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Abstract

Coordinating the charging scheduling of electric vehicles for dynamic dial-a-ride services is
challenging considering charging queuing delays and stochastic customer demand. We pro-
pose a new two-stage solution approach to handle dynamic vehicle charging scheduling to
minimize the costs of daily charging operations of the fleet. The approach comprises two
components: daily vehicle charging scheduling and online vehicle—charger assignment. A
new battery replenishment model is proposed to obtain the vehicle charging schedules by
minimizing the costs of vehicle daily charging operations while satisfying vehicle driving
needs to serve customers. In the second stage, an online vehicle—charger assignment
model is developed to minimize the total vehicle idle time for charges by considering queu-
ing delays at the level of chargers. An efficient Lagrangian relaxation algorithm is proposed
to solve the large-scale vehicle-charger assignment problem with small optimality gaps. The
approach is applied to a realistic dynamic dial-a-ride service case study in Luxembourg and
compared with the nearest charging station charging policy and first-come-first-served mini-
mum charging delay policy under different charging infrastructure scenarios. Our computa-
tional results show that the approach can achieve significant savings for the operator in
terms of charging waiting times (=74.9%), charging times (—38.6%), and charged energy
costs (—27.4%). A sensitivity analysis is conducted to evaluate the impact of the different
model parameters, showing the scalability and robustness of the approach in a stochastic
environment.

Introduction

Electric vehicle technology has gained increasing interest amongst policymakers, the general
public, and the automotive industry in response to worldwide directives to reduce CO, emis-
sions. Transport network companies (TNCs) such as Lyft and Uber have begun deploying bat-
tery electric vehicles (called EVs hereafter) in their fleet to reduce operating costs and promote
green mobility [1]. Research on the electrification of ride-hailing services in the USA has
shown that TNCs need to recharge e-fleets several times a day and rely primarily on DC fast
chargers to minimize charging times [2]. As charging EVs with high-power charging
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(>22kW) is much more expensive than residential electricity prices, such operations may sig-
nificantly increase the operator’s charging cost by about 25% [3]. Furthermore, due to the
higher installation cost of high-power charging, most public chargers are limited to Level 2
chargers [4]. With limited battery range, a vehicle’s within-day charging becomes a primary
challenge given the limited number of charging stations and relatively long charging time. For
example, an 80% charge needs about 50 minutes using a 50 kW DC fast charger for a Volkswa-
gen Golf with a 300 kilometer range [4]. Additionally, with the increased number of electric
vehicles in the fleet and the relatively limited number of public and private charging spots, the
likelihood that accessible charging stations will be temporarily unavailable will soon become
an issue. Uncoordinated charging operations might result in higher queueing delays, reducing
the availability of vehicles to serve customers, and an increase in total system operating costs.
However, existing studies mainly focus on static EV routing problems under charging infra-
structure constraints, whereas research on online charging scheduling under stochastic
demand is still limited [5]. For this purpose, we propose an online charging scheduling model
for dynamic dial-a-ride services to minimize the total charging delays and costs of the fleet
under charging infrastructure constraints and stochastic customer demand.

The challenge of charging scheduling for electric dynamic dial-a-ride services under uncer-
tainty involves several dimensions. First, under stochastic customer arrivals, vehicle driving
patterns are stochastic, which impacts vehicle charging demand in space and time. Second,
given limited charging facility resources and the stochastic charging demand of other EVs,
there might be queuing delays at charging stations. How to efficiently coordinate the charging
demand of the e-fleet while considering vehicle’s driving needs and charging station capacity
constraints? Third, given heterogeneous charging powers and space-time differentiated charg-
ing prices, how should operators decide when, how much, and where to charge vehicles such
that the overall charging costs and queuing delays are minimized? To address these challenges,
we propose an online charging scheduling model by anticipating the future energy needs of
vehicles to minimize the total charging delays and charging costs of the fleet of EV's for
dynamic dial-a-ride services.

The remainder of the paper is organized as follows. Section 2 reviews related literature on
EV charging strategies in a stochastic environment. Section 3 proposes a two-stage EV
recharging policy for dynamic dial-a-ride services. We first derive an optimal charging plan
for each individual vehicle based on its historical driving patterns, the price of electricity, and
expected queuing delays at charging stations. Then an optimal charging station assignment
model is proposed to minimize total vehicle charging times and queuing delays based on the
current system state. An efficient solution heuristic based on the Lagrangian relaxation (LR)
method is proposed for dealing with large-scale instances and allowing real-time operations.
In Section 4, we conduct a realistic case study for a dynamic dial-a-ride service in Luxembourg
to evaluate the performance of the proposed methodology in a stochastic environment. The
impact of different model parameters on system performance is analyzed. Finally, conclusions
are drawn and future extensions are discussed.

Related work

Coordinating EV charging demand in order to reduce its impact on the electric grid has been
studied in recent years [6, 7]. However, these charging scheduling models are mainly from a
private EV owner perspective, which mainly involves recharging EVs at home or at the work-
place once or twice a day. For a fleet operator, the charging optimization strategy is different
from that of private EVs in both time (charging operations during the day) and scale (the vehi-
cle fleet needs to be recharged several times per day). Charging coordination strategy needs to
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consider various factors of uncertainty: stochastic vehicle driving patterns, queuing delays at
charging stations, charging price variations, charging infrastructure capacity constraints, and
customer inconvenience due to recharging EVs. Hu et al. [8] classify three EV charging control
strategies for fleet operators: centralized control, transactive control, and price control. Cen-
tralized control assumes the operator directly schedules EV recharging operations via real-
time communication. Transactive control is a kind of distributed control mechanism to
achieve supply-demand equilibrium in an electricity market. Price control relies on a dynamic
electricity pricing design to regulate electricity supply and demand disequilibrium for EVs.
The strategy of coordinating spatio-temporal supply-demand mismatch to enhance the system
efficiency has also been studied for the collaborative logistics problems [9-11].

Tacobucci [12] pointed out that studies for the design of charging strategies for shared EV's
are still limited. The authors propose a two-layer model predictive control strategy for relocat-
ing and charging shared autonomous electric vehicles (SAEVs). Several charging optimization
and idle vehicle relocation models have been proposed for electric car-sharing systems [13-
16]. For dynamic dial-a-ride service using EVs, a number of works have proposed mathemati-
cal models for optimizing shared electric autonomous vehicles operations. For example,
Zhang and Chen [17] proposed a charging optimization strategy to balance the charging
demand of SAEVs in a high-priced electricity period to reduce total charging cost. The battery
levels of individual vehicles are first sorted, and then individual vehicles with low battery levels
are set to recharge. The number of concurrent charging SAEV's is regulated by the ratio
between the energy demand of SAEVs, the available number of chargers for SAEVs, and SAEV
recharge rates. Queuing delays and charging station assignment are not explicitly considered.
Bongiovanni [18] proposed a two-phase metaheuristic to solve the dynamic dial-a-ride prob-
lems using electric autonomous vehicles. The proposed approach first solves a static dial-a-
ride problem under battery constraint to initiate vehicles’ routing plans. New requests are then
inserted into vehicles’ planned routes to minimize a weighted objective function by consider-
ing both operational costs, customer inconvenience, and demand. A two-phase metaheuristic
is proposed to find good EV vehicle routing solutions. Zalesak and Samaranayake [19] pro-
posed a batch-optimization framework based on the shareability network concept for ride-
pooling using EVs. New requests are assigned first to vehicles under current charging schedule
constraints. Upon new assigned requests, a charging planning model is used to update the
charging schedules of vehicles. A more realistic battery charging model considering the non-
linear relationship of battery state of charge and charging time is used. Some recent studies for-
mulated the dynamic ridesharing problems using EV's as a Markov decision process and
proposed approximate dynamic programming approaches to maximize the profit of operators
(20, 21].

Several studies propose mathematical models to evaluate the impact of deploying e-taxis or
SAEVs on the level of service. The charging strategy is mainly based on a full-charge policy to
recharge EV's to a maximum level at nearest charging stations whenever an EV’s battery level
is lower than a threshold [22, 23]. Tian et al. [24] proposed a real-time charging station recom-
mendation system for e-taxis based on the historical driving patterns of vehicles. When receiv-
ing a vehicle’s charging request, the recommendation system suggests the charging station
with the least total access time and waiting time when arriving at the charging station, accord-
ing to the order of received requests. The results show that the proposed recommendation sys-
tem could significantly reduce vehicle’s waiting times compared to the nearest charging
station assignment policy. From an individual taxi driver perspective, this first-come-first-
served policy is most beneficial for each new charging request. However, from a fleet charging
management perspective, charging operations can be further optimized by coordinating the
charging demand over non-rush hours and allowing partial recharging to reduce taxis’ idle
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time. For example, Yuan et al. [25] proposed an e-taxi charging scheduling model under a
receding horizon control framework allowing partial recharging to minimize taxi fleet idle
time under dynamic taxi demand. The results suggest that partial charging allows for reducing
vehicle waiting times and increasing the number of available taxis in rush hour. However, the
considered charging infrastructure is assumed to be homogeneous and charging station
assignment is not optimized to minimize total queuing delays.

The partial recharge policy raises the issue of what battery levels are necessary to satisfy a
vehicle’s driving needs and how to determine the optimal charging plans for vehicles based on
individual vehicle’s driving patterns. Iversen et al. [26] proposed a model to optimize the
charging level plan of an individual PEV based on individual vehicles’ historical driving pat-
terns. The problem is considered as a stochastic dynamic programming problem to minimize
the total charging cost while satisfying the vehicle’s energy needs for driving. An inhomoge-
neous Markov model is fitted by using individual vehicles’ stochastic driving patterns to esti-
mate the state transition probability from being idled to a driving state. A summary of existing
studies on charging policies for on-demand shared mobility services is shown in Table 1.

Dynamic dial-a-ride problems using e-fleets present a more complex environment for man-
aging charging operations under stochastic customer demand and charging capacity con-
straints. To the best of our knowledge, the current state of the art has not fully addressed these
issues to minimize total e-fleet idle times and charging cost under dynamic customer demand
and queuing delays at charging stations.

The main contributions of the current work are summarized as follows.

1. We propose a two-stage approach to handle the vehicle charging scheduling problem for
dynamic dial-a-ride services using EVs to minimize the daily charging operational costs
and delays of the fleet. A first vehicle charging scheduling model is formulated as a battery
recharge problem under uncertainty to minimize the total charging operational costs by
considering vehicle probabilistic driving needs, expected charging delays, and charging
costs.

2. A new online vehicle-charger assignment model is proposed as a mixed-integer optimiza-
tion problem to minimize the total vehicle idle times for recharges considering queuing
delays at the level of the chargers. A Lagrangian relaxation algorithm is developed and
tested on large-scale test instances. The computational results show that the LR algorithm
can obtain near-optimal solutions within a couple of seconds/minutes for median-/large-
sized problems.

3. A realistic dynamic dial-a-ride service case study is implemented to assess the performance
of the proposed solution. The results show that significant savings in terms of charging
delay, charging time, and cost can be achieved compared to the state-of-the-art nearest
charging station policy and minimum charging delay policy.

Methodology

We consider a dynamic dial-a-ride problem in which a TNC operates a fleet of homogeneous
EVs to pick up and drop off customers. Ride requests arrive stochastically and are accepted/
rejected on short notice. The fleet of EVs is assumed charged at a certain level (80% or more)
at the beginning of day to ensure a good battery lifespan [17, 22]. A limited number of charg-
ing points are available in the service area to allow EVs to recharge. A dispatching center is
equipped with a dedicated management platform with real-time information on vehicles (loca-
tion and battery level) and charging station status (i.e., number and characteristics of chargers,
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Table 1. Summary of charging policies for on-demand shared mobility services.

Studies System Charging policy features

Bischoff and Maciejewski e-taxi On-need policy to assign a vehicle to the nearest charging station

[22]; Chen et al. [23] for recharge whenever the vehicle battery level is lower than a
threshold.

Tacobucci [12] SAEV Consider the dynamic electricity price for scheduling vehicle

charges in smart grids. A two-layer model predictive control
approach is proposed to optimize vehicle charging scheduling
over a longer timeframe. Congestion at charging stations is not
considered.

Tian et al. [24] e-taxi Consider the inference of electric taxi states based on historical
taxi charging patterns and position tracking. Uses the first-come-
first-served policy for charging station allocation whenever
vehicle charging intention is identified.

Yuan et al. [25] e-taxi Propose a zone-based charging station allocation policy to
minimize vehicle idle times for recharge. Partial recharge is
allowed without queuing delay consideration.

Ma et al. [13]; Pantelidis et al. | carsharing Static carsharing vehicle charge scheduling and relocation based
[14] on the facility location model. Stochastic demand and queuing
delays are considered to meet customer demand.

Roni et al. [16] carsharing A capacitated facility location model is proposed for optimal
charging station allocation on a time-space network to minimize
total travel and waiting times of charging operations.

Folkestad [15] carsharing Propose a static carsharing vehicle charging scheduling and
repositioning model to satisfy charging needs with minimal
vehicle relocation costs.

Zhang and Chen [17] SAEV Propose a probabilistic rule for charging station allocation to
regulate charging demand (number of vehicles sent to charge)
and supply (number of available chargers). Considers electricity
price variation to minimize charging costs without queuing delay

considerations.
Rinaldi et al., [27]; Wang e-bus Propose a static electric bus charging and route planning model
etal. [28] to minimize the total operational costs of the fleet.
Mkahl et al. [29] fleet of electric | Propose a linear programming model for charging station
vehicles allocation to keep a vehicle’s battery at its highest possible level

when arriving at a charging station. Full-charge policy without
queuing delay considerations.

Luetal. [30] e-taxi Propose a multi-commodity network flow model on a space-time

network for a mixed fleet of EVs and gasoline vehicles. Travel
requests are deterministic and known. No charge queuing delay

consideration.
Al-Kanj etal. [20]; Yuetal. | ridesharing Modeling dynamic electric ridesharing problems as a Markov
[21] decision process and propose approximate dynamic

programming approaches to maximize operator’s profit.

Remark: SAEV: shared autonomous electric vehicle.

https://doi.org/10.1371/journal.pone.0251582.t001

and charging schedules of EVs at the location) [8]. The operator dispatches vehicles to pick up
customers according to a designed vehicle routing and dispatching policy (described in Sec-
tion 4.1). An EV’s battery energy level is monitored in real-time and communicated to the dis-
patch center. Given stochastic vehicle driving patterns, uncertain charging demand from other
EVs, and capacitated charging infrastructure, it is not possible to obtain the exact charging
plans of vehicles (when, where, and how much energy to recharge each vehicle) in advance.
The dynamic dial-a-ride charging scheduling problem is to design an online charging policy
under these uncertainty factors to minimize total charging delays and costs of the e-fleet over
the planning horizon (one day) under a stochastic environment.
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Fig 1. Two-stage battery recharge scheduling framework.

https://doi.org/10.1371/journal.pone.0251582.9001

For this purpose, we discretize the planning horizon into a set of charging decision epochs
and decompose the decision process into two stages. In the first stage, we determine in advance
the optimal vehicle charging schedules (when and how much energy to charge) for each epoch
based on the historical driving patterns of vehicles and the expected time-dependent queueing
delays at charging stations. The problem is formulated as a single-vehicle battery recharge
problem to minimize total charging delays and costs while satisfying vehicle driving needs. At
this stage, the specific charging station location assignment is not considered and waiting
times to be served at charging stations are based on historical information. Given the charging
schedules obtained in the first stage, the second stage determines the optimal vehicle-charger
assignment by solving the charging station assignment problem to minimize total charging
delays. Our computational study shows that the proposed methodology can effectively reduce
total charging delays and system operational costs in a stochastic environment. The two-stage
battery recharge scheduling framework is shown in Fig 1.

Optimal vehicle charging schedules under stochastic driving patterns of
vehicles

Notation

h Index of charging decision epochs, heH = {1,2,.. ,|H|}

ey, Energy level (state of charge) of a vehicle at the beginning of decision epoch he H(kWh)

dy, Expected energy consumption in epoch h based on vehicles’ historical driving patterns (kWh)

Cmax Battery capacity or the allowed maximum energy level of vehicle (kWh)

Cmin Reserved energy level of a vehicle, e,,,;,, = 0.1B (kWh)

9 Energy price (euro/kWh)

9 Charging rate of chargers (kW/min.)

(Continued)
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p Average gains per minute travelled (euro/min.)
v Vehicle speed (km/min.)
A Time interval between any two consecutive epochs (min.)

Decision variables
up, Amount of charged energy in epoch h (kWh)

Yh 1 if a vehicle is recharged in epoch k, and 0 otherwise.

https://doi.org/10.1371/journal.pone.0251582.t1002

Given that the considered single-vehicle battery recharge problem has an intrinsic multi-
stage decision-making nature in a stochastic environment, the problem is decomposed into a
sequence of simpler one-stage decision problems. The entire planning period is discretized
into a set of recharge decision epochs, H = {1,. . .,|H|}, with a time interval A. The system state
is the battery level e;, of a vehicle at the beginning of each epoch h. The decision (control) vari-
able is the amount of energy to charge u, for each epoch h. A cost function is associated with
the charging decision, which depends on the cost of the energy charged and the opportunity
cost of the unavailability of vehicles to serve customers. For simplification, a linear charging
efficiency is assumed that charging time is equal to the amount of charge divided by the charg-
ing efficiency of chargers. Given the average energy consumption from historical driving pat-
terns in each epoch, the system state is updated at the end of each epoch and an optimal
recharge policy can be derived over the planning horizon. The optimal EV battery recharge
problem is formulated as follows.

P1: Optimal single-vehicle battery recharge problem

Min%[é)uh + (¢ + w,)y,] (1)

pa

subject to

e =¢e,+u,—d, forh=1,... |H| (2)
e,+u,>d,+e,, forh=1,... |H| (3)
u, <My, forh=1,...,|H| (4)
e, = e, (5)
e.<e <e,., forh=1,... |H]| (6)
0<wu,<u,,, forh=1,... |H] (7)
v, € {0,1}, forh=1,...,|H| (8)

The objective function (1) is to minimize the total cost of charging operations of the vehicle
over the planning horizon. The first term relates to the cost of the amount of charged energy.
The second term ¢ is a fixed operational cost, which takes into account the set-up cost and the
average access cost (energy consumption of travel distance to reach the charging stations). The
last term w, is the opportunity cost of not being able to serve customers during recharging
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operations in decision epoch h, defined as Eq (9):
o, = (T, + T;")p ©)

where T} is the expected duration of a vehicle being in use in 4, estimated by the historical
driving patterns of vehicles. T} is the expected waiting time to be served at charging stations
in h. We estimate TP = [ pP dt and T} = [ p}* dt, where p” and p!" are the probability of
driving and waiting status, respectively, for a vehicle at time t. p is the weight introduced to
convert a vehicle’s unavailable time due to charging operations to the gain loss based on a vehi-
cle’s average earnings. Eq (2) is the state transition function describing the evolution of energy
levels of the vehicle in each epoch. The expected energy consumption dj, is defined as the total
driving distance in epoch k divided by the energy efficiency of vehicles; dj, = vAu, where p is
the driving efficiency of vehicles (kWh/km). Eq (3) indicates that the total energy level after
recharge needs to be no less than the energy demand plus a minimum reserve energy e,,;,. Eq
(4) ensures that the amount of charged energy is non-negative when the vehicle goes to charge.
Eq (5) is the initial battery level of the vehicle. Eq (6) states the upper and lower bounds of the
energy level at the beginning of each epoch. Eq (7) states that the amount of energy that can be
charged for each epoch is bound by u,,,,, = Ag. Note that u,,,, is an upper bound that the
amount of energy can be charged on an epoch based on the fastest charger in a study area. The
different charging rates of chargers are considered in the second stage for the vehicle-charger
assignment to minimize the overall charging operational cost.

Problem P1 can be efficiently solved by the dynamic programming approach using the
backward induction algorithm [31] or by a standard commercial mixed-integer optimization
solver. Note that in a stochastic environment, each vehicle has different driving patterns dur-
ing the planning horizon, so P1 needs to be solved for each vehicle to obtain the appropriate
charging plans based on its historical driving patterns. The interactions between different vehi-
cles are considered in the vehicle dispatching policy (described in Sect. 4.1). An illustrative
example is given in S1 Appendix to illustrate the model property and the total charging opera-
tional cost savings compared with a reference on-need charging policy.

Charging station assignment under charging capacity constraints

Notation
I Set of vehicles to be recharged at the beginning of a recharging epoch h (index / is dropped)
J Set of chargers in a studied area
tij Travel time from the location of vehicle i to that of charger j
d;; Travel distance from the location of vehicle i to that of charger j
e; Energy level of vehicle i at the beginning of epoch h (index h is dropped)
e Energy level of vehicle i after recharge at the end of epoch k, determined by the charging plan from P1 (index 4 is dropped).
t Time until which a charger j is occupied by other vehicles from the beginning of epoch k (index h is dropped)
u Driving efficiency of vehicles (kWh/km)
?; Charging rate of charger j (kW/min.)
M Large positive number

Decision variable

X Vehicle i is assigned to charger j for recharge if X;; = 1, and 0 otherwise
Y Amount of energy recharged at charger j for vehicle i
Wi Artificial variable representing the waiting time of vehicle i at charger j

https://doi.org/10.1371/journal.pone.0251582.t003
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For the second stage, the problem is to assign vehicles to chargers for each epoch he H
based on the charging schedules obtained beforehand. Given an epoch #, the charging delay of
a vehicle at a charging station is defined as the sum of access time (travel time) to the charging
station, the waiting time to be served at the charging station, and the total charging time. The
problem is formulated as a mixed-integer optimization problem to minimize charging delays
given that the capacitated charging infrastructure is a multi-server queuing system. Different
from existing charging-station-based capacity constraints (the number of vehicles assigned to
a charging station cannot exceed the number of chargers at that station [14, 16]), we consider
each charger explicitly to account for the exact waiting time of a vehicle when arriving at a
charger at time ¢ and the charging power of each individual charger.

The one-stage optimal charging station assignment model is formulated as follows. The
problem is solved for each decision epoch heH.

P2: Vehicle—charger assignment with minimum charging delay problem

minZ =3 Y 6% +0,) > Vy/o+0,3 > W, (10)

il jeJ iel  jeJ iel  jeJ
subject to

Y X,=1, Viel (11)

jel
d X, <1, Ve (12)

et
Cpin < € — pd, X, + M(1 - Xij), Viel,je] (13)
e <Y, +e—pudX,+M1—-X,),Vielje] (14)
Y, <MX;, Vielje] (15)
t— X, - M(1—X,) < W, Vielje] (16)
X, €{0, 1},Vielje] (17)
Y,>0,Vielje] (18)
W,>0,Vielje] (19)

The objective function minimizes the total weighted time of charging operations, including
total travel time to arrival at charging stations, recharging time, and waiting time at each
charging connector. 6, and 0, are the weights introduced to account for the trade-off between
these elements. Constraints (11) and (12) ensure that each vehicle can be assigned to one char-
ger and that each charger can be plugged in to at most one vehicle; constraint (13) guarantees
that the remaining battery level of a vehicle when arriving at a charging station is no less than a
pre-defined reserve level, e.g., 10%-20% of battery capacity. Constraint (14) states that the
energy level after recharge must be no less than the planned level after recharge from P1. Con-
straint (15) ensures that the amount of recharged energy is non-negative when the vehicle is
assigned to a charger for recharge. Constraint (16) calculates the waiting time to be served for
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vehicle i when arriving at the location of charger j. Note that Eqs (11) and (12) are suitable for
the situation where the number of vehicles is no more than that of charges (|I|<|J|). In case of |
I|>|J], constraints (11) and (12) are replaced by (20) and (21), respectively.

> X,<1, Viel (20)
jel
Y Xx,=1, Vjej (21)

i€l

We refer to the problem of Egs (10)-(19) as P2, and to Eqs (10) and (13)-(21) as P2]. The
above vehicle-charger assignment problem is a variant of the generalized assignment problem
with additional constraints. We propose a heuristic based on the LR method to solve it for
large instances in order to obtain efficiently near-optimal solutions for real-time applications.

Proposed Lagrangian relaxation algorithm

The LR method is a widely-used methodology for solving mixed-integer optimization prob-
lems [32, 33]. This method first solves an LR problem by relaxing complicated constraints to
obtain a lower-bound (LB) solution. As the LB solution is likely infeasible for the original
problem, a problem-specific repair procedure needs to be developed to find a feasible solution,
providing an upper bound (UB) to the original problem. Afterwards, the Lagrangian multiplier
is updated to maximize the LB. The above steps are repeated until no improvement can be
found or the maximum iteration is reached. For the P2 problem, it is not difficult to find that
we can reformulate it by removing Y and W as follows:

minZ = 357, + Oymax(t! — b, )X, + 0,53 1 (e e+ udy)X,  (22)
i€l jeJ i€l jeJ (Pj
subject to (11)-(13) and (17).
We relax constraint (12) and use a non-negative Lagrangian multiplier 1;, Aj€] to penalize
the non-satisfaction of this constraint in the objective function. The LR problem can be written
as follows.

min Z, (1) = Z Z ty+ A+ 92max(tf‘ —t, 0) + % (e — e+ ,udij) X, — Z A (23)
icl  jeJ J jer
subject to (11), (13), and (17).

We propose the following LB solution algorithm to efficiently solve the above LR problem
and obtain the LB solution X}, for each iteration k. As X}, might be infeasible due to violating
constraint (12), an upper-bound (UB) solution heuristic is proposed to fix the infeasibility and
obtain a good feasible solution. Then the Lagrangian multiplier is updated by the subgradient
method [33]. The proposed LR algorithm is labeled as Algorithm 1.

LB solution algorithm. Given a known A", we apply a greedy policy to assign vehicles to
chargers one by one according to an increasing order with respect to the objective function
value until all vehicles are assigned. To do so, a cost function C(i,j) is defined as the cost of
assigning vehicle i to charger j as in Eq (24).

0
C(i,j) = t; + 02max(tf —t, 0) + ;1 (ej—e,. + ud,j) (24)

J

So the greedy policy assigns vehicle i to the charger j* that minimizes the value of the
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objective function as in Eq (25).

X = 1,j; = argmin,_ [C(i,j) + /], Vi€ I (25)

ij;

where J; is the set of chargers that are reachable by vehicle i given its current battery level, i.e.,
the subset of chargers satisfying constraint (13).

J. = {jle, — pd; > e, Vj € JhViel (26)

The obtained LB solution X; 5(4%) at iteration k is the optimal solution of the LR problem.
Note that for a P2] problem (|J|<|I|), a similar greedy policy applies by assigning chargers to
vehicles until all chargers are assigned.

UB solution heuristic. We develop two distinguished heuristics to repair the feasibility of
LB solutions and build UB solutions for the problems of P2 and P2J accordingly. The devel-
oped heuristics are described in Algorithm 2. Given an LB solution and constraint (12) for the
P2 problem, the UB algorithm removes vehicles with higher energy levels (more flexible) from
over-assigned chargers (chargers with more than one assigned vehicle) to a pool of unassigned
vehicles. Then these unassigned vehicles are inserted to non-occupied chargers one by one
based on their remaining energy levels (the vehicle with the least remaining energy (less flexi-
ble) is inserted first) using a greedy insertion policy. Afterwards, a local search procedure is
applied to improve the incumbent feasible solution. A similar algorithm design logic is applied
for the heuristic to find a UB solution for the P2] problem.

We test the proposed model on an illustrative example to show the model property in 52
Appendix. For large-scale problems, we generate 9 subsets of problems with up to 1000 vehi-
cles and chargers. Our computational study in S2 Appendix shows that the proposed LR algo-
rithm can obtain near-optimal solutions and suitable for large-scale real-time application for

EV charging station assignment.

Algorithm 1: Lagrangian relaxation algorithm

1: Input: A° =0, k=0, Zys = INF, Z,5 = —INF, 0<&6<2, &, and k™.

2: Solve the LR problem by the LB solution algorithm and obtain the LB
solution Xf,.

3: Update the LB: If Zk, > Z,, setZ,, =Z,

4: Repair the infeasible LB solution with the UB solution heuristic
and obtain a feasible UB solution Xf,.

5: Update UB: If Zf, < Z,;, set Zy, = ZF,.

6: Update Lagrangian multipliers based on the subgradient method:

: k (Zyp—Z1p)
Compute the step size t'= S,
el

iel LB

;s and update the multipliers

as A = max{2 + (3, X, — 1),0}.

7: Evaluate the optimality gap ekz%. If & <& or k = k", stop;
otherwise k: = k+1 go to step 2.

8: Output: X' = Xyz.

Algorithm 2: Heuristics to find UB solutions

// Heuristic to find UB solutions for P2 (|I|<|J]).

1: Given the current lower-bound solution X;z(A), a set of vehicles T
and set of chargers J, initialize unassigned vehicle list I =0 and tem-
porary solution Xeemp = Xrs(A) .

2: //remove vehicles from over-assigned chargers

3: Find the list of chargers J; with more than one assigned vehicle.
4: for all chargers je€J;

5: Sort e; for all vehicles assigned to charger j in descending
order.
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6: Remove k-1 vehicles with the highest e; from charger j to I,
where k is the number of vehicles assigned to charger j. Update Xiemp
accordingly.

7: End for

8: //Assign unassigned vehicles to unoccupied chargers

9: Sort e; for all vehicles i€ in ascending order and obtain Iorted
list.

10: for all i€ Iorted

11: Assign i to an unoccupied charger j that has the min-
imum C(1i,3j), then update Xi.mp accordingly.

12: End for

13: // Local search for P2

14: For any two assigned vehicles (i,, i,) with their current assigned
chargers (ji, Jj»), if C(i,, J1)+C(is, F2)—-C(ii, J»)—-C(i,, 7F1)>0 and both
(i1, J2) and (i,, Fi1) satisfy Eqgq (13), exchage their current assigned
chargers. Update Xicm accordingly.

15: Output: Xy = Xecmp

// Heuristic to find UB solutions for P2J (|I|>|J|)

16: Given the current lower-bound solution X;5z(A), set of vehicles I,
and set of chargers J, initialize unassigned charger list J =0 and tem-
porary solution Xeemp = Xpg(A) .

17: //remove chargers from over-assigned vehicles

18: Find the list of vehicles I; with more than one assigned charger.
19: for all vehicles i€I;

20: Sort C(i,7j) for all assigned chargers in descending order.
21: Remove k-1 chargers with the highest C(i,7j) to J, where k is
the number of chargers assigned to

Vehicle i. Update Xiemp accordingly.

22: End for

23: // insert unassigned vehicles to available chargers

24: if there are unoccupied chargers, then

25: Sort e; for all non-assigned vehicles in ascending order and
obtain Iorted 1ist.

26: for all i€ I orted

27: Insert i to an unoccupied charger j with minimum C(i,7) 1if

the assignment (i, j) satisfies Eqgq (13).
Update unoccupied charger list and Xiemp accordingly. If
each charger is assigned by one
vehicle, break.
28: End for
29: End if
30: // repair infeasible solution if the above procedure fails
31: while the number of unoccupied chargers >0
32: Sort e; for all assigned vehicles in descending order.
33: Pop up the vehicle in the sorted assigned vehicle list with
highest e;, update unassigned vehicle and
charger lists.

34: for all unassigned vehicles i and unoccupied chargers j
35: Assign i to j with the minimum C(i, j) while satisfy-
ing Eg (13). Update the unassigned vehicle and

charger lists and Xiem accordingly. If each charger
is occupied by one vehicle, leave the loop.

End for

36: End while
37: // local search
38: For any unassigned vehicles, exchange with current assigned vehi-
cles if the resulting solution decreases the objective function value.
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39: Apply the exchange procedure of step 14 to improve the current
solution.
40: Output: Xy = Xecpp-

Computational study for dynamic dial-a-ride services using EVsin
Luxembourg

The proposed methodology is applied for a realistic dynamic dial-a-ride service using EV's in
Luxembourg. The goal is to demonstrate the benefit of the proposed methodology for reducing
the total charging operation delay and assess its impact on system performance. The computa-
tional study is implemented on the simulation platform previously used for dynamic rideshar-
ing with transit transfers [34, 35] but is extended to handle EV's recharging as a multi-server
queuing system.

Dynamic dial-a-ride simulation platform using EVs

Consider a TNC operating a fleet of homogeneous EVs to provide dial-a-ride service in Lux-
embourg. Ride requests are unknown in advance and arrive stochastically. The operator
makes vehicle dispatch and routing decisions over time. We adopt a non-myopic vehicle dis-
patching policy to anticipate future system delays [35]. This policy minimizes the marginal sys-
tem cost increases when inserting a new customer on an existing tour by considering the
future system cost as an M/M/1 queue delay. A traveling salesman problem with pickup and
delivery problem is solved by a re-optimization-based heuristic to insert a new request on
existing routes which satisfies vehicle capacity constraint and precedence constraint (a pick-up
location is visited before its corresponding drop-off location). Following the previous studies
[35], no time window constraints are associated with customer requests. The applied vehicle
routing policy can be substituted by other approaches considering time windows and other
vehicle operational constraints. In an EV-enabled dial-a-ride system, the vehicle’s remaining
energy level needs to be considered when assigning a new request to an existing vehicle tour.
We assume that the remaining energy of a vehicle after serving all customers (including the
new request) and returning to its depot needs to be no less than the minimum reserve energy
emin» a8 in Eq (27):

e(v,x)) —e(v,x}) > e (27)

min

where x} is the current tour of vehicle v. X} is the post-evaluated tour after inserting the new
request. When dispatching vehicles to pick up a new customer, the dispatching center first
determines a list of energy-feasible vehicle candidates (satisfying Eq (27)). If no vehicles are
energy-feasible, the new request is rejected. Otherwise, the customer is assigned to the vehicle
with lowest marginal system cost, as in Eq (28).

{v',xix} = argmin,c, [e(v, %)) — (v, 7)) (28)

where V' is the set of vehicles satisfying Eq (27). c(v, x) is a cost function with service tour x
defined as Eq (29).

c(v,x) = 9T(v,x) + (1 —7) [[)’T(v,x)2 + Z Yn(v,x)} (29)

nepP,

where T(v, x) is the travel time of tour x. Y, (v, x) is the journey time (i.e., waiting time plus in-
vehicle travel time) for passenger n among the set of passengers P, assigned to vehicle v.
Parameter o is a weight considering the trade-off between operational cost and customer
inconvenience. § is a parameter between 0 and 1. When f = 0, the resulting vehicle dispatching
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policy is myopic since it does not consider future approximate system delays for the current
vehicle dispatching decision.

For the recharging policy, the entire planning period is discretized into a set of charging
decision epochs with the time interval A. The latter is set as em“qjﬂ to allow EVs to be

'max

recharged to the desired energy level (e,,,,,) within a charging decision epoch. Note that the
impact of epoch length will be analyzed in Section 4.3.4. ¢,,,,, is the maximum charging rate of
all chargers in the studied area.

We first solve the P1 problem for each vehicle and obtain its optimal charging plan for each
decision epoch. The inputs of the P1 problem are the probability distributions of vehicles in
the driving state and expected waiting times at charging stations, which can be obtained from
the historical driving and charging patterns of vehicles. These data can be easily obtained by
the operator using dedicated fleet management software with GPS tracking. The output of the
P1 problem provides the vehicle-specific charging schedule (plan). Then we solve the P2/P2]
problem for each charging decision epoch. Due to the stochastic nature of customer arrivals
and charging station occupancy, a vehicle’s exact charging time and amount of recharged
energy depends on the charging rate of its assigned charging station and the battery level when
arriving at a charging station. Moreover, vehicles can go to recharge only after all customers
on board are served. We apply the discrete event simulation technique to include queueing
delays at charging stations.

Luxembourg case study

We apply the proposed methodology to a dynamic dial-a-ride case study using EV's in Luxem-
bourg. Such services using conventional gasoline shuttles have been operating in Luxembourg
(e.g. Flexibus, https://www.sales-lentz.lu/en/individuals/shuttle-upon-request/). Luxembourg
has promoted a sustainable mobility initiative aimed at shifting mobility practices from the
current high car dependency towards multimodal and soft mobility alternatives. To promote
e-mobility, the government plans to install 1600 charging points, named Chargy (https://
chargy.lu/), with 22 kWh Level 2 chargers in the entire country in order to meet the future
charging needs of electric/hybrid vehicles. Currently, a total of 814 Level 2 charging plugs have
been installed. We consider a TNC that provides dynamic dial-a-ride services in Luxembourg
using EVs and the Chargy network for recharge in the daytime. For simplicity, the use of
charging infrastructure from other EVs (private EVs or other types of EVs) is not considered
in this study. The impact of the charging needs of the other stochastically arriving EV's will be
discussed in Section 4.4.

We use the Luxmobil open trip dataset obtained from the 2017 Luxmobil survey [36] (for
which 40,000 households in Luxembourg and 45,000 cross-border workers were surveyed in
2017, with response rates ranging from 26% to 30%) to generate customer demand in Luxem-
bourg. The trip dataset contains 82000 trips representing typical one-workday trips for Luxem-
bourg residents and its cross border workers from France, Germany, and Belgium. The trip
dataset is anonymized and provides trip information related to departure time, origin, and
destination at the level of neighborhood, transportation means, etc. The extrapolation from
the Luxmobil survey data to the entire population (i.e. Luxembourg residents and its cross bor-
der workers) was done for German, French and Belgian commuters by the number of workers
in Luxembourg per municipality/district. Residents of Luxembourg are extrapolated based on
the number of inhabitants and the age distribution of each municipality/district. We randomly
generate 1000 customer ride requests from 6:30-22:00 in Luxembourg. The impact of different
demand intensities is evaluated in the Sect. Sensitivity analysis. As the survey data contains
trip origins and destinations at the neighborhood level, we use another geo-referenced data set
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Fig 2. Heat maps of customer pickup location between 6:30-22:00 in the study area.

https://doi.org/10.1371/journal.pone.0251582.9002

(https://data.public.lu/fr/datasets/adresses-georeferencees-bd-adresses/) to randomly generate
the geographical coordinates within the same neighborhoods. The geo-referenced data set
includes all neighborhoods in Luxembourg and contains all building addresses appearing in
the national register of streets and neighborhoods. Fig 2 shows the heat map of a one-day data
set of 1000 customers’ pickup locations in the study area. We can observe that most trips are
distributed between Luxembourg City and the cities of Esch-sur-Alzette, Dudelange, and
Mersch. Fig 3 depicts the distribution of customer arrival times. We observe that a morning
arrival peak occurs between 7:00 and 8:00, and an afternoon peak occurs between 17:00 and
19:00.

The fleet size is assumed to include 50 homogeneous 8-seater fully electric shuttles, repre-
senting 20 customers/vehicle/day. The characteristics of the EVs are based on Volkswagen’s
8-seat 100% electric Tribus (https://www.tribus-group.com/zero-emission-volkswagen-e-
crafter-electric-wheelchair-minibus/). The battery range of the Tribus is 35.8 kWh, with a
practical range up to 150 km. The average energy consumption per kilometer travelled is
assumed to be constant. For practical applications, a drive cycle can be applied instead of a
constant energy consumption policy. We assume that EV's are recharged to 80% of their bat-
tery capacity to maximize battery lifetimes. Vehicles are initially located at 7 different depots
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Fig 3. Example of 1000 customer arrivals from 6:30-22:00 in the study area.
https://doi.org/10.1371/journal.pone.0251582.9003

around the municipality centers of Luxembourg City, Esch-sur-Alzette, Ettelbruck, Dude-
lange, Mersch, Remich, and Wiltz. Vehicle dispatching and routing policy is based on the non-
myopic policy in Section 4.1.

On the charging infrastructure side, we test the proposed methodology based on three dif-
ferent charging infrastructure configuration scenarios as follows.

o Scenario 1 (Chargy only): EVs can only be recharged in the daytime on Luxembourg’s cur-
rent public Chargy infrastructure, which comprises 814 level 2 (L2) chargers with 22 kWh
power. Based on this scenario, recharging EV's using an L2 charger from 0% to 80% require
around 1.3 hours. Fig 4 shows the spatial distribution of the charging stations in
Luxembourg.

o Scenario 2 (DC fast only): EVs recharge exclusively on 9 DC fast chargers with 50 kWh
power, distributed in different municipalities in Luxembourg (see Fig 4).

o Scenario 3 (Chargy+DC fast): EVs can be recharged both on the Chargy network or at DC
fast charging stations.

Note that we assume that all charging stations are available at the beginning of each day.
EVs are initially charged to 80% at their depot and maintain an energy level no less than 10%
for customer service operations. For practical applications, higher minimum charge levels can
be applied if necessary.

The charging decision epoch is 30 minutes, reflecting the charging time for a Tribus vehicle
from e,,;,, (10% of battery capacity) to e, (80% of battery capacity) using a 50 kWh DC fast
charger. We randomly generate 13 independent 1000-customer demand data sets from the
Luxmobil open trip dataset. A total of 10 simulation runs on distinguished demand data are
conducted to derive the probability distribution of a vehicle being in the driving state and the
expected waiting time when arriving at charging stations using a need-based charging policy
(reference policy). In practice, such information can be easily collected by an operator based
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Fig 4. Charging station locations in the study area.
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on vehicles” historical driving patterns and the waiting times experienced at charging stations.
The reference policy states that EVs go to the nearest unoccupied charger to recharge their
batteries to 80% whenever the battery level is lower than 20% after serving all customers on
board [17, 22]. The three remaining demand data sets are used to test the performance of the
proposed charging strategy.

Table 2 shows the details of the simulation parameter settings and the parameters used for
the charging schedule and charging station assignment models.

Results

We first derive the charging plan for each vehicle under different charging infrastructure sce-
narios. Then we run the dynamic dial-a-ride simulation under the different charging policies
and charging infrastructure configuration scenarios. The discrete probability distribution is
estimated using the frequency of a vehicle being in the driving state over 10 runs using inde-
pendent random demand samples as previously mentioned. The charging policy is based on
the reference policy using the Chargy network only for vehicle recharge. Fig 5 shows an exam-
ple of the empirical probability distribution that a vehicle is in the driving state. Here we select
two vehicles with quite different driving patterns. Vehicle 1 is initially located in Luxembourg
City, with higher customer demand, while vehicle 40 with its depot at Mersch has lower cus-
tomer demand.

Fig 6 reports the expected waiting time to be served when arriving at charging stations in
each charging decision epoch. We vary the charging infrastructure configuration scenarios to
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Table 2. List of parameters used for the Luxembourg case study.

Number of customers 1000 p 0.2485 (euro/min.)*
Number of vehicle depots 7 9 0.2756 (euros/kWh) *
Fleet size 50 ;4 0.2387 (kWh/km)*
Capacity of vehicles 8 pers./veh. c 5.77 euros’
Vehicle speed 50 km/hour A 30 min.
Battery capacity 35.8 kWh' T 6:30-22:00
Number of chargers
Level 2 (22 kWh) 814 P12 22/60 (kW/min.)
DC fast (50 kWh) 9 ODC fast 50/60 (kW/min.)
Battery capacity 35.8 kWh B 0.025
€min 0.1B 4 0.5
Cmax 0.8B
Remark:

1. EV characteristics are based on a Volkswagen-powered 100% electric minibus with a 150 km range (https://www.
tribus-group.com/zero-emission-volkswagen-e-crafter-electric-wheelchair-minibus/).

2. Equivalent to a 14.9 euros/hour wage rate. As a reference, the range of the gross salary of bus drivers in
Luxembourg is 2474-4846 euros/month (around 14.4-28.2 euros/hour, https://www.paylab.com/lu/salaryinfo).

3. Electricity price is based on the current fare using Chargy’s plugs (https://www.eida.lu/en/chargy) with VAT.

4. Based on the driving efficiency of the Tribus (¢ = 35.8/150).

5. Based on the energy consumption cost of the average access distance to charging stations of 5 km.

https://doi.org/10.1371/journal.pone.0251582.1004

obtain the respective expected waiting times under each scenario. We can observe that when
using the Chargy network only, a peak in the expected waiting time of 30 minutes appears
around at 9:00, which reduces to less than 10 minutes after around 10:30. When adding 9 DC
fast chargers to the existing Chargy network, the peak in the expected waiting time at 9:00 is

m

i

Vehicle 1
Vehicle 40

e

8 10 12 14 16 18 20 24

Time

Fig 5. Example of the probability distribution of a vehicle being in the driving state.

https:/doi.org/10.1371/journal.pone.0251582.g005
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reduced to around 15 minutes. We find that when all vehicles recharge only at DC fast char-
gers, the profile of the expected waiting time in each charging decision epoch is higher than
the two other scenarios. Fig 7 shows an example of the optimal charging plan obtained from
P1 for vehicle 1 and vehicle 40. We can observe that vehicle 1 needs to be recharged 4 times to
nearly 80%, at around 10:00, 13:30, 16:30, and 19:30, whereas vehicle 40 requires 3 recharges,
at around 10:30 and 15:30 to around 80% and at 22:30 to around 15%.

To assess the proposed charging policy, two charging reference policies are considered as
follows.

30 T T T T I
————— Vehicle 1
Vehicle 40

i ]
:'l i i i

25

Wh)

— N
3 =}
T T

=
o
T

Recharged energy levels (k!

Charging decision epoch (h)
Fig 7. Example of vehicle optimal charging plans in different charging decision epochs.

https://doi.org/10.1371/journal.pone.0251582.9007
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» Need-based nearest charging station assignment policy (NS): vehicles recharge to 80% at
the nearest unoccupied charger whenever their battery range is lower than 20% after serving
onboard customers.

« First-Come-First-Served (FCFS) minimum charging delay policy: vehicles go to recharge
whenever their battery range is lower than 20% after serving onboard customers. The
assigned charger j for vehicle i is based on the lowest estimated charging operation time at
time t as in (21).

j(it) = argminje]{tij + Wij(t)}7 (30)

where t;; is the travel time from the location of vehicle i to charger j. Wﬁ(t) is the expected wait-
ing time estimated as the difference between the earliest available time of chargers and the
arrival time of vehicle i.

We refer to the proposed optimal charging scheduling and assignment policy as the OCP
policy. The computational results are based on the average performance using three indepen-
dent demand data sets.

Table 3 shows the impact of the three charging policies on the total charging delays and the
amount of recharged energy under different charging infrastructure scenarios. The first three
columns report the average charging waiting time, charging time, and vehicle idle time for
recharge per vehicle charging. The other columns report the measures related to the overall
charging costs/times for the fleet for a full day of operation. First, for each vehicle charging
operation, the OCP policy shows the best performance, with the least waiting time, charging
time, and vehicle idle time for recharge over all three scenarios. The average charging waiting
time over the three scenarios is 3.1 min., compared to the 9.9 min. (-68.9%) of NS and 11.3
min. for FCFS (-72.6%). Regarding the average charging time, the OCP policy results in 37.4
min., compared to NS with 51 min. (-26.8%) and FCFS with 52.4 min. (-28.6%). Similar

Table 3. Impact of different charging policies on total system delays, recharged energy, and costs.

Scenario

Chargy only

DC fast only

Chargy+DC
fast

Average over
three scenarios

Remark:

Charging Average charging

policy waiting time'

(min.)
NS 11.1
FCFS 9.7
OCP 4.7
NS 10.0
FCFS 17.0
OCP 3.7
NS 8.7
FCES 7.1
OCP 0.8
NS 9.9
FCFS 11.3
OCp 3.1

! Measured as the time per recharge per vehicle.

Average| Average operational | Total waiting| Total charging| Total amountof| Total charged

charging time' time for charge®| time’ (hour)| time’ (hour)| charged energy’ energy cost’
(min.) (min.) (kWh) (euro)
65.0 76.4 27.2 159.6 3512.1 967.9
65.0 75.5 23.5 158.1 3477.3 958.3
53.6 61.9 9.9 112.5 2475.9 682.3
28.4 45.3 24.3 69.0 3452.2 951.4
28.5 54.6 41.8 70.1 3504.1 965.7
24.8 354 7.8 52.3 2614.2 720.5
59.7 69.4 21.7 148.7 3567.4 983.2
63.6 71.6 17.3 155.1 3493.2 962.7
33.7 38.4 1.7 69.0 2534.0 698.4
51.0 63.7 24.4 125.8 3510.6 967.5
52.4 67.2 27.5 127.8 3491.5 962.3
37.4 45.2 6.5 77.9 2541.4 700.4

% Includes vehicle travel time to reach a charger, charging waiting time, and charging time.

* Measured for the e-fleet for a full day of operation.

https://doi.org/10.1371/journal.pone.0251582.t005
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results can be found for the average vehicle idle time per vehicle recharge, with an average sav-
ings of 29%-32.7%.

Second, in terms of the total waiting time of the fleet, the results show that using the NS pol-
icy would lead to a high charging delay, with 27.2 hours for Chargy only, 24.3 hours for DC
fast only, and 21.7 hours for Chargy plus DC fast. Adopting the FCES policy would not signifi-
cantly reduce the waiting time compared to the NS policy. However, the benefit of the OCP
policy is very significant in terms of reducing the charging operation delay: on average, -73.5%
compared to that of the NS policy and —-76.5% compared to the FCFS policy over the three sce-
narios. In terms of the total charging time of the fleet, it can be observed that using Chargy
only, the NS policy would lead to a high value of 159.6 charging hours, compared to that of
using DC fast chargers only (69 hours) and Chargy+DC fast chargers (148.7 hours). Using the
OCP policy would lead to significant total charging time savings under the three charging
infrastructure scenarios, and in particular the Chargy+DC fast charger scenario. On average,
the benefit in terms of reducing the total charging time is -38.1% compared to the NS policy
and -39.0% compared to the FCFS policy. Finally, using the OCP policy can significantly
reduce the amount of total charged energy and energy costs. On average, the total charged
energy cost saving is around 27% compared to the other two policies.

Table 4 shows the system performance from the customer perspective under different
charging policies. It can be observed that using the NS and FCFS policies, almost all customers
(99.5%) are served given different charging infrastructure scenarios. The OCP policy has, on
average, a 94.1% (-5.5%) customer service rate. This is due to the stochasticity of ride requests;
the charging plans of the OCP policy obtained from historical vehicle driving patterns might
not be able to fit certain long-trip requests perfectly, resulting in rejections due to insufficient
energy remaining in the vehicles. This trade-off between the service quality and efficiency can
be improved by increasing the fleet size or using a mixed fleet of gasoline and electric vehicles.
Second, the results indicate that for the DC-fast-only scenario, customer inconvenience can be
improved due to the overall charging time savings given the current charging demand of the
fleet. In terms of customer inconvenience, adopting the OCP policy would increase customer
waiting times by 2.7 minutes on average over three scenarios and passenger journey times by 5
minutes compared to the NS and FCES policies.

Table 4. System performance under different charging policies.

Scenario Charging policy| Mean passenger waiting time| Mean passenger journey time | Mean vehicle travel time | % of customers served
Chargy only NS 13.3 34.0 393.5 99.3
FCFS 13.1 33.8 392.5 99.3
OCp 15.8 39.0 367.7 92.9
DC fast only NS 10.0 29.3 392.2 100.0
FCFS 10.6 30.4 390.9 100.0
OCP 14.1 36.6 380.9 96.2
Chargy+DC fast NS 13.4 34.2 396.8 99.5
FCFS 13.0 33.9 392.1 99.3
OCP 14.9 37.4 374.7 93.2
Average over three scenarios | NS 12.2 32.5 394.2 99.6
FCFS 12.2 32.7 391.8 99.5
OCP 14.9 37.6 374.4 94.1

NS: nearest station charging policy; OCP: optimal charging plan policy; AOCP: adapted optimal charging plan policy. Passenger journey time includes passenger

waiting time and in-vehicle travel time.

https://doi.org/10.1371/journal.pone.0251582.t006
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We can conclude that adopting the OCP policy can lead to a significant reduction in charg-
ing operation delays and costs compared to the NS and FCFS policies, while maintaining a
high customer service rate with very limited perturbation in terms of customer inconvenience.

Sensitivity analysis
To investigate the impact of model parameters on the performance of the proposed method, a
sensitivity analysis is designed to answer the following questions.

o What is the impact of the length of charging decision epochs on the charging queueing delay
and customer inconvenience?

« How do ride demand changes affect the total charging delays and costs?

« What are the benefits of increasing the vehicle battery range in terms of reductions in charg-
ing delays, costs, and customer inconvenience?

The reported results are based on the average of 3 runs using the three independent cus-
tomer demand test data sets on the Chargy+DC fast chargers scenario.

a) Impact of the length of the charging decision epochs. The length of the charging deci-
sion epoch determines the frequency of vehicles scheduled for recharge, which may influence
the effectiveness of vehicle charge scheduling and delays. A longer decision epoch would post-
pone the charging operations of vehicles, while a shorter decision epoch would limit the
amount of energy to be charged within one epoch and increase the number of charging opera-
tions and the vehicle idle time due to charging operations. We vary the length of charging deci-
sion epochs from 10 to 60 minutes with a 10-minute interval and assess the impact on the total
charging delay and energy costs. The results are shown in Table 5 and Fig 8. Two insights can
be drawn: 1) The length of the charging decision epoch impacts the total charging delay and
energy costs. When the epoch length is too short (less than 30 minutes), the maximum amount
energy of energy that can be charged within a decision epoch is constrained, compromising
the obtained charging plans of vehicles. Consequently, the vehicles need to charge more fre-
quently, resulting in higher charging delays and a lower customer service rate; 2) when the
decision epoch is greater than a critical value (30 minutes, allowing vehicles to be charged to
80% on a DC fast charger), the charging delays and energy costs are similar thanks to the
adapted vehicle driving probability and charging waiting time in each epoch. This suggests
that the charging decision epoch length should be long enough to allow vehicles to be charged
to the desired energy level within one epoch using the faster chargers.

b) Impact of customer demand variation. We vary customer demand as 500, 1000, 1500,
and 2000 trip requests, respectively, randomly sampled from the Luxmobil open trip dataset.
The results in Table 6 indicate that using the OCP policy can significantly reduce the total

Table 5. The impact of the charging decision epoch length on the performance of the OCP policy.

Charging decision Total waiting| Total charging Total amount of Total charged Mean passenger Mean passenger | % of customers
epoch length time (hour) time (hour) energy charged | energy cost (euro)| waiting time (min.)| journey time (min.) served
(kWh)
10 5.9 23.7 932.1 256.9 17.1 38.5 54.0
20 5.3 66.0 2300.5 634.0 15.9 38.2 86.9
30 1.7 69.0 2534.0 698.4 14.9 37.4 93.2
40 1.6 73.1 2485.6 685.0 15.1 37.3 92.6
50 1.3 69.4 2548.7 702.4 14.6 36.6 94.7
60 1.2 74.5 2461.7 678.4 14.3 37.1 92.8

https://doi.org/10.1371/journal.pone.0251582.t007
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Fig 8. The impact of charging decision epoch length on the total charging waiting time of the fleet, the total amount of charged energy,
and the percentage of served customers.

https://doi.org/10.1371/journal.pone.0251582.9008

charging waiting times of the fleet compared to the NS and FCES policies, given different cus-
tomer demand. We found that when demand increases, the total amount of energy charged
may vary depending on the total distance traveled by vehicles to serve customers. The OCP
policy allows reducing the total energy costs of vehicle charges from -12.0% to -38.6% com-
pared to the NS and FCEFS policies, depending on the different customer demand intensities
and service rates.

c) Impact of battery range. To evaluate the impact of the vehicle battery range, we extend
the battery capacity of the current Tribus from 35.8 kWh to 53.7 kWh (+50%) and 71.6 kWh
(+100%), respectively. The results in Table 7 show that extending the battery range would sig-
nificantly reduce the total waiting times of the NS policy and FCFS policy, while applying the
OCP policy would increase the total waiting times from 1.7 hours to 3.6 hours due to the lon-
ger charging times of vehicles. The gains from the reduction of total charged energy (costs) are
very significant for the OCP policy (from 2534 kWh to 1372 kWh, —45.8%). Moreover, the cus-
tomer service rate is improved from 93% to 98%, close to the other charging policies. However,
the NS and FCEFS policies still charge a similar amount of energy (3352 kWh on average) over
different battery capacities due to the 80%-charge policy for vehicle charging operations.

Discussion

The computational study first illustrates the characteristics of the charging scheduling model
and the vehicle-charger assignment on a small example. Then the LR algorithm for solving

Table 6. Total charging delays and costs of the fleet given different charging policies and customer demand.

Demand 500 1000 | 1500 2000 500 1000 1500 2000 500 1000 | 1500 2000
Charging policy Total charging waiting time (hours) Total charged energy cost (euro) % of customers served
NS 4.1 21.7 8.3 8.4 493.4 983.2 1039.5 739.9 100.0 99.5 78.9 51.2
FCFS 5.9 17.3 12.1 14.4 483.9 962.7 1124.8 768.5 100.0 99.3 79.5 51.0
OCP 1.0 1.7 5.5 1.2 302.8 698.4 880.3 651.3 96.8 93.2 77.9 50.4

https://doi.org/10.1371/journal.pone.0251582.t008
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Table 7. The impact of battery range on the performance of the OCP policy.

Battery capacity (KWh) 35.8 53.7 71.6 35.8 53.7 71.6 35.8 53.7 71.6
Total charging waiting time Total amount of energy charged Customer service rate
Charging policy (hours) (kWh) (%)
NS 21.7 9.3 5.1 3567.4 3364.0 3145.4 100 100 100
FCFS 17.3 17.3 7.9 3493.2 3320.5 3219.8 99 100 100
OCP 1.7 3.0 3.6 2534.0 1913.1 1372.3 93 97 98

https://doi.org/10.1371/journal.pone.0251582.t009

online vehicle-charger assignment is evaluated on several numerical test instances. A realistic
dynamic dial-a-ride service case study in Luxembourg is designed to assess the performance of
the proposed approach and compare it with two widely used charging policies. A number of
insights can be summarized as follows.

The single-vehicle charging scheduling problem for dynamic shared on-demand mobility
services can be decomposed into a multi-stage vehicle battery recharge problem to deter-
mine when and how much energy to charge in each charging decision epoch. The objective
is to minimize charging operational costs while meeting vehicle driving needs for the next
stage and battery-level-related constraints. The minimum amount of energy to charge for
each vehicle is solved sequentially to obtain vehicle daily charging schedules that consider
the expected queuing delays for charging and stochastic driving needs over time.

The real-time vehicle—charger assignment model considering the current charging system
queuing states considerably reduces vehicle charging waiting times and vehicle idle times for
recharge in a dynamic environment. The LR algorithm allows for solving the mixed-integer
assignment problem for large-scale test instances with 1000 vehicles and 1000 chargers within 3
minutes, with an optimality gap of 0.5%. The algorithm is suitable for the real-time vehicle-char-
ger assignment of electric fleet charging operations to minimize total vehicle charging delays.

The realistic dynamic dial-a-ride case study in Luxembourg under different charging infrastruc-
ture settings shows that the proposed charging schedule policy can reduce, on average, the total

charging waiting time (~74.9%), charging time (-38.6%), and charging cost (-27.4%) compared
to the nearest charging station charging policy and the minimum charging delay policy.

A sensitivity analysis provides insight into the impact of the length of the charging decision
epoch, of customer demand intensity, and of the battery range. The results show that the
length of the charging decision epoch should allow a vehicle to be charged up to the allowed
maximum energy level (80% in our case) using a fast charger. Shorter charging decision
epochs would lead to higher charging frequencies and charging costs, resulting in greater
customer inconvenience.

When increasing the level of customer demand and the vehicle battery capacity, the pro-
posed approach minimizes the charging operation time and costs to meet service needs. In
contrast, the two reference charging policies apply the full-charge (80% full) policy, leading
to charging more energy than necessary and resulting in higher costs and longer vehicle idle
times for charging operations.

The charging needs of other (individual-owned/commercial) EVs that compete for limited
public charging facility resources are not considered here. The operator cannot know in
advance the waiting time at a charger occupied by other EVs. Such a problem is well-known
for EV charging at public charging stations as charging port reservation is still not available
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on the market [37]. In this case, vehicles can be assigned to chargers that are not occupied by
other EVs in order to overcome this issue. Another alternative is to incorporate some statisti-
cal information (arrival rates and charging duration distribution) from the charging station
operators to estimate the expected waiting time at a charger occupied by another non-opera-
tor-owned EV.

Conclusions

The electrification of shared on-demand mobility services requires control over charging man-
agement as the fleet needs to frequently charge several times a day given limited public charg-
ing infrastructure. Such charging operation constraints represent significant costs for the
operator due to charging queuing delays and energy costs. The operator faces the problem of
scheduling the charging of the fleet in a stochastic environment with several sources of uncer-
tainty, including the availability of charging stations, charging price variation, and stochastic
customer demand. In this study, we propose a two-stage solution for handling the dynamic
vehicle charging scheduling problem for dynamic dial-a-ride services using EVs that is com-
prised of two components: vehicle charging scheduling and vehicle-charger assignment.
Charging scheduling is considered on the basis of each vehicle as a battery recharge problem,
which decomposes the problem into multistage decision-making to minimize the charging
costs at each stage while satisfying vehicle driving needs for the next stage. Given the charging
plans of vehicles, the second component determines online vehicle-charger assignment based
on the principle of the vehicle idle time for recharge minimization, considering the queuing
status at the level of chargers. We apply the method to a realistic dynamic electric dial-a-ride
service in Luxembourg under different charging infrastructure scenarios. The results show
that significant savings can be obtained for the daily charging operations of the fleet (50 electric
shuttles with 1000 customers per day): -73.4% and -76.4% in terms of the total charging wait-
ing times, -38.1% and -39% for the total charging time, and -27.6% and -27.2% for the total
charged energy costs, compared to the widely-used nearest charging station policy and mini-
mum charging delay policy, respectively.

The approach can be extended to manage the vehicle charging scheduling of other dynamic
shared mobility services such as e-taxis or ride-hailing in a dynamic environment. Future
extensions can consider incorporating the charging patterns of other private EVs for more
accurate waiting time estimations for chargers occupied by other private/commercial vehicles.
Another direction is incorporating a day-to-day learning mechanism or a prediction model to
anticipate short-term vehicle driving patterns and energy needs when demand is volatile.
Moreover, the approach can be extended to consider a more realistic energy consumption
model in the urban environment [38] or a mixed gasoline and electric vehicle fleet to reduce
charging operational costs [27].
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