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Abstract

β-lactam resistance represents a worldwide problem and a serious challenge for antimicro-

bial treatment. Hence this research was conducted to recognize several mechanisms medi-

ating β-lactam resistance in E. coli and K. pneumoniae clinical isolates collected from

Mansoura University hospitals, Egypt. A total of 80 isolates, 45 E. coli and 35 K. pneumo-

niae isolates, were collected and their antibiotic susceptibility was determined by the Disc

diffusion method followed by phenotypic and genotypic detection of extended-spectrum β-

lactamases (ESBLs), AmpC β-lactamase, carbapenemase enzymes. The outer membrane

protein porins of all isolates were analyzed and their genes were examined using gene

amplification and sequencing. Also, the resistance to complement-mediated serum killing

was estimated. A significant percentage of isolates (93.8%) were multidrug resistance and

showed an elevated resistance to β-lactam antibiotics. The presence of either ESBL or

AmpC enzymes was high among isolates (83.75%). Also, 60% of the isolated strains were

carbapenemase producers. The most frequently detected gene of ESBL among all tested

isolates was blaCTX-M-15 (86.3%) followed by blaTEM-1 (81.3%) and blaSHV-1 (35%) while the

Amp-C gene was present in 83.75%. For carbapenemase-producing isolates, blaNDM1 was

the most common (60%) followed by blaVIM-1 (35%) and blaOXA-48 (13.8%). Besides, 73.3%

and 40% of E. coli and K. pneumoniae isolates respectively were serum resistant. Outer

membrane protein analysis showed that 93.3% of E. coli and 95.7% of K. pneumoniae iso-

lates lost their porins or showed modified porins. Furthermore, sequence analysis of tested

porin genes in some isolates revealed the presence of frameshift mutations that produced

truncated proteins of smaller size. β-lactam resistance in K. pneumoniae and E. coli isolates

in our hospitals is due to a combination of β-lactamase activity and porin loss/alteration.

Hence more restrictions should be applied on β-lactams usage to decrease the emergence

of resistant strains.
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1. Introduction

In the 21stcentury, the emergence and dissemination of resistant bacteria to antimicrobial

agents is considered a challenging and threat to global public health as antibiotic resistance

leads to higher medical costs, longer hospital stays, and increased mortality [1, 2]. β-lactam

antibiotics are among the most commonly prescribed antibiotics due to their minimal side

effects and broad antibacterial spectrum. However, various mechanisms are responsible for

resistance to β-lactam compounds, such as the production of degrading enzymes, alteration of

the drug target (modification of penicillin-binding proteins), decreased membrane permeabil-

ity, and drug efflux pump [3, 4].

β-lactam compounds resistance is a rising problem and the production of different β-lacta-

mases was documented to be the main cause of β-lactam resistance especially among gram-

negative bacilli. Carbapenems group is often used as β-lactam of last resort in treating infec-

tions caused by multi-drug resistant bacteria especially those belonging to Enterobacteriaceae.
However, in this family reduced susceptibility to carbapenem group can be frequently associ-

ated with carbapenemases production, membrane impermeability coupled with elevated

expression of other β-lactamases, or a combination of these mechanisms [5–7].

The gram-negative bacteria outer membrane permits the passive diffusion of small hydro-

philic solutes and important antibiotics (β-lactams and fluoroquinolones) by channel-forming

proteins [8]. Porins are considered one class of these proteins that are present in gamma-pro-

teobacteria members such as E. coli, Salmonella, Shigella, and others [9–12]. Porins also main-

tain the envelope integrity of the cells and act as receptors for bacteriocins and bacteriophages.

Additionally, they participate in bacterial pathogenesis such as invasion, serum resistance, and

adherence [13]. In gram-negative bacteria, different porins types have been identified and clas-

sified according to their functional structure, their activity, and their regulation and expression

[10].

From the gram-negative bacteria, E. coli and K. pneumoniae which are responsible for the

majority of nosocomial and community-acquired infections. The three major porins that have

been identified in E. coli include OmpF, OmpC, and PhoE which differ from one another

according to charge and size of solutes [10, 14, 15]. Also, K. pneumoniae contains two main

porins, Ompk35, and Ompk36, through which hydrophilic solutes gain access to bacterial-cell

[10]. Loss of membrane permeability may be due to mutation in porin that renders it non-

functional or alteration in expression level or may be due to complete loss of the porin proteins

[16]. Many studies illustrated that loss of Ompk35 and/or Ompk36 in K. pneumoniae, contrib-

ute to their resistance to cephalosporins and carbapenems [17–19]. Also, mutations in the

OmpC or OmpF genes that result in subsequent porin loss have been reported in the resistance

of Enterobacter spp., E. coli, and S. marcescens, for carbapenems [20, 21]. This work aimed to

investigate the prevalence of porin alteration mediated resistance to β- lactam antibiotics in β-

lactamase producing and non-producing strains of multidrug-resistant clinical isolates of E.

coli and K. pneumoniae.

2. Methods

2.1. Bacterial isolates

A total of 80 clinical isolates were separated from urine and sputum samples which were col-

lected from microbiological laboratories in Mansoura University hospitals, Dakahlia governor-

ate, Egypt. These isolates were identified as 45 isolates of E. coli and 35 isolates of K.

pneumoniae using biochemical standard assay methods [22, 23]. This work was done after
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approval of the administrative authorities (Research Ethics Committee) in the faculty of phar-

macy. Mansoura University, Egypt.

2.2. Antimicrobial susceptibility testing for isolates

The susceptibility of all isolates was determined using the disk diffusion method to different

antimicrobials including cefotaxime (30 μg), ceftriaxone (30μg), ceftazidime (30 μg), cefepime

(30 μg), piperacillin-tazobactam (36 μg), amoxicillin-clavulanic acid(30μg), imipenem (10 μg),

amikacin (30 μg), trimethoprim/sulfamethoxazole (25 μg), Ofloxacin (5 μg), and nitrofuran-

toin (100 μg) on Mueller-Hinton agar plates [24]. All antibiotic discs were obtained from

Oxoid, United Kingdom. According to zones of inhibitions, bacterial strains were classified as

resistant, intermediate, or susceptible using Clinical and Laboratory Standard Institute guide-

lines [25].

2.3. Phenotypic screening for ESBLs enzymes production

The production of ESBL by clinical isolates was tested by Modified Double Disc Synergy Test

(MDDST) using amoxicillin-clavulanic acid disc (20/10 μg) along with three third-generation

cephalosporins discs {ceftazidime(30μg), ceftriaxone (30 μg) and cefotaxime (30 μg)} and one

fourth-generation cephalosporin disc (cefepime 30 μg) [26]. The amoxicillin-clavulanate disc

was centered on Mueller-Hinton agar plate lawned with test organism suspension equivalent

to 0.5 McFarland standards. The discs of cephalosporins were placed around the amoxicillin-

clavulanate disc with a distance of 15mm (for third-generation cephalosporins discs) and

20mm (for fourth-generation cephalosporin disc), and then the plates were incubated at 37˚C.

Positive results for ESBL production are considered by any increase in the inhibition zone

around any of these cephalosporin discs towards the disc of amoxicillin-clavulanate.

2.4. Phenotypic screening for AmpC enzyme production

AmpC enzyme production for all isolated strains was determined by three- dimensional

enzyme extract method [27]. Mueller Hinton agar plates were inoculated by E. coli DH5α and

cefoxitin discs (30 μg) were centered on them. The extraction of crude enzymes from all iso-

lates was done as mentioned by Livermore et al., 1984 [28]. A circular well and a linear slit

were made in the agar plates as described before [29]. The enzyme extracts were added to the

wells then the plates were kept upright for 5–10 min and incubated overnight at 37˚C. Clear

distortion of cefoxitin disc inhibition zone was shown in isolates which were AmpC β-lacta-

mase producers while AmpC β-lactamase non-producers gave no distortion.

2.5. Phenotypic screening for carbapenemases enzymes production

All of the tested isolates were screened for carbapenemase production on Mueller-Hinton agar

plates using the Modified Hodge test (MHT) as described by [30] using E. coli ATCC 25922 as

an indicator and a meropenem disc (10μg).

2.6. PCR screening for β-lactamase genes and porin encoding genes

The presence of ESBL encoding genes (blaTEM-1, blaSHV-1, blaCTX-M-15), Amp-c gene, carbape-

nemase- encoding genes (blaNDM-1, blaVIM-1, and blaOXA-48) among all E. coli and K. pneumo-
niae isolates and also porin encoding genes (ompK35 for K. pneumoniae isolates and ompC
and ompF for E. coli isolates) were examined by PCR utilizing the primers listed in Table 1.

Genomic DNA was prepared from heating one-two colonies in 100 μl of distilled water at

95˚C for 10 min. A reaction mixture contained 1μl of each primer (10 μM), 12.5 μl Dream Taq

PLOS ONE β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0251594 May 20, 2021 3 / 22

https://doi.org/10.1371/journal.pone.0251594


Green PCR Master Mix (2x) (Thermo Fisher Scientific Inc, USA), 1μl of total DNA, and 9.5 μl

nuclease-free water. The PCR program was done as follows: initial denaturation at 94˚C for 10

min; 35 cycles of DNA denaturation at 94˚C for 30 s, annealing at a temperature specified for

each primer as listed in Table 1 for 30 S and extension at 72˚C for 1 min followed by final elon-

gation step at 72˚C for 7 min. The PCR products were visualized by electrophoresis in 1% aga-

rose gels stained with ethidium bromide.

2.7. Isolation and characterization of the outer-membrane proteins

The outer-membrane proteins (OMPs) of all E.coli and K. pneumoniae isolates were analyzed

by SDS-PAGE [31] and compared to standard E.coli ATCC 25922 and K. pneumoniae ATCC

33495. Barwa and Shaaban procedure was used for the preparation of OMPs from all tested

isolates [32]. Then OMPs were analyzed by SDS-PAGE (10%) and gels were visualized by

staining with Coomassie blue.

2.8. Serum bactericidal assay

The resistance of all isolates to complement-mediated serum killing was estimated; bacteria

were cultivated in nutrient broth until mid-logarithmic phase, centrifuged, washed twice with

barbital buffer saline (BBS), and resuspended to a final concentration of 106 CFU mL-1 in BBS.

40% normal human serum (NHS) in BBS was inoculated with the bacteria for 2 hrs at 37˚C

with shaking. Heat-inactivated NHS at 56˚C for 30 min (HI-NHS) was considered as control.

Samples which were taken at 0 and 2 hrs were serially diluted and then cell survival was deter-

mined by plating them onto nutrient agar plates followed by overnight incubation at 37˚C.

Table 1. Primers sequences used for screening tested genes.

Gene Type Primer Nucleotide sequence Annealing Temp Amplicon size (bp) reference

Carbapenemase genes primers VIM-1 F 5`–GAGCTCTTCTATCCTGGTG– 3` 52˚C 103 [29]

R 5`–CTTGACAACTCATGAACGG– 3`

NDM-1 F 5`–ACTTCCTATCTCGACATGC– 3` 52˚C 133

R 5`–TGATCCAGTTGAGGATCTG– 3`

OXA-48 F 5`–TTGGTGGCATCGATTATCGG– 3` 55˚C 743

R 5`–GAGCACTTCTTTTGTGATGGC– 3`

AmpC genes primers AmpC F 5’-ACACGAGTTTGCATCGCCTG-3’ 60˚C 254 [27]

AmpC R 5’-CTGAACTTACCGCTAAACAGTGGAAT-3’

ESBL genes primers SHV F 5’-ACTATCGCCAGCAGGATC-3’ 53˚C 356 [32]

SHV R 5’-ATCGTCCACCATCCACTG-3’

TEM F 5’-GATCTCAACAGCGGTAAG-3’ 50˚C 786

TEM R 5’-CAGTGAGGCACCTATCTC-3’

CTX-M-15 F 5’-GTGATACCACTTCACCTC-3’ 49˚C 255

CTX-M-15 R 5’-AGTAAGTGACCAGAATCAG-3’

Porin primers OmpC F TAG GTG CTT ATT TCG CCA TTC 56˚C 1443 This study

OmpC R GTA CGT GAT TAT CCT CAT GCG

OmpF F AGC ACT TTC ACG GTA GCG AAA 54˚C 1341

OmpF R AGG CTG TTT TTG CAA GAC GTG

OmpK35 F CGC TTT GGT GTA ATC GTT GTC 56˚C 1128

OmpK35 R GAC ACC AAA CTG TCA TCA ATG

F, forward; R, reverse; bp, base pair.

https://doi.org/10.1371/journal.pone.0251594.t001
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Each isolate was tested three times. The killing of bacteria by serum was estimated by measur-

ing the decrease in the viable count over time [33].

2.9. Sequencing analysis of OMP genes

OmpF gene of three E. coli isolates (E7, E27, and E36), ompC gene of one E. coli isolate (E38)

and ompK35 gene of two K. pneumoniae isolates (K5 and K 23) were sequenced as previously

described [34]. In brief, the tested outer membrane protein genes were amplified using PCR,

each reaction mixture (50ul) contained 1 ng of DNA, 0.5 μm of each primer, 200 μm of

dNTPs, 2mM MgCl2,10 μl of 5x Q5 buffer and 1 U of Q5 High-Fidelity DNA polymerase

(NEB, UK). The QIA quick Gel Extraction kit (Qiagen, USA) was employed to purify PCR

products according to the supplier’s protocol. The purified amplicons were subsequently

sequenced in both directions with the Sanger method using the BigDye1 Terminator v3.1

Cycle Sequencing Kit and Applied Biosystems Genetic Analyzer 3500 (Thermo Fisher Scien-

tific Inc, USA). The obtained sequence for each strain was analyzed and aligned with ompF,

ompC of E. coli K12 reference gene sequences, and ompK35 reference gene sequence (GenBank

Accession no JX310553.1) using Blast program of NCBI. To identify non-synonymous point

mutations, DNA sequences were translated to amino acids using the BLAST software.

2.10. Statistical analysis

Data were fed to the computer and analyzed using IBM SPSS Corp. Released 2013. IBM SPSS

Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Qualitative data were described

using number and percent. Significance of the obtained results was judged at the (0.05) level.

Graph pad prism version 6.01 was used for figure design. Chi-Square test for comparison of 2

or more groups.

3. Results

3.1. Identification and antimicrobial susceptibility testing of bacterial

strains

In this study, 80 clinical isolates of Enterobacteriaceae were collected from several microbiolog-

ical laboratories in Mansoura University Hospitals. Of these, 45 isolates were identified as E.

coli and 35 isolates were identified as K. pneumoniae using the standard biotyping method.

Twenty- six E. coli isolates and 16 K. pneumoniae isolates were obtained from urine samples

collected from the Urology and Nephrology Center whereas 5 and 6 isolates of K. pneumoniae
were separated from urine samples collected from Emergency Hospital and Children Hospital

respectively. Additionally, 19 E. coli isolates and 8 isolates of K. pneumoniae were obtained

from sputum samples which were collected from Emergency Hospital and Children Hospital.

According to the breakpoints which were indicated in CLSI guidelines [25], the antibiotic

susceptibility patterns for all isolates were analyzed. Resistance was observed to amoxicillin-

clavulanic acid in 93.3% of E. coli isolates followed by 91.1% were resistant to ceftazidime, cef-

triaxone, cefotaxime, ofloxacin, and trimethoprim-sulfamethoxazole in E. coli isolates. Also, E.

coli strains showed a high resistance level to piperacillin-tazobactam (88.9%), cefepime (68.9),

and imipenem (60%). In contrast, resistance to nitrofurantoin was seen only in 35.6% of E. coli
isolates, and susceptibility to amikacin was retained by most of E. coli isolates (86.7%).

Furthermore, the highest resistance rate was recorded among K. pneumoniae isolates

against ceftazidime (91.4%), ceftriaxone, amoxicillin-clavulanic acid, and trimethoprim-sulfa-

methoxazole (88.6), cefotaxime, and ofloxacin. (85.7), piperacillin-tazobactam and
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nitrofurantoin (82.9%), cefepime (74.3%), amikacin (67.7), and 23 isolates (65.7%) were resis-

tant to imipenem.

3.2. Analysis of ESBLs and AmpC enzymes production

ESBLs and AmpC enzymes were both phenotypically (Fig 1) and genetically detected (Fig 2).

The Determination of ESBL production by the MDDST method showed that 38 isolates of E.

coli (84.4%) and 29 isolates of K. pneumoniae (82.9%) were considered positive for ESBL pro-

duction (Figs 1A and 3). On the other hand, AmpC production which was detected by the

three-dimensional extract method indicated that 38 E. coli isolates and 29 K. pneumoniae iso-

lates were AmpC producers (Figs 1B and 3B). Moreover, phenotypic tests showed that 3 E. coli
isolates and 6 K. pneumoniae isolates were considered ESBL and AmpC non-producers

besides, 4 E. coli isolates produced only ESBL, and 4 E. coli isolates had AmpC activity only

among all tested isolates while the remainder 34 E. coli produced both ESBL and AmpC

enzymes.

Considering PCR analysis, 95.6% of E. coli isolates (43/45) and 85.7% of K. pneumoniae
(30/35) had at least one of the tested ESBL genes. The distribution of tested ESBL genes among

the clinical isolates revealed that blaTEM-1and blaCTX-M-15were predominant among E. coli iso-

lates (87% and 89% respectively). In contrast, blaSHV-1 was detected in 27% of E. coli isolates.

Moreover, blaSHV-1, blaTEM-1, and blaCTX-M-15 genes were predominantly carried by K. pneu-
moniae isolates whereas they were detected in 66%, 74%, and 86% (Fig 4). Also, AmpC gene

detection by PCR revealed that it was harbored by 38 E. coli isolates and 29 K. pneumoniae iso-

lates (Fig 4). The two E. coli isolates and also two K. pneumoniae which found to be sensitive to

all tested antimicrobials showed that they did not harbor any of the tested β-lactamase genes.

3.3. Analysis of carbapenemases presence

The presence of carbapenemases was studied through the MHT test whereas 27 isolates of E.

coli (60%) and 21 K. pneumoniae isolates (60%) had a positive Hodge test hence, they produced

a distorted or clover-leaf shaped inhibition zone (Fig 1C). Also, it was found that 25 E. coli iso-

lates and 21 K. pneumoniae isolates were positive for both ESBL and carbapenemase.

Also, PCR indicated that 29 E. coli strains and 19 K. pneumoniae strains harbored the
blaNDM-1 gene, and 12 E. coli isolates and 16 K. pneumoniae isolates contained the blaVIM-1

gene (Fig 5). However, blaOXA-48 was present in only 7 isolates of E. coli and 4 isolates of K.

pneumoniae (Fig 4). The results showed that the coexistence of the ESBL encoding gene and

carbapenemase encoding gene in the same strain was found among all tested E. coli isolates.

Also, 21 K. pneumoniae isolates were found to carry any of the tested carbapenemase genes but

in association with ESBL and AmpC presence.

3.4. Analysis of outer-membrane proteins (porins)

SDS-PAGE analysis of porins showed that 93.3% of E. coli isolates (42/45) and 85.7% of K.

pneumoniae isolates (30/35) lost their porins or showed a modification in their electrophoretic

migration pattern by comparison to the standard strain (Fig 6). From the results of porins

analysis, it was found that 34 E. coli isolates that exhibited a loss in their porins had β-lactamase

producing capability except 14 isolates had no carbapenemase-producing capability, 4 isolates

did not produce AmpC enzyme and 4 isolates had no ESBL producing capability. Also, E. coli
isolates with altered porin pattern had β- lactamase producing capability except for 6 isolates

that could not produce carbapenemase enzymes, and 4 isolates were negative for ESBL

enzymes but harbored one or more of the tested β-lactamase genes.
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Regarding K. pneumoniae, 30 isolates that exhibited a loss in their porins or modification in

porin pattern, had β -lactamase producing capability except for 8 isolates (no. 6, 15, 16, 20, 22,

25, 26, and 34) had no carbapenemases producing capability. Interestingly, 5 K. pneumoniae
isolates that had unaltered porin pattern (isolates no. 2, 3, 13, 17, and 19) could not produce

any of the tested β-lactamase enzymes.

Fig 1. Phenotypic detection of β-lactamase production. A. Modified-double disc synergy test for determination of ESBL production. B. The 3-dimensional

enzyme extract test for detection of AmpC production. C. Modified Hodge test for detection of carbapenemase production.

https://doi.org/10.1371/journal.pone.0251594.g001
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Fig 2. PCR assay for β-lactamase enzyme genes. Lane M was 100bp DNA marker and lane C was a negative control. A. Agarose gel electrophoresis of AmpC gene

amplicons (254 bp). B. Agarose gel electrophoresis of blaCTX-M-15 gene amplicons (255 bp). C. Agarose gel electrophoresis of blaSHV-1 gene amplicons (356 bp). D.

Agarose gel electrophoresis of blaTEM-1 gene amplicons (786 bp).

https://doi.org/10.1371/journal.pone.0251594.g002
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Taking into account porin genes PCR analysis, among 45 E. coli isolates, 35 isolates exhib-

ited the OmpC gene and 32 isolates had the OmpF gene. They had β-lactamase producing capa-

bility except 4 isolates did not produce AmpC or ESBL, 10 isolates did not produce

carbapenemase, and 2 sensitive isolates which had no β-lactamase producing capability. On

the other hand, 19 K. pneumoniae isolates harbored the OmpK35 gene, as 14 of them produced

ESBL and AmpC enzyme and 9 of them are considered also carbapenemase producers.

Fig 3. Frequency of β-lactamase producing tested isolates by phenotypic analysis. A. ESBL producers, B. AmpC

producers, C. Carbapenemase producers. A statistically significant difference was detected between ESBL producers

and carbapenemase producers among K. pneumoniae and similarly among E. coli without a significant difference

between ESBL producers and AmpC producers in either type. Results were analyzed with Z-test for proportion with

p<0.05�.

https://doi.org/10.1371/journal.pone.0251594.g003

Fig 4. Percentage of ESBL, AmpC β-lactamase, and carbapenemase genes among the tested isolates. There is a

statistically significant difference between different genes studied among K. pneumoniae and also among E. coli
(p<0.001�). Results were analyzed with the Chi-Square test.

https://doi.org/10.1371/journal.pone.0251594.g004
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3.5. Serum bactericidal assay

The survival of bacteria in 40% NHS was measured for a period of 2 hrs. For E. coli isolates,

73.3% (33/45) were serum resistant and 90.9% (30/33) of these isolates were capable of produc-

ing at least one type of the tested β-lactamases (ESBL, AmpC and carbapenemases). On the

other hand, 40% (14/35) of K. pneumoniae isolates were serum resistant from which 92.8%

(13/14) were positive for all 3 tested β-lactamases. Furthermore, 28.5% (6/21) of serum sensi-

tive K. pneumoniae isolates did not produce any type of the tested β-lactamases. Interestingly,

we observed that 90.9% (30/33) of serum resistant E. coli isolates and 100% (14/14) of serum

resistant K. pneumoniae isolates showed either loss or alteration in their porin pattern.

3.6. Sequencing analysis of OMP genes

The sequence analysis of ompF, ompC, and ompK35 genes of representative group of isolates

(nos. 38E, 7E, 27E, 36E, 5K and 23K) demonstrated that most of these tested genes contained a

frameshift mutation and all of them had a stop codon at different positions (Table 2). These

mutations resulted in the production of truncated proteins of a smaller size than the wild type

Fig 5. PCR assay for carbapenemases enzymes genes. Lane M was 100bp DNA marker and lane C was a negative control. A. Agarose gel electrophoresis of the blaNDM-1

gene amplicons (133 bp). B. Agarose gel electrophoresis of blaVIM-1 gene amplicons (105 bp). C. Agarose gel electrophoresis of blaOXA-48 gene amplicons (743 bp).

https://doi.org/10.1371/journal.pone.0251594.g005
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Fig 6. Outer-membrane porin protein and gene analyses. A. PCR detection of outer membrane porin encoding genes. Lane M: 100 bp plus DNA marker; lanes 1 and

2: amplified product of OmpC gene (1443 bp); lanes 3 and 4: amplified product of OmpF gene (1341 bp) which are porin genes in E. coli; lanes 5 and 6: amplified product

of OmpK35 gene (1128bp) which is porin gene in K. pneumoniae. B. SDS-PAGE analysis of outer membrane protein of some E. coli isolates. C. SDS-PAGE analysis of

outer membrane protein of some K. pneumoniae isolates. Lane M: marker protein; lane ST: Standard strain used as control.

https://doi.org/10.1371/journal.pone.0251594.g006

Table 2. Detected mutations in tested OmpF, OmpC and OmpK35 OMP genes.

Strain Gene Point mutation Insertion or

deletion of aa

Frameshift mutation

38E OmpC • Fourteen missense mutations: D49S, V50E, M57V, S85T, A86S, E90K, N91E,

G138D, A274G, N275G, K276E, A277K, Q278H, N279K.

• Seven silent mutation

• Stop codon aa 298

1 insertion: 88D aa 280 (Deletion of one nucleotide at

position 839–840 bp)1 deletion: 173G

7E OmpF • One missense mutations: K28Q

• One silent mutation

• Stop codon aa 67

None aa 51 (Deletion of one nucleotide at

position 150–151 bp)

27E • Two missense mutations: N26H, N51D

• Two silent mutation

• Stop codon aa 110

1 deletion: 2aa aa 102 (insertion of one nucleotide at

position 305 bp)

36E • Nine missense mutations: G48D, E51V, M60K, T61N, Y62L, A63C, R64P, L65S,

G66W

• Four silent mutation

• Stop codon aa 68

None None

5K OmpK35 • One silent mutation

• Stop codon aa 63

None aa 62 (Deletion of one nucleotide at

position 184–185 bp)

23K • Stop codon aa 16 None aa 14 (Deletion of one nucleotide at

position 39–40 bp)

https://doi.org/10.1371/journal.pone.0251594.t002
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proteins. Hence, SDS-PAGE analysis of these isolates showed that they exhibited a modified

porin pattern (Fig 7). E. coli isolate no.38 had a frameshift mutation and a stop codon at amino

acid position 298 in OmpC porin and accordingly, a band of lower molecular mass (33 Kda)

was observed (Fig 7)

4. Discussion

The widespread use of antibiotics leads to the emergence of many resistant microorganisms

which is increasing worldwide and becoming one of the major serious health care problems

[35, 36]. Our results showed a greater prevalence of resistance to common antibiotics and this

agreed with that of Hassan et al. [37]. Indeed, the antibiotic susceptibility pattern of either iso-

lated E. coli strains or K. pneumoniae strains revealed a high resistance rate (greater than 80%)

which was recorded with ceftazidime, ceftriaxone, cefotaxime, amoxicillin/ clavulanic acid, tri-

methoprim/ sulfamethoxazole, piperacillin/ tazobactam, and ofloxacin, and these results are in

agreement with other reports that showed higher resistance to sulfamethoxazole /trimetho-

prim (85.7%) and ciprofloxacin (72%) [38]. In contrast, Zaki et al. showed high susceptibility

to sulfamethoxazole /trimethoprim and ciprofloxacin for E. coli isolates [39]. Here, it was

found that 68.9% of E. coli isolates and 74.3% of K. pneumoniae isolates were resistant to cefe-

pime and these findings were similar to those found in previous studies on antibiotic resistance

in E. coli and K. pneumoniae [40, 41]. Carbapenems are considered the last shelter for gram-

negative bacteria treatment but the development of carbapenem resistance is increasing in the

Middle East. As the existing study demonstrated high resistance to imipenem in the tested E.

coli isolates (60%) and K. pneumoniae (65.7%) and these findings were concordant with other

studies that were performed in Egypt [39, 42, 43]. While high susceptibility of E. coli isolates

was recorded with nitrofurantoin (64.4%) and amikacin (86.7%) but these antibiotics are less

effective on K. pneumoniae isolates and this result was found to be similar to other studies [39,

42, 44].

β-lactam antibiotics are among the most widely prescribed drugs for bacterial infection

treatment and resistance to them is an increasing problem [45]. The most prevalent

Fig 7. SDS-PAGE analysis of outer membrane proteins of sequenced genes. A. SDS-PAGE analysis of outer membrane protein of E. coli isolates 7E, 36E, 27E and

38E. B. SDS-PAGE analysis of outer membrane protein of K. pneumoniae isolates 5K and 23K. Lane M: marker protein; Lane ST: Standard strain used as control.

https://doi.org/10.1371/journal.pone.0251594.g007
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mechanism of β-lactam resistance is the production of β-lactamase especially in Enterobacter-
iaceae [46]. Their continuous mutation leads to various β-lactamases enzymes [47]. Among

them, ESBLs are of great interest and have been reported worldwide especially in Enterobacter-
iaceae [26, 48]. At present, more than 300 different ESBL variants have been identified [24] but

the most common types which were reported in Enterobacteriaceae in several areas of the

world are CTX-M, SHV, and TEM [49, 50]. Also, AmpC β-lactamases have been found all

over the world and contribute to the problem of third generation cephalosporin resistance [51,

52]. Egypt is considered among the countries with the highest rate of ESBL production among

Enterobacteriaceae [53], whereas previous studies in Egypt showed an elevated rate of ESBL

producing isolates [39, 44, 54, 55]. This coincides with our results as ESBL production was

detected in 38 isolates of E. coli (84.4%) and 29 isolates of K. pneumoniae (82.9%), while a low

rate of ESBL production was observed by Abdelmegeed et al., in E. coli isolates [56]. As well as

higher proportions were found in other countries including India (˃80%) and China (˃60%)

[57]. PCR was used for confirmation of phenotypic outcomes and discrimination of different

types of genes encoding ESBL enzymes among tested isolates. Many studies in Egypt and other

countries showed that the most commonly detected β-lactamase–encoding gene among the

ESBL-producing Enterobacteriaceae was blaCTX-M [55, 58] whereas, the blaCTX-M gene was

able to be horizontally transferred by several mobile genetic elements [59]. Our data showed

that blaCTX-M-15 was the most frequently observed ESBL-encoding gene (found among 89% of

E. coli isolates and 86% of K. pneumoniae isolates) and this finding was consistent with the

results of other studies performed in Egypt which indicated that blaCTX-M-15 was the most

common ESBL encoding gene among ESBL-producing Enterobacteriaceae [55, 60, 61].

Besides, the next most frequently detected gene was blaTEM-1 which was found in 87% of E. coli
isolates and 74% of K. pneumoniae isolates. Additionally, SHV was detected in 66% of K. pneu-
moniae isolates and a small percentage of E. coli isolates (27%) and these results are in agree-

ment with a study of Abdallah et al., who indicated that CTX-M was the predominant detected

ESBL gene followed by TEM then by SHV [55]. In contrast to our results, Yazdi et al., and Baj-

pai et al., reported that the most prevalent β-lactamase-encoding gene was blaTEM followed by

blaSHV [62, 63] and in Zaki et al., study SHV was the most commonly detected gene (61.22%)

[39]. The wider distribution of ESBL enzymes may be due to the mobilization of their genes on

a genetic element as was reported by Shahid et al. [64].

Regarding AmpC enzyme production and the prevalence of its encoding gene, it was found

in a higher percentage of E. coli and K. pneumoniae isolates (84.4% and 82.9% respectively). So

the resistance to amoxicillin/clavulanate was high in tested isolates as AmpC enzymes are

poorly inhibited by clavulanic acid [65]. In contrast, previous studies from Egypt showed a

lower prevalence of the AmpC enzyme among Enterobacteriaceae [30, 56, 66]. The possible

reason for the high prevalence of ESBL and AmpC producing organisms may be due to exces-

sive usage of extended-spectrum cephalosporin in the treatment of gram-negative infection

[67]. An important observation in this study is that many AmpC positive isolates were also

ESBL-producer (67/80) and this result was equivocal with a study carried by Park et al., who

indicated that the organism which was AmpC-producer is frequently associated with a high

co-presence rate of ESBLs [67].

Carbapenems are the preferred therapy for ESBL producing Enterobacteriaceae [68]. How-

ever, the development of carbapenemases producing Enterobacteriaceae becomes a public

health threat and leaves few therapeutic choices [69]. Many reports that have been published

worldwide including Middle East countries on carbapenemases production among Enterobac-
teriaceae spp. showed a high presence of gram-negative bacteria which exhibited carbapenem

resistance in different areas in Egypt [43, 70, 71]. Similarly in the current study, 60% of E. coli
isolates and 60% of K. pneumoniae isolates were found to be carbapenemase producers and
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harbored carbapenemase encoding genes; blaNDM-1, blaVIM-1, and blaOXA-48. This result is con-

sistent with the high rate of carbapenemase production (69.8%) which was reported in Mah-

moud et al. study [72] which may be due to widespread abuse of carbapenem in Egyptian

hospitals [54, 73]. In contrast, Amjad et al. illustrated that 38% of E. coli isolates and 17% of K.

pneumoniae were carbapenemase production positive [74], and Zaki et al., reported that 34.1%

of E. coli isolates were carbapenemase producers [39]. Among the many types of carbapene-

mase encoding genes, the widespread of NDM type among Enterobacteriaceae has been

reported in many countries [75–77]. The same was observed in our results which revealed that

blaNDM-1 gene was the dominant carbapenemase encoding gene in tested isolates since it was

present in all carbapenemase-producing isolates except E25 and E29 which did not contain

any of the tested genes and K14 and K27 which contained blaVIM-1 and blaOXA-48 only respec-

tively. These findings confirm previous reports which indicated that blaNDM-1 gene was com-

mon in Egypt and the Middle East. [43]. However, a low prevalence of blaNDM-1 gene was

found in previous studies [66, 78] and no NDM-1 producing isolates were found in a study in

China [79]. Besides this, blaVIM-1 was detected in 35% of the isolated strains while blaOXA-48

was detected in 13.8% of the tested isolates, whereas OXA-48 producing Enterobacteriaceae
recently detected in Egypt [32, 39, 80]. Moreover, OXA-48 was commonly identified among

Enterobacteriaceae in other countries including Saudi Arabia [81, 82]. North Africa, and Tur-

key [83]. Results of various studies on K. pneumoniae in Egypt are coincident with the current

study as they reported that the NDM gene was the most predominant detectable carbapene-

mase gene followed by VIM [32, 84]. On the other hand, El kholy et al found that blaOXA-48

dominated (40.6%) followed by blaNDM1 (23.7%) among K. pneumoniae isolates and a small

percentage of E. coli harbored blaNDM-1 [61]. It was reported that the NDM1 gene is harbored

by diverse plasmids that also carry multiple resistance genes to macrolide, rifampin, carbape-

nem, cephalosporin, and Sulfamethoxazole and few treatment options are available for those

strains which carried this gene [85]. So it was found in our study that the strains which har-

bored NDM-1 showed elevated variability resistance to various tested antibiotics. The current

study showed excessive coexistence of various resistance genes in tested isolate and this leads

to elevated variability in resistance and this agreed with that of Martin and Bachman [86].

The β-lactam resistance in gram-negative bacteria has been attributed not only to the pres-

ence of the hydrolyzing enzymes but also to the modification in the permeability of the outer

membrane as well as to upregulation of multidrug efflux pump and alteration of antibiotic tar-

get proteins [11, 87]. Porin loss or mutation of the porin-coding sequence decreases mem-

brane permeability and leads to impairment of antibiotic entry [88], hence loss of porins have

been associated with a carbapenem and extended-spectrum cephalosporin resistance [89]. The

mutational loss or alteration of porins in Enterobacteriaceae has been reported to be responsi-

ble for decreased susceptibility to cephalosporin and carbapenem [90, 91]. The increased resis-

tance of ESBL producer E. coli and K. pneumoniae to cefotaxime and oxyimino β-lactam due

to loss of porins was reported in many studies [92, 93]. Also, Domenech-Sanchez et al., found

that the combination of decreased outer membrane permeability and the presence of SHV-1

and TEM-1 β-lactamase elevated cefotaxime MIC [94]. Therefore, we examined the porins as

an additional resistance mechanism. Our results demonstrated that all the studied isolates

showed porin loss or alteration in porin structure except three isolates of E. coli and 5 isolates

of K. pneumoniae. And these results are in agreement with that obtained by Kitchel and coau-

thors who illustrated that the absence of OmpK35 was in 80% of K. pneumoniae isolates [95].

As well as it was observed that all of them harbored one ESBL and/or AmpC enzyme and this

agreed with that of Wozniak et al. [88], additionally, this finding is consistent with that ESBL

producing K. pneumoniae isolates don’t express OmpK35 and both OmpK35 and Ompk36

porins were expressed in K. pneumoniae isolate lacking ESBL which was reported in other
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studies [94, 96]. The loss of porins participates in the antimicrobial resistance of ESBL produc-

ing bacteria [16]. Besides, previous studies indicated that the absence or low expression of

OmpK35in K. pneumoniae and OmpC and OmpF porins in E. cloacae has been associated

with carbapenem resistance [34, 97]. The present data confirm this conclusion as almost all

imipenem resistant isolates showed loss or alteration in tested porins and also the carbapene-

mase production was detected in them except 2 out of 23 strains of K. pneumoniae and 9 out

of 27 strains of E. coli did not produce carbapenemase and this finding was concordant with

the results of Barwa and Shaaban who found that all tested carbapenem-resistant isolates lost

OmpK35 except one strain [32]. Besides that, it was reported that porin loss increases the resis-

tance of ESBL-producing organisms to other non- β-lactam drugs such as fluoroquinolones

[98, 99] and this explains the reason for the decreased susceptibility to ofloxacin by the tested

organisms.

Since serum resistance is an important virulence trait for extraintestinal pathogenic E. coli,
we reported that 73.3% of E. coli isolates collected from urine or sputum were serum resistant.

However, the ability of serum sensitive isolates (26.7%) to cause extraintestinal infection may

be due to the presence of antibodies that inhibited complement-mediated killing as indicated

by Coggon et al. [100] In the current study, the association between serum resistance and pro-

duction of different β-lactamases was clear among E. coli and K. pneumoniae isolates where

the possession of β-lactamases was beneficial for some strains regarding serum survival and

competitive fitness as reported elsewhere [101–104]. Several studies reported that certain por-

ins in E. coli and K. pneumonia play a role in complement system activation as they promote

the deposition of C1q and thus induce antibody-dependent classical pathway bactericidal

activity. Therefore, loss or mutation of these immunogenic porins results in elevated resistance

to complement-mediated killing [105–107]. This agreed with our results where 93.6% (44/47)

of serum resistant E. coli and K. pneumoniae isolates showed either porin loss or alteration in

their porin electrophoretic migration pattern.

Mutations in ompK35 gene of tested K. pneumoniae isolates K5 and K23, ompF gene of E.

coli isolates E7, E27, and E36 and ompC gene of E. coli isolate E38 involved a stop codon that

formed truncated porins lacking the C-terminal phenylalanine residue which is essential for

membrane anchoring [108] thus producing nonfunctional protein and porin cannot be

inserted in the outer membrane. The same results were observed by Wozniak et al., who found

a frameshift mutation and a stop codon at position 144 in the tested ompK35 genes [88]. In

addition, Wozniak et al., reported that OmpK36 was the preferred porin and was thus con-

served by K. pneumonia because of its smaller pore than OmpK35 and was, therefore, more

restrictive for antibiotic entrance. Hence, in our study, the band observed in the SDS-PAGE

analysis of 5K and 23K (Fig 7) corresponds most likely to OmpK36.

The exceeding emergence of β-lactam resistance in E. coli and K. pneumoniae strains in

Mansoura, Egypt is disturbing. Moreover, our results demonstrated that β-lactam resistance in

E. coli and K. pneumoniae isolates were mediated by β-lactamases plus porin loss or mutation

of the porin-coding sequence. Hence, the recommendation must be taken during the adminis-

tration of β-lactam and carbapenem in our hospitals to decrease the spread of β -lactam resis-

tant isolates.
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