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Abstract

Objective

The objectives of this paper are to 1) construct a new network model compatible with distrib-
uted computation, 2) construct the full optimal power flow (OPF) in a distributed fashion so
that an effective, non-inferior solution can be found, and 3) develop a scalable algorithm that
guarantees the convergence to a local minimum.

Existing challenges

Due to the nonconvexity of the problem, the search for a solution to OPF problems is not
scalable, which makes the OPF highly limited for the system operation of large-scale real-
world power grids—"the curse of dimensionality”. The recent attempts at distributed compu-
tation aim for a scalable and efficient algorithm by reducing the computational cost per itera-
tion in exchange of increased communication costs.

Motivation

A new network model allows for efficient computation without increasing communication
costs. With the network model, recent advancements in distributed computation make it
possible to develop an efficient and scalable algorithm suitable for large-scale OPF
optimizations.

Methods

We propose a new network model in which all nodes are directly connected to the center
node to keep the communication costs manageable. Based on the network model, we sug-
gest a nodal distributed algorithm and direct communication to all nodes through the center
node. We demonstrate that the suggested algorithm converges to a local minimum rather
than a point, satisfying the first optimality condition.

Results

The proposed algorithm identifies solutions to OPF problems in various IEEE model sys-
tems. The solutions are identical to those using a centrally optimized and heuristic
approach. The computation time at each node does not depend on the system size, and
N, does not increase significantly with the system size.
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Conclusion

Our proposed network model is a star network for maintaining the shortest node-to-node
distances to allow a linear information exchange. The proposed algorithm guarantees the
convergence to a local minimum rather than a maximum or a saddle point, and it maintains
computational efficiency for a large-scale OPF, scalable algorithm.

Introduction

In modern societies, demand for electricity is expected to be satistied continuously via control-
lable generation technologies. An event is a situation in which the demand is not fulfilled.
Ten-in-one, a widely used reliability criterion for events, means that an event should occur just
once in a 10-year span. To meet this standard, system operators schedule the generation port-
folio and the grid systems in advance. For example, a day-ahead unit commitment determines
the 24-hourly dispatches, along with unit commitment decisions, to meet varying hourly
demands. For each hour, the demand profiles are assumed to be constant, which defines the
process’s steady-state operation. In the absence of an unexpected disturbance, stochastic
hourly demand is the unique source of uncertainty in traditional power system operation.
Over the last decade or so, renewable energy resources and smart grid technologies have been
integrated into systems to improve energy efficiency and reduce greenhouse gas emissions.
This integration has introduced uncertainty into the operation of power systems, presenting a
new challenge. If high-precision forecasting could be introduced to estimate future energy
resources and control demand, existing operations’ tools would remain useful, assuming they
could be integrated into the expected effective demand (= demand-expected demand reduc-
tion-expected renewable energy resources). Unfortunately, even though the precision of fore-
casting tools has improved, the errors in their long-term forecasts, for a day ahead, for
example, are not yet sufficiently small for reliable operation. Frequent decisions are a potential
way to accommodate the uncertainty. For example, a day-ahead 24-hour unit commitment
(UC) decision is made once in a daily cycle. If the errors in 2-hour ahead forecasts are small
enough, then the UC decision with a forecast every 2 hours would still be a reliable tool for the
power system’s operation. The computational capability to support such decisions plays a key
role in this process.

Optimal power flow (OPF) is a backbone in the steady-state operation of power systems.
The characteristics of OPF are highly nonlinear and nonconvex. The computational complex-
ity associated with these characteristics makes power flow (PF) analysis a non-deterministic
polynomial-time (NP)-hard problem [1]. In most operational practices, a linear approximation
of OPF, namely, direct current (DC) OPF, is pursued. Although easy to solve, DC OPF does
not address voltage problems, losses, and the dispatch of reactive power generation. Due to
these issues, DC OPF may not be feasible. To address the problem correctly, it is ideal to aim
for a nonlinear and nonconvex OPF. In addition to the nonconvex nature of the full OPF,
uncertainties increase the number of variables in traditional, central decision-making pro-
cesses. Therefore, frequent but short-term decisions concerning large-scale power systems can
be challenging. With the recent advancements in hardware in multi-core machines, distrib-
uted computation becomes an attractive approach for enhancing computational efficiency. An
exemplary area in power system analysis concerns the use of distributed computation for OPF.
Motivated readers can find information related to distributed approaches to solving OPF prob-
lems [2, 3]. Within distributed computation, the alternating direction method of multipliers
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(ADMM) has gained popularity due to its straightforward implementation and its provable
convergence (if the original problem is convex). For a linear DC OPF, the ADMM approach
can result in successful convergence to a global solution [4-6]. A full OPF problem on a radial
network can be relaxed to a convex semidefinite programming (SDP) problem, and the relaxed
problem is exact if optimal power injections lie in a region where the voltage upper bounds do
not bind [7, 8]. Several studies have used the ADMM approach to solve OPF problems in a
radial network [9-11]. OPF problems usually involve the operation of mesh transmission sys-
tems, but an SDP solution for a mesh network may not be physically meaningful [2].

A nodal OPF would be the most intuitive approach to extending a central OPF in a distrib-
uted fashion. In the nodal OPF [12], the information exchange among the nearest neighbors
leads to high communication costs. The maximum node-to-node distance (also termed the
path length (PL) [13]) plays a key role in the communication costs. The convergence tends to
be very slow due to the contaminated information received from local decisions during com-
munications. To the best of our knowledge, there has been no report of the successful conver-
gence of this approach for any mesh networks.

The PL can be reduced when a clustering approach is undertaken for a mesh network via
the partitioning of a system into multiple subsystems [14-19]. Two adjacent subsystems share
some nodes and branches between the nodes; thus, the PL is small, keeping the communica-
tion costs manageable. The primary and the dual variables at the shared nodes and branches
are constrained equally. This approach can be efficient if the shared nodes adequately repre-
sent the other nodes in the same subsystem. Several studies have proposed an efficient algo-
rithm for partitioning a system so that the ADMM converges to a solution [16, 17, 19, 20]. In
contrast to a study by Sun, Phan, and Ghosh [12], the flow constraints can be integrated for
the lines of intra-subsystems. In two studies, Erseghe [14, 15] integrated the flow limits of the
lines of inter-subsystems by redefining the subsystems to overlap the lines. Guo, Hug, and
Tonguz [16] report that the inclusion of the limit still yields a solution. However, the approach
has several shortcomings that contribute to computational inefficiency: 1) the low quality of
the solution, 2) the need for a warm starting point for convergence, and 3) the communication
costs. In addition, the convergence behavior is not reported, so it is not possible to discuss the
computational efficiency. The solutions presented in several studies [14-17] are low-voltage,
inferior solutions due to increased losses. Engelmann et al. [18] added a significantly large
term regarding reactive power injections that affects the optimality conditions and, as a result,
the distributed problem is different from the original one. The necessity of a solution for the
nonconvex PF as a starting point increases the computational costs. Even though the PL
decreases in comparison to the nodal OPF in the study by Sun, Phan, and Ghosh [12], the
communication costs increase the computational costs due to the tradeoff discussed by Guo,
Hug, and Tonguz [16]. These shortcomings make the benefit of distributed computation ques-
tionable. The distributed SDP approach by Madani, Kalbat, and Lavaei [19] yields the global
(and therefore identical) solution to the central SDP approximation to the OPF problem
because the problem is convex, but the solution may not be physically feasible. In addition to
the computational inefficiency, there is no approach that can theoretically yield an optimal bal-
ance between the computational cost for one subsystem and the communication costs of the
subsystems. Another study by Guo, Hug, and Tonguz [20] proposes a heuristic approach for
selecting subsystems, but it does not yield a unique choice because its initialization is based on
the local solution for the nonconvex OPF. In several studies [14, 17, 18, 20], a positive correla-
tion was observed between the system size and the number of nodes in the largest subsystems
(see Fig 1). The PL depends linearly on the number of subsystems #, which depends inversely
on the size of the largest subsystem (Ny,;), i.e., n > Nb/Ny,;,, where the equality holds when the
sizes of the subsystems are uniform. Fig 1 indicates a positive correlation between Nj,;, and Nb.
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Fig 1. The largest number of nodes in the partitioned subsystems of various power system test cases reported in
the literature [14, 17-19].

https://doi.org/10.1371/journal.pone.0251948.9001

The dotted line indicates that the best linear fit for the relationship is Ny, oc Nb*®2, If the opti-
) [21] that yields a
computation time that is proportional to 9(Nb*®*). In addition, the approaches require signifi-
cant communication costs as well. Therefore, the overall computation cost is much higher
than that of the central optimization. In addition to the computational efficiency, it is not
guaranteed that the voltages at the boundary of each subsystem represent the voltages of other
nodes inside the same subsystem correctly. If they do not, convergences may not be observed
because the information exchange is limited to the boundary buses. The slow convergences
and/or non-monotonous convergences reported in previous studies [14-17] indicate the
insufficient representativeness of the boundary buses. A relatively fast convergence is reported
by Engelmann et al. [18] in exchange of per-step communication costs by sharing the sensitivi-

sub

mization problem is solved by SDP, the computation time is found in 3 (N 3

ties in addition to the local primal variables. The increase in the communication cost is found
ind (Zn?) where n; is the dimension of the local gradient at the i group. Although the

progress at each iteration is faster than those of other ADMM approaches, the communication
cost itself is much higher than the total computation costs of the nonconvex heuristic solvers
or of the SDP solvers. As a result, although these studies are worth exploring, we conclude that
the aggregation approach is not practical in terms of computational efficiency and the inferior
quality of the solutions for a scalable algorithm due to the tradeoff issue, nonconvexity, and
the modeling problem. A new network model for OPF is necessary for the distributed
computation.

The contributions of this paper are 1) a new network model that yields direct communica-
tion among nodes regardless of the system size, 2) a distributed, fast, and efficient algorithm to
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solve highly nonlinear and nonconvex OPF problems, and 3) a scalable algorithm that guaran-
tees convergence to a local minimizer. The paper is organized as follows: the theory section
proposes a new network model designed for distributed computation and presents an algo-
rithm to solve a full OPF; the next section describes the details of the implementation of the
proposed algorithm; the results and discussion present the results for the OPF and compari-
sons with those from other studies; the following section provides conclusions and research
directions for further improving the computational efficiency; and the appendices sketch the
proofs of the ranks of the matrices associated with OPF problems and of the convergence.

Theory
Proposed network model and algorithm

We propose a new network model for a nodal OPF to keep communication costs manageable
regardless of the system size. For this purpose, the desired properties of the model are as
follows:

1. The model must be compatible with PF studies for which Kirchhoff’s laws and voltage mag-
nitudes are well defined.

2. Each node is a short distance away from the rest of the nodes to minimize the communica-
tion costs.

3. The voltages at a node and those at the rest of the nodes are linearly related.

In the power flow studies, such as PF, OPF, state estimation, and probabilistic PF, voltages
are the variables. The constraints in the studies consist of the power flows and injections, as
well as the voltage magnitudes in terms of voltages. In the Cartesian coordinate system, the
power flows and injections are quadratic in voltage. For example, the power flow over the line
connecting Nodes i and j at i is fj;j = v,i; ; = v'F,_v, and the power injection at Node i is g, =
p; +jq; = v"'S,v where the quantities sandwiched between voltages are in 2Nb-by-2Nb;

F_ 2 Jee! Y, J" where e, is a vector with the cardinality of 2NI of which the element corre-

i—j = i7i—j
J”; and the
superscript H is the conjugate transpose. The matrices F._ ; and §; have two nonzero rows at i

sponding to the flow over i-j is 1, and all other elements are zeros, S; £ Jee! Y,

bus’

and Nb+i rows due to J e;.
Claim 1: The matrices associated with power flows and power injections are all of rank 4.
Claim 2: The matrices associated with the squares of the voltage magnitudes have rank 2.

See S1 Appendix for the proof of the claims.
For a real-valued symmetric rank-4 matrix M;, a real-valued eigen pair A and u exist such

4
that M, = Z Dby, = [1 [Aathy /2ty \[ At /;tj4uj4] HJ.(I)].T. Because M; is a rank 4
k=1

@

matrix, the number of columns in @; and the number of nonzero diagonal elements in II; are
both 4. Here, the terms (I)gj, <D§j, @, ,and O, : (I)gj refer to the matrices associated with the
Jj=l

B
-1
real power injection at Node j (S = Re (S]> = O I’ @5); ®; is associated with reactive

J °i J

power injection at Node j (S ;= Im (SJ ) = Hfj (I)STj); ®,; isassociated with real power flow
j—1

o F
over the line j-/ at the side of Node j (Fj_Z =0, I/ D ); and @;; is associated with the
= = ¥
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F
reactive power flow over the line j-I at the side of Node j ( i = @ Hj j'@; > . Note that
-1

the eigenpairs are dependent solely on the system parameters (not on voltages). With the
eigenpairs, the quantities of interest in the PF are the real power injection at Node j p;, the reac-

tive power injection at Node j g;, the real power flow over a line j-I at Node j ﬁf,, the reactive
power flow over a line j-/ at Node jﬁfl, and the squared voltage’s magnitude at Node j E;.

There are quadratic relationships among them:

o Y S;
&~ dJ’) - OCJ'THJ'J“J'; qJ( 8~ ) ﬁ Hjﬁﬂ - 17 Hj I/J 1> f— 5T H JZJI(SJ > ': ijwj(l)

Eq (1) expresses Kirchhoff’s laws and the voltage magnitudes. The nodal variables aj, B, 7;.;,

0.1 and w; are defined as follows: the a; are the voltages projected onto the eigenspaces

spanned by the real power injection, and the f; cover the reactive power injection, the y;;;
cover the real power flow over j-l at Node j, the 6, ;; cover the reactive power flow over j-I at
Node j, and the w; cover the voltage magnitudes at the ™ node in the same manner. Although
there is one each of ¢;, B, and w; at each node, the nl; of y;,;;and J;;; are defined such that nl;
represents the number of branches that are directly connected to Node j (ie.,[=1,2,..., nlj).
It is worth noting that the nodal variables are linearly associated with the voltages (the defini-
tions of the nodal variables in Eq (1)), which indicates that PL = 1. Therefore, the nodal vari-
ables satisfy all the desired properties of the new network model.

Next, we let nl; be the number of lines connected to the j™ node. Then, the dimensions of a,
B, v, 8, and w are 4, 4, 4nlj, 4nlj, and 2, respectively. Note that their dimensions do not depend
on the system size. Let y; be a nodal variable that integrates local generation variables as fol-
lows:

T 8nl;+10 2nl;+2ng i T/ T T
e s = s - [0 ) ]

where yi,,,; = 1. The generalized PF formulation is listed in previous work [22]. Note that the
cardinality of the variable is fixed—independent of the system size. Therefore, the new net-
work model yields: 1) a fixed number of variables, and 2) a PL of 1.

Proposed network model: A star grid with two channels

In the definition of the local variable x;, it is noticeable that there are three variable types: 1)
power injection and flow variables o, B, y, and 3, 2) the voltage magnitude variable w, and 3)

quadratic variables, ¢ x; comprising power flows (fvﬁ,k,fﬁ,k) and power generations (g;). The

first two types of variables are linear, and the third type is quadratic, in terms of the voltages.
Once x; (o, B, v, and ) is determined, it is straightforward to find the power generations at
Node j with Eq (1) (i.e., x; defines the feasible region of y;). The voltage v, can be reconstructed
from o, B, v, and 8. The communication path used to collect their values is termed the power
channel. Here, w is directly associated with the voltage magnitudes, and the values are reported
through another communication path termed the voltage channel to update voltages v,,,.
Although the voltages v, and v,, should be identical, conditions are relaxed so that they can be
different.

Fig 2 illustrates an example of the traditional network model (left) and the proposed net-
work model (right) for a modified 4-bus system that has branches connecting 1-2, 1-3, 1-4,
2-4, and 3-4. In the proposed model, all the nodes are connected to the center node (black dot
at the center) through the power channel (red lines) and the voltage channel (green lines), and
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Fig 2. A star and linear network for a modified IEEE-4 bus system. The traditional network model is shown on the left (A) and the proposed network model is
presented on the right (B). Red lines indicate the power channel, and green lines are the voltage channel.

https://doi.org/10.1371/journal.pone.0251948.9002

all the nodes are of distance 1 from the center (PL = 1). The network is a complete bipartite
graph of order 2 with a maximum-diameter star network. All communications between the
variables take place in local nodes (o, B, v, 8, and w), and the center node is linear in terms of
voltages.

Nodal OPF with nodal variables and its convex relaxation

Even though we describe the OPF problem in this paper, the same framework is applied to any
other problem, including PF, OPF, state estimation, and probabilistic PF problems, because
they have unified formulas [22]. The central OPF formulation as a nonconvex, quadratically
constrained quadratic problem is given in Eq (3), its distributed optimization problem (nodal
OPF) at each node I is given in Eq (3A), and the nodal OPF is formulated in terms of an

ADMM algorithm in Eq (3B).

min g"diag(a)g +2b'g, ¢=[¢" &'’ 2)
vg

L vSy—Llg+d =0, v'Sy—Lig+d =0VYj€cB

2. VIFi v—f =0, v'F_ v—f =0 Vj € Br{i}

3. fT(elel +el+Nlel+Nl)f_ cap; <0, f= [ TfT } VI € Br

s.t. 4 T( ) (pzax +pm1n) ;g +pmax _pmin < 0 vm c G

5' T( m+Ng m+Ng) (qrr)nmx qmm) m+Ngg + qmaX : qmin S 0

6. V' (e] x5 ,+Nb) y—E™ <0 VjeB

7. vT(ee +e+Nh]+Nb)v+E]‘.“i“§0Vj€B
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s.t.

in L(u) = mi L, M 3A
min () = min Z () mmZu Wk (34)
0 (QEmhiti0x2 0 x.
where M!, = | 0 diag(a, 0) (0 b,)" | and y; = | xQ,(x,)
0 (0 b,) 0 nui‘end
1. uiTRe(II,-Si"j)ui +d, = 0; uiTIm(II,-si"j)ui +d, = 0; real and reactive power balance

2. uTRe(IffZ’f)ui = 0; ut.TIm(IIiFfZ?)ui = 0; j € Br{i}; definitions for the real and the reactive power flows as shown in 2 (2)

3. uw'l, Tor w; — cap; < 0; thermal flow limit

i—li
4. pTRe (Ilﬁﬁi) W+ piEpmn < 0; ufIm (Ilﬁﬂ.) t + gpigny < 0 real and reactive power generation limits

5. B0 < ul'IIP , < EM limits for the voltage magnitudes

6. Afp, — Oy, — @ v, =0 x,— Dv, — Oy, = 0; nodal variables in terms of the central voltages

where A is a block matrix to collect an element
_ nxx1 __ Ax1. pAx1, _dnlix1  cdnlx1, w21 Fnlix1 Falixl, 2ngix1 1]
éj - 'uJ"“ = [“f s B vl 0 Lo @i fis fis & luzend:|

Y - T - -
(“iT B; ) Ax/f:“v( Victi 5?1,) *AyT(sl,“i; (fi—lifi li) :ATﬂi; (gpl g?l lui.end) :Ang'“i;

o= Alus A= [Ay Ay oo Ay LI 2 A AL 2 4, AT

o’ w?

¢, = [(DEiq)S,(DFf Oy - Dy q)ﬁ; er} s Oy =€+ €

-1 il i~Br{i}

s 0O 0 1%

Ir’
IL" & A, blockdiagonal 'I;Ef AL —1A 10 0 jl |AT
M 1" 5170
0 0 1
flow H’ tl}’ 0 T 1 . T
Hit.i=Ay(s, . Al =34, 0 0 jl|Apand
. —j
0 I 1" 17 o
1 0 —Pmi
MG,z A, 0 g |ALipn = (pp+ppn) /2 and g, = (a3 + a3 ) /2
_pfnv,i _qu:rzi 0
min » w(x,,7) = min Z[f )+ 8% 5,2,)] (3B)

1

wherey = (v] v}, )T,_)?(x]) min xTM’bx,,g< .Y, zj> =Z|lx, — (I)].Ty||2 +z/ (xj - d)fy),

x;€X;
or equlvalentlyg( X, 9,2 ) =4 llx — (DjTy + zj/pj||2 — ||zj||2; and X; is the column space of
J
®;. at Node j defined by the constraints listed in 1-5 in (3A).
Note that all A’s are full column rank matrices that collect relevant parts from y;, and that
®@; includes the linear relationships between the local variable x; and the central variable v and

. Using the definition of the function f;, the following observations are made: 1) f; is a noncon-
vex, but smooth, function that is C' on an open set containing X; (defined by the column space
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of @;), and Vf; is Lipschitz continuous on Xj; 2) X; is nonempty, closed, and convex; and 3) w;
is coercive.

Even though Eqs (3A) and (3B) have low cardinalities in the decision variables due to the
nonconvex nature of the problem, the uniqueness and existence of the solution are not guaran-
teed. To address the complexity issue, a surrogate function h; approximating Eq (3B) is defined
as follows:

H(x,y,z Zh ( X, )2, ) —Z [uj(xj) —&—gj(xj,y,zj)} where u( ) = SDP off( )( )

Because u; is the SDP relaxation of f, it is convex, Lipchitz continuous, and continuously
differentiable on X;. Note that u; relaxes the rank constraint only; therefore, the first derivatives

of u; and of f; regarding x; are identical (i.e., fo. (x) = Vx_u. (x) ). Because the SDP is con-

vex, the solution at the k™ iteration is uniquely determined by Xt

arg min b, (xj,yk, z]k) at
X EXJ
given y* and z]—k. Note that the relaxed nodal OPF is convex and has a small number of vari-

ables; therefore, its computational complexity remains manageable.

Properties of uj, f;, gj hj, w;. and x;
The nodal problem f; is C** smooth, but nonconvex, and prox-regular at x; relative to f¥

if x; € dom(f)), f¥ € 8f( ) Further, whenever [|%; — x| < & and [|X; — x| < &,
there exists ', 1/ > O:fl)f,(x) Zf-(%) + ( y) (Sc. 7)%1) _ ’]T %, — &% and
f2)f( k“) f( ) + Vf( ) ( A x) 4 5 [l —x]'.‘||2.Statement (2) holds by

the Descent Lemma [23] with the properties of g; and of h; described below. Its SDP relaxation
u; is strongly convex, Lipschitz continuous, and prox-regular, and its first derivative

T ot b
equals that of f; (i.e:ul) u; ()?j) > u, (xj) + [ijuj (xj)] (Scj — xj) + 4% - xj||2
u2) (3?].) <u (xj) + L}||X; — x;[|; and u3) Voy (x/) v /f( ) Whereas the variables
considered in f; and u; are all local primal variables only, ADMM constraint g; depends on the
central variable y and the multipliers z. With the properties of u), f;, and gj, w; is C> smooth,
but nonconvex, and prox-regular, whereas h; is strongly convex and Lipschitz continuous.
Because all X; are bounded sets, w; and h; are coercive and lower-bounded over X;. Because

x ! is the optimizer of convex k; (i.e., x"Jr1 £ argmin h; (x]., ¥, z]k) ), the following holds:
ijXj: x€X;

xl) V, u( k“) +zf —l—pj(x —(I)Ty> = 0 and

x2) h (9?}‘“,)*,4‘) —h (xj,y",zjl.‘) <0 Vx € X,

Proposed algorithm with provable convergence

Overview of proposed algorithm. Even though the number of variables in the nodal OPF
is much smaller than that in the original problem, the complexity of the problem makes it diffi-
cult to solve the nodal problem due to its nonconvex nature. To manage the nonconvex nature
of the problem, the nonconvex components are relaxed. Once identified, the relaxed solution
is mapped onto the feasible region, to the closest point in the feasible region from the identified
solution. There are three cases: 1) the convexified problem is not feasible, 2) the convexified
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problem is feasible, but the solution to the problem is too far from the feasible region, and 3)
the solution to the convexified problem is sufficiently close. Only if the mapped point is close
enough, the nodal variables are updated and fed to the center node to update voltages.
Proposed algorithm. We propose the following algorithm to solve w; in conjunction with

h;in Eq 5:

Distributed, Regulated, Optimally-Homogeneous, and Scalable (DROHS)

Algorithm

1. Set k =0, initialize all parameters, such as 2k e (0,1), yk, Oir

{#} e Nun(w)).
2. If x]" satisfies the termination criteria, terminate the algorithm.

3. Solve the local problems, fcj’.‘“é argminhj(xj,yk,z;‘>.
xjexj

4. Depending on the solution fc]’.‘“

+ Case 1: Sc]’.‘“

, determine C]]f“ (Fig 3)

is in the real space of convex X;, i.e., in the column
k41 ~k+1

space of @5, G =X

+ Otherwise (%j‘“gé)(;) Find a feasible projection of ¥*' onto the fea-
sible region Xj, ZJ’.‘“ near 5611.‘“;

+ Case 2: the projection E;H is close enough to ' (i.e., HE]"“ x| <
e where g 21/[|%*! —«f||) ; accept the solution Cj].‘“, C]’.‘“ :Z']’.‘“;

e Case 3: EJ’.‘“ is not sufficiently close; reject the solution {Jlf“,

=

] ]

. . k( okt
« update x}’f“, Xt = xJ" +A (ij —x}’f>;

* set the error bound asymptotically to vanish as iteration proceeds
(i.e., limt=0).
k—oo 7/

5. Compute y*! = argyminh<5€;‘“,y7 zjk) , and update z*' =z +p, (92}’.‘“ - (I)J.Ty"“)

accordingly; and A =Af — a(Ak)2 where a € (0.5, 1).

6. Update xj.‘“ so that all x-variables are consistent with global vari-
able y (i.e., ¥ —®ly* =0).

7. k «<— k + 1, and go to 2.

Fig 3 illustrates how the x-optimization process determines the X" described in Rule 4 of
the algorithm. If the solution ic]’.‘“ is feasible in X, 5(11,‘“ is the solution (Case 1). If the solution
fc]’.‘“ is not in X; but the point projected onto the convex region X; is sufficiently close, fcj’.‘“ is
the projected point (Case 2). For Case 3, where either no solution is identified or the identified
solution is not in Xj, and the distance to the projected point is too far away, the solution is
rejected, and J%]’.‘“ is the point determined in the previous step. Upon the determination of
fc}’.‘“, the iteration proceeds to a point between the current and the projected point depending
on parameter A,

After the x-optimization is performed, y-optimization follows. The y-optimization at given

%51 and Z* is a least square problem-convex problem. It should be noted that the solution to

j
the convex problem is always feasible. Rule 6 is a striking feature of the proposed algorithm

that is critically different from the ADMM approaches. Instead of the locally independent
update of the primal variables in the ADMM approaches, the nodal variables are updated 1)
linearly for the computational efficiency, and 2) with respect to the central variable so that the
update is reasonably agreeable among nodal variables. The proof of the convergence of the
proposed algorithm is presented in this paper’s S2 Appendix.
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k+1 Zk+1 ck+1 _ .k k(7k+1 _ .k
P e Ot = R = af + A4 (T — )

om+1
J
n n+1
K \:I\‘
~n+1
4

k+1 7k+1 ok+1 _ .k k{zk+1 _ Lk
e O = 2 = af + Ak (3] xf)

Fig 3. x-update from the result of optimization with 1) a feasible solution ¥;*!, 2) an infeasible solution, but the distance between the solution
and the projection onto the feasible region is close enough HZ J"“ —X j’.‘“ | < sf ,and 3) an infeasible solution in that the projection onto the feasible
region is too far HE}"‘“ — x| < e

https://doi.org/10.1371/journal.pone.0251948.9003

Implementation details
Implementation of Rule 4
The local SDP relaxation yields a matrix (known as Z]’.‘“) instead of a vector 56}’,‘“; therefore, a

new criterion should be established to compute ¢ ]’.‘“, as follows: Because Z ]’.‘“ is from SDP, all
~ ~ - T r T
the eigenvalues are non-negative (i.e., Zf*! = (! (C ]’.‘“) + Z t//;fnl (x//f;l) ) where wﬁf is
m=2

the m™ column vector, and r is the rank of Z]’.‘“:

To construct an equivalent criterion to [|{f*! — X*!|| < &f with

~ ~ T ~ ~ ~
é']l_c+1 (C]kH) _ Z]I_c+1 < Hér]kH + x]l_<+1||||é/]l_c+1 _ x]l_<+1|| (5)

~ ~ ~ ~ ~ ~ T ~
IG5 X< 20+ 18 = X5 < 20185 + &, we impose ||+ (C]’-‘“) - Zj|| <

&l (811( +2|¢ e H) to determine whether or not the feasible projection is acceptable. The
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grouping criterion is simplified to m HZ lp]k;] ( k+1) H < g/ by invoking &} < ||é’k+1 .

Let 27 2 be the m™ eigenvalue of Zk Then, the criterion becomes / Azk < 2/1sz

The definition of & £ 7f||¥/*! — x/|| is also modified as

2 s T .
ext l\/ij"H + HZ]’.‘+1 - xj"(xjk) H - ||xj"||] using

~ T
k1l ok k Skl ok Skl Lk
125 = () 1< (2l + 18 = w4 I = )

Choice of parameters
In contrast to the ADMM approaches, only a few parameters are assigned in the proposed

algorithm. Because { } € Null ( ) and the specific choice of z; is irrelevant, all z;'s are ran-

dom vectors in the null space of known ®;. It is important to hold Z l€]]* < oo to
k=1
guarantee the convergence of the proposed algorithm [24]. Due to the fact that
Z "> < [+ — ||maxz (rmax) the maximum 7 over all nodes at the k™ iteration is set
k=1
by 1% = 1%, /k. The parameters used were as follows: p; = 20 for v; and 200 for vy A° = 0.3;
and the number of maximum iteration = 100; 7° = 107"

max

The global variable y is randomly assigned (cold start) to test the algorithm’s robustness. For
comparison, a flat start and a warm start are also attempted. Here, a flat start refers a point at
which real voltages are unity, and imaginary voltages are within [-0.1, 0.1]; and a warm start [20]
is a solution to the PF. It is recognized that a faster convergence is obtained when the initial
point is close to the feasible region, which is commonly observed in numerical iterative methods.

Termination criterion

The algorithm is terminated when no further progress is made. The progress is measured in
terms of the global variable y, and the local variables x and z. After the solution is identified,

the objective function W* is determined according to (3B) where W (x, y, z Z w,(x;,9,2;)
ie, W= W(x,y", z") = Z w; (x!,y",z;). The interim value of W at the k™ iteration is
Wk = WE(x, yF 2F) = Z wk (x5, 5%, 2"), and the progress measure 7" at the k™ iteration is

defined:

Wk_ W+

— (©

Progress measure n* £

The criterion used in Rule 2 terminates the algorithm if the progress measure is less than
the tolerance (1077) (i.e., nk <107).

Results and discussion
Simulation environments

The model systems used in the simulations are available from MATPOWER [25] for 3-, 4-, 9-,
14-, 24-, 30-, 39-, 57-, 85-, 118-, 300-, and 2,000-bus systems. All simulations were performed
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using a Mac pro with 2 x 2.93 GHz 6-core Intel Xeon processors and 6 GB 1333 MHz DDR3
memory. The local SDP problems were solved using the CVX solver [26]. To compare the
results from various systems, the lines in the figures are normalized so that all start at zero. The
initial points for all the cases are cold starting points, and all the real and imaginary voltages
are set to random numbers (not even a flat start). The qualities of the solutions are all numeri-
cally identical to those identified using MATPOWER for the model systems tested (all the
solutions v* are less than 107 from the MATPOWER solutions (Vaiarpower)s lv* -
vaarrowerl|/||v*]| < 107%). For comparison, we also attempted a flat start and observed that
Nii.r decreases at least 30%, but the flat start also finds the same solutions.

Subsystems of the test cases

In the ADMM approaches referred to in the literature [14-20], the grid partitioning is per-
formed, but the details of the partitioning are not well listed. In considering the computational
coupling, the partitioning is based on spectral clustering [20, 27] while each subsystem con-
tains at least one generator [14, 20]. The inclusion of a generator in a subsystem seems a natu-
ral choice to fulfill the power balance equality constraints (1 in (3)) within each substation.
However, the inclusion of a generator does not serve the purpose well, because the generator
may not be dispatched if its generation costs are excessively high. The spectral clustering is per-
formed using two different algorithms: 1) unnormalized [27] and 2) normalized [28]. The
algorithms yield different grid clustering. For example, the unnormalized algorithm results in
two clusters for the IEEE 3-bus systems, while the normalized algorithm finds a single cluster
for the same system [28]. Fig 4 illustrates the path length, maximum number of nodes in a sub-
system, and the number of subsystems.

The lines are best-fit lines, showing the positive correlations of path length (red dotted line
path length o< Nb**°), the maximum number of nodes in a subsystem (green solid line o
Nb°*), and the number of subsystems (blue broken line o< Nb°7%) based on the unnormalized
algorithm (left plot). The results using the algorithm with a different normalization [28] yield
path length oc Nb°>*, the maximum number of nodes in a subsystem oc Nb°*>, and the number
of subsystems oc Nb*°° (right plot). Even though the results from the two plots are not exactly
the same, the positive correlations with the system size are clear. They affect the computational
efficiency of ADMM [14, 20]; path length affects the communication costs and N, because
the decision at each subsystem should be delivered to the rest of the system; the number of sub-
systems affects the number of computation cores and the communication costs unless PL
equals one; and the maximum number of nodes affects the computation costs at each subprob-
lem. Therefore, the decrease in the computation costs at each subsystem is achieved in
exchange for the increased costs of communication among subsystems. Because the path
length and number of subsystems increase rapidly with system size, the improvement in
computational efficiency of the ADMM approach is questionable.

Maximum cardinality of nodal variables in the proposed algorithm

The nodal variables in the x-optimization y; are

v

4x1, ﬁ4X1' Anlix1 54nl,-><1. 2x1. nlpx1, Falix1 — 2ngix1, 1x1

s Py s Vici s Oy s @ fi—l,z‘ s fill & ; /“‘i,md]Because Pend is unity, the car-

dinality of y; is 10nl + 2ng + 10 where nl is the number of lines connected to the ™ node, and
ng is the number of generators located at the node. In determining the voltages through the
power channel, the node with a high value for nl plays a key role. Fig 5 illustrates the maximum
cardinality n®* of y; with the systems’ sizes. The dashed line indicates n7* oc Nb'/*. Even

though the positive relationship between n7** and Nb is visible among the model systems, the

var
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Fig 4. The path length, the maximum number of nodes in a subsystem, and the number of subsystems for the
IEEE 3-, 4-, 9-, 14-, 24-, 30-, 39-, 57-, 85-, 118-, 300-, and 2,000-bus systems. The lines indicate the positive
correlations on the size of the system. The red-dotted line, the blue broken line, and the green solid line represent the
best-fit curves for the path length, the maximum number of nodes in a subsystem, and the number of subsystems,
respectively. Two algorithms are applied for clustering nodes: (A) unnormalized algorithm, and (B) normalized based
on the algorithm in [28].

https://doi.org/10.1371/journal.pone.0251948.9004
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Fig 5. Cardinalities of nodal variables in x-optimization in terms of system size.

https://doi.org/10.1371/journal.pone.0251948.g005

relationship is not necessarily positive. The number of variables in the central OPF is typically
2Nb + 2Ng where Nb and Ng are the numbers of buses and generators in the system, respec-
tively. For small systems, such as 3-, 4-, 9-, 14-, and 24-bus systems, the maximum cardinalities
of the nodal variables are higher than the number of variables in the central OPF; therefore, it
would be challenging to keep the computational costs of the distributed OPF for the small sys-
tems lower than those of the central OPF. It is noteworthy that the communication costs
remain manageable, because each node directly communicates with the central node due to
the fact that PL equals unity.

Distributed OPF for 3-, 4-, 24-, 39-, and 85-bus systems

To examine whether the choice of parameters affects the convergences, optimizations were
executed with many randomly assigned initial points, and uniform convergences were consis-
tently observed (Fig 6). In general, Nj,, depends on the initial guess of the voltages. As the dis-
tance of the initial point from the solution becomes closer, N, decreases, which is commonly
observed in numerical iterative methods. All the solutions identified are numerically the same
as the solutions using MATPOWER.
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Fig 6. Convergence of proposed algorithm for selected systems (i.e., IEEE 3-, 4-, 9-, 14-, 24-, 39-, and 85-bus systems).
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A worst-case convergence was observed for the IEEE 39-bus system. The nodal OPF for the
system involves large negative eigenvalues (i.e., the nodal OPFs are highly nonconvex).
According to Rule 4, a relatively large number of solutions are rejected because they are not
close to the feasible regions and, therefore, Ny, becomes large (approximately 40 iterations).
However, the solution identified is a local minimizer, and N, is still much smaller than the
number of iterations for the ADMM approaches. For the visual presentations of the results
obtained for various systems, the progress is normalized to the 1*" iteration (i.e., the curves
begin at 0 for the 1*" iteration).

Comparison of convergence to ADMM approaches

The convergence measures were compared to those from the ADMM approaches reported in
multiple studies [14, 17-19]. It is worth noting that Erseghe [14] and Zhang et al. [17] do not
take the flow limits into consideration; the approach of Engelmann et al. [18] involves a high
communication cost; and the approach of Madani, Kalbat, and Lavaei [19] may yield a physi-
cally infeasible solution. We attempted the ADMM approaches with the flow constraints and
feasibility, but our implemented solver failed to converge with any starting points. Instead, we
compared the convergence behaviors of the proposed algorithm to those reported in the previ-
ous [14, 17-19]. For the visual presentation, the convergence behaviors are normalized so that
all the curves begin at the same point (see Fig 7 for the comparison of the convergence).

In the previous research [14, 17-19], the size of the subsystems increased with that of the
system. Therefore, the tradeoff between communication costs amongst the subsystems and the
computation costs for each subsystem make it difficult to develop a scalable algorithm. As the
system size increases, Ny, increases significantly for the results in two of the previous studies
[14, 19]. The performance measure in another study [17] fluctuates consistently with various
systems, indicating that the convergence may not be guaranteed. Because the final study [18]
requires the information exchange regarding sensitivities as well as the primal variables, the
computation and communication costs per iteration increase much more rapidly than do the
computation costs of a central OPF solver.

Different from the clustering containing multiple nodes used in the ADMM approach, the
proposed algorithm for each subsystem contains only 1 node regardless of the system size;
each subsystem directly communicates with the rest of the entire system; and the communica-
tion involves only the primal variables. With this difference in mind, the fast convergences
observed in the proposed algorithm are similar to those in two of the previous studies [17, 18],
which are consistently much faster than those in the other two previous studies [14, 19].
Whereas N, are like those reported by Engelmann et al. [18], the convergences of the pro-
posed algorithm occur more uniformly and consistently.

Many approaches using ADMM do not consider the flow limits [14, 17], and/or feasibility
[19] and, therefore, it is not appropriate to compare the quality of the solutions. Instead, we
compared our solutions with those using a central OPF solver, MATPOWER. For all the cases
described above, they yield numerically identical solutions. It is not clear why the proposed
algorithm finds the same solution as the central OPF solver. We tested with the central SDP-
relaxation for a small-scale system to estimate the “global” solution. Due to the memory issue,
our SDP tests are limited up to 118-bus systems. When the relaxation returns the rank-1 solu-
tion, the solution is global and physically feasible. For several cases, the test cases are of the
global solutions that are also identified by MATPOWER and by the proposed algorithm. How-
ever, there are cases where the SDP relaxation returns a physically infeasible solution. For
these cases, both MATPOWER and the proposed algorithm identify numerically the same
local minimizers that may not be global solutions. MATPOWER finds a point that meets the
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Fig 7. Convergence of proposed algorithm for selected small systems (i.e., IEEE 9-, 14-, 30-, 57-, 118-, and 300-bus systems). The
convergences of the ADMM approaches [14, 17-19], are compared.
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first-order necessary conditions for optimality [25]. Although it finds a minimizer in most
cases, there is no guarantee that the identified solution is a minimizer—it can be either a maxi-
mizer or a saddle point. On the other hand, the proposed algorithm identifies a solution that
meets the second-order optimality conditions, which guarantees that the solution is a mini-
mizer [29]. From a practical point of view, there are two advantages of the proposed algorithms
over MATPOWER: 1) they are numerically stable and, therefore, robust because all the sub-
problems are convex—no issues regarding the rank-deficient Hessian matrix, and 2) they use
distributed computation and, therefore, manageable computation in each subproblem. How-
ever, there are disadvantages of the proposed algorithm: 1) the requirement of multiple cores
to perform the distributed optimization, and 2) the number of nodal variables can be larger
than that of the central OPF; for example, 3-, 4-, 9-, 14-, and 24-bus (See Fig 5).

Large-scale OPF: 2,000-bus system

We tested the algorithm for a large-scale system, the 2,000-bus system that is a synthetic grid
on a footprint of Texas. Fig 8 presents a convergence pattern. The solution identified is numer-
ically identical to the one found using MATPOWER. Nj;,, remains small, as is the case for the
small systems (See Figs 6 and 7). Note that the nodal OPF includes only 1 bus, and the commu-
nication costs remain small because PL equals unity. If a sufficient number of computation
cores are provided, the proposed algorithm is scalable if the computation cost for solving a
subproblem does not increase significantly as the system size increases.

Different from other algorithms reported in the literature (i.e., [14-18]), the proposed algo-
rithm converges regardless of the initial points, but the number of iterations decreases by at
least a factor of 2 if it uses a flat start. Another shortcoming of the algorithms reported in previ-
ous research [14-18], is the quality of their solutions. Whereas the existing OPFs find low-volt-
age [17] or suboptimal [16] solutions, the proposed algorithm finds the same solution as a
central OPF solver. One previous study [16] claimed that there might be an optimal number of
partitioned subsystems due to the tradeoff between communications and computational costs
used to obtain a local solution. The proposed method keeps the PL = 1, and the central compu-
tation is a simple addition of x; through both the power and voltage channels. From the simu-
lations with various parameter values such as pj, A%, t;, and a, we obtained the same solutions,

indicating that the proposed algorithm is robust as well as efficient. In addition, the proposed
model does not require any partitioning.

Comparison to a heuristic central OPF solver, MATPOWER

In comparing the convergence between the proposed algorithm and the central OPF, the num-
ber of variables and Nj, were examined. The maximum cardinality n{>* of y; increases with

var

the system size in n™™ oc Nb'/* (See Fig 4). Fig 9 illustrates the number of variables in the cen-
tral OPF as well as the maximum cardinality of the nodal variables. The blue line is the best-fit
line for the central OPF (nF = 2Nb + 2Ng ox Nb"*%), whereas the red line is the best-fit line

var

for the distributed algorithm. It is clear that n%?" increases with Nb in a much faster way than

ar

n™™* does. The black line is the boundary at which n%’* equals n™>. If enough computation

var var var

cores are available, the proposed algorithm involves reduced computation costs per iteration
for systems larger than or equal to IEEE 24-bus. Whereas n®? almost linearly increases with

var

Nb because Ng < Nb in most systems, n* does not necessarily increase theoretically. A key

observation is that the proposed approach can be a scalable algorithm if Nj,,, does not rapidly
increase with the system size.
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Fig 8. Convergence of proposed algorithm for synthetic 2,000-bus system on a footprint of Texas.
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Fig 10 presents Nj,, for the central OPF (Nit.,,,) and of the proposed algorithm (Nit ;) on
the tested systems. A visible increase in Nit,,,, is observed with Nb, but the dependence of Nit-
4ise O N is not evident—the solid lines are best-fit curves (log-log plot) that indicate Nit_,,, =
Nb*'9 and Nit g, = Nb~%, respectively. The dotted lines are average Ny, and the values are
15 and 23, respectively.

From the comparisons (the number of variables and Ny,,), we conclude that the computa-
tion cost of the distributed algorithm increases with Nb at a much slower rate than that of the

central OPF if sufficient computational resources are available.

Scalability of the algorithm

The computation efficiency of a distributed computation depends on the number of iterations
and the computational cost per iteration. The cost is determined by the local computation
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with the largest number of variables. Fig 10 shows that the number of iterations does not
increase with system size.

Fig 11 illustrates the maximum nodal computation time depending on the maximum cardi-
nality of the nodal variables. This performance dependence on the number of nodal variables
may shed light on the claim by Loukarakis, Bialek, and Dent [30] that a larger system does not
necessarily imply an inferior convergence performance. The dashed line indicates that the
maximum nodal computation time is proportional to the maximum cardinality of the nodal
variables with the power of 2.64. The cardinality to the power of 2.64 observed in this study is
close to the theoretically estimated 3 for the SDP solver. Note that it is not necessary for the
maximum cardinality of the nodal variables to be positively correlated with the system size.
Rather, the maximum cardinality depends on the local grid topology of the system. For the

tested systems, n™> oc Nb'/* and CT o< (ni";")zm, which results in CT < N>+ = Np*-©°

where CT represents the maximum nodal computation time. The total computation cost is
bounded by the product between Nj;., and CT. The total computation cost is bounded by CT
o I([Nb/N_ o | Nb*%%) where N, is the number of cores. If the computational resource is
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sufficient, CT o< 9(Nb>%°). From this observation, the computation cost increases sub-linearly
for a large-scale network.

If a single core is available for computation, the computation cost is in $(Nb'Ps>?/*) where
Pspp is the computational complexity for a nodal SDP. For the state-of-art central heuristic
OPF solvers, the computation cost is in 9(Nb'). Therefore, when the computation resources
are highly limited, the proposed algorithm would still be efficient with a convex problem solver
that yields pspp < 2. A potential improvement in pspp of the SDP solver is to explore the sparse
structure of the matrices [31] or to utilize a commercial solver such as MOSEK.

Nomenclature

(I)j-wﬁq, d)]M”" eigenvectors of Mg, M;, scaled by diag(1 /2, q) and diag(\/%,,)
Q,, Q" Setand the complement of the set of Case m

0, Bj nodal variable associated with real and with reactive power injection, o' = ®! vand
J

ax1 _ mT
B~ = (Dsjv
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Yj-1» 9.1 nodal variable with real and with reactive power flow over the line j-I at the side of
the jth node, V;‘flb = (D%IV and 5;.‘:3. = (D:j,lv

w; nodal variable with Ej, ! = (ejT + eJ.TWb) Tv

B, Br, G sets of nodes, branches, and generators

Br{j}, G{j} sets of branches and of generators at node j

E; voltage magnitude square at Node j, v/*

II", IT" diagonal matrix of +1 associated with equality and inequality constraints

I identity matrix

J matrix [I7j 17"

M., M;, symmetric matrices with equality and inequality constraints

M = @@ M = @Y M
J J /A R j i
Ypus Ypr nodal and branch admittance matrices

Nb, NI, Ng number of nodes, lines, and generators at the system of interest
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N number of iterations until convergence occurs
cap; thermal limit of flow over [

d; real and reactive power demand at j,d;, = d i+ jd ;
€ ™ column vector in the identity matrix

j:_, power flow over j-I at the j™ node, j_z = uj:f, + jfj;l

g; generation at the /™ node, g =g +ig

jv—1

nl;, ng; number of lines and generators at Node j
tlnax maximum number among #l; in the system
vy, vpr voltages at the power and voltage channels

T
v, v, ¥, v, complex voltage vector, voltage v = [vf vﬂ , real and imaginary part of voltage,

v:vx—l—jvy:ij

T

v = . . . o o— —rT
x,x,X%, X complex variable, real, and imaginary parts of x, x = X + jx and x = [ X7]

Nodal variables and their cardinality
%! nodal variable associated with real power injection at Node j

,[)’]'l4Xl nodal variable associated with reactive power injection at Node j

7" nodal variable associated with real power flow ﬁ_k over a line j-k at the side of Node j

4nl;x1
j —
5;1;1 nodal variable associated with reactive power flow f} , over a line j-k at the side of
Node j

nl, . . . . . .
5;1 ! nodal variable associated with reactive power flow over the lines connected to Node j

nodal variable associated with real power flow over the lines connected to Node j

@?*! nodal variable associated with the voltage magnitude at Node j

fj;k scalar representing real power flow over a line j-k at the side of Node j

- ;_k scalar representing reactive power over a line j-k at the side of Node j
ng] X

pj

ngix1 . . .
g, nodal reactive power generation vector at Node j

1 . .
nodal real power generation vector at Node j

Conclusions and future research directions

From the tensor analysis of the power flow, we developed a star and linear model to achieve a
scalable distributed computation. The new network model allows the direct communication
between the nodal variables and the central voltages. In the model, the PL remains at unity
regardless of the system size. On the other hand, the Kirchhoff’s laws and voltage magnitudes
are expressed in terms of nodal variables that are linear in the voltages. Therefore, the model
makes it possible to keep the size of a nodal OPF small regardless of the size of the system,
while the communication costs remain manageable. This new aspect of the model allows us to
construct a scalable algorithm that converges to the same solution as the nonconvex OPF. We
proposed the DROHS algorithm to find a local minimum using a convex surrogate function.
Among the nodal OPF solutions, only near-feasible solutions (Rule 4) are selected for updat-
ing. In addition to the high quality of the solution, it also achieves computational efficiency
and robustness. We tested the DROHS algorithm for the 3-, 4-, 9-, 14-, 24-, 30-, 39-, 57-, 85-,
118-, 300-, and 2,000-bus systems. The proposed algorithm achieves 1) fast and uniform con-
vergence, 2) provable convergence, 3) the same problem formulation as the central OPF
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problem without ignoring any constraints, 4) guaranteed convergence to a local minimum,
rather than a maximum or saddle point, that meets the first-order necessary conditions for
optimality, and 5) a completely distributed algorithm (i.e., a scalable algorithm, which has
never been achieved before in the literature). The challenges that the proposed algorithm faces
are 1) an increased number of nodal variables that may be higher than that of the variables in
the central OPF for a small system, 2) an increased number of iterations when highly con-
nected nodes involve solutions far from the feasible regions, and 3) a prolonged wait time for
nodes with low cardinalities. Therefore, the proposed algorithm is an efficient alternative to
the central OPF for a large-scale network. Future research directions include the development
of 1) a way to accommodate the impact of the rejected solutions in updating the x-variables if
the corresponding nodes are highly connected, 2) an efficient computation to solve the nodal
SDP, particularly a way to explore the sparse structure of the nodal OPF, and 3) asynchronous
distributed optimization for improving the computational efficiency where the scheduling of
the distributed computation is identified in terms of a knapsack problem. We also present the
proof showing that the surrogate function improves at every iteration and that the iteration
converges to a fixed point of the nonconvex OPF. The numerical results exhibit rapid conver-
gence, and the convergence behavior is discussed.

Supporting information
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