF

PLOS ONE | https://doi.org/10.1371/journal.pone.0251948 June 18, 2021 27 / 27

https://doi.org/10.1007/s11222-006-9015-6
https://doi.org/10.1007/s11222-006-9015-6
http://www.ncbi.nlm.nih.gov/pubmed/18836571
https://doi.org/10.1109/TPWRS.2014.2365959
https://doi.org/10.1109/TPWRS.2014.2365959
https://doi.org/10.1109/TPWRS.2013.2258044
https://doi.org/10.1109/TPWRS.2013.2258044
https://doi.org/10.1371/journal.pone.0251948

