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Abstract

Coordinating the charging scheduling of electric vehicles for dynamic dial-a-ride services is

challenging considering charging queuing delays and stochastic customer demand. We pro-

pose a new two-stage solution approach to handle dynamic vehicle charging scheduling to

minimize the costs of daily charging operations of the fleet. The approach comprises two

components: daily vehicle charging scheduling and online vehicle–charger assignment. A

new battery replenishment model is proposed to obtain the vehicle charging schedules by

minimizing the costs of vehicle daily charging operations while satisfying vehicle driving

needs to serve customers. In the second stage, an online vehicle–charger assignment

model is developed to minimize the total vehicle idle time for charges by considering queu-

ing delays at the level of chargers. An efficient Lagrangian relaxation algorithm is proposed

to solve the large-scale vehicle-charger assignment problem with small optimality gaps. The

approach is applied to a realistic dynamic dial-a-ride service case study in Luxembourg and

compared with the nearest charging station charging policy and first-come-first-served mini-

mum charging delay policy under different charging infrastructure scenarios. Our computa-

tional results show that the approach can achieve significant savings for the operator in

terms of charging waiting times (–74.9%), charging times (–38.6%), and charged energy

costs (–27.4%). A sensitivity analysis is conducted to evaluate the impact of the different

model parameters, showing the scalability and robustness of the approach in a stochastic

environment.

Introduction

Electric vehicle technology has gained increasing interest amongst policymakers, the general

public, and the automotive industry in response to worldwide directives to reduce CO2 emis-

sions. Transport network companies (TNCs) such as Lyft and Uber have begun deploying bat-

tery electric vehicles (called EVs hereafter) in their fleet to reduce operating costs and promote

green mobility [1]. Research on the electrification of ride-hailing services in the USA has

shown that TNCs need to recharge e-fleets several times a day and rely primarily on DC fast

chargers to minimize charging times [2]. As charging EVs with high-power charging
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(>22kW) is much more expensive than residential electricity prices, such operations may sig-

nificantly increase the operator’s charging cost by about 25% [3]. Furthermore, due to the

higher installation cost of high-power charging, most public chargers are limited to Level 2

chargers [4]. With limited battery range, a vehicle’s within-day charging becomes a primary

challenge given the limited number of charging stations and relatively long charging time. For

example, an 80% charge needs about 50 minutes using a 50 kW DC fast charger for a Volkswa-

gen Golf with a 300 kilometer range [4]. Additionally, with the increased number of electric

vehicles in the fleet and the relatively limited number of public and private charging spots, the

likelihood that accessible charging stations will be temporarily unavailable will soon become

an issue. Uncoordinated charging operations might result in higher queueing delays, reducing

the availability of vehicles to serve customers, and an increase in total system operating costs.

However, existing studies mainly focus on static EV routing problems under charging infra-

structure constraints, whereas research on online charging scheduling under stochastic

demand is still limited [5]. For this purpose, we propose an online charging scheduling model

for dynamic dial-a-ride services to minimize the total charging delays and costs of the fleet

under charging infrastructure constraints and stochastic customer demand.

The challenge of charging scheduling for electric dynamic dial-a-ride services under uncer-

tainty involves several dimensions. First, under stochastic customer arrivals, vehicle driving

patterns are stochastic, which impacts vehicle charging demand in space and time. Second,

given limited charging facility resources and the stochastic charging demand of other EVs,

there might be queuing delays at charging stations. How to efficiently coordinate the charging

demand of the e-fleet while considering vehicle’s driving needs and charging station capacity

constraints? Third, given heterogeneous charging powers and space-time differentiated charg-

ing prices, how should operators decide when, how much, and where to charge vehicles such

that the overall charging costs and queuing delays are minimized? To address these challenges,

we propose an online charging scheduling model by anticipating the future energy needs of

vehicles to minimize the total charging delays and charging costs of the fleet of EVs for

dynamic dial-a-ride services.

The remainder of the paper is organized as follows. Section 2 reviews related literature on

EV charging strategies in a stochastic environment. Section 3 proposes a two-stage EV

recharging policy for dynamic dial-a-ride services. We first derive an optimal charging plan

for each individual vehicle based on its historical driving patterns, the price of electricity, and

expected queuing delays at charging stations. Then an optimal charging station assignment

model is proposed to minimize total vehicle charging times and queuing delays based on the

current system state. An efficient solution heuristic based on the Lagrangian relaxation (LR)

method is proposed for dealing with large-scale instances and allowing real-time operations.

In Section 4, we conduct a realistic case study for a dynamic dial-a-ride service in Luxembourg

to evaluate the performance of the proposed methodology in a stochastic environment. The

impact of different model parameters on system performance is analyzed. Finally, conclusions

are drawn and future extensions are discussed.

Related work

Coordinating EV charging demand in order to reduce its impact on the electric grid has been

studied in recent years [6, 7]. However, these charging scheduling models are mainly from a

private EV owner perspective, which mainly involves recharging EVs at home or at the work-

place once or twice a day. For a fleet operator, the charging optimization strategy is different

from that of private EVs in both time (charging operations during the day) and scale (the vehi-

cle fleet needs to be recharged several times per day). Charging coordination strategy needs to
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consider various factors of uncertainty: stochastic vehicle driving patterns, queuing delays at

charging stations, charging price variations, charging infrastructure capacity constraints, and

customer inconvenience due to recharging EVs. Hu et al. [8] classify three EV charging control

strategies for fleet operators: centralized control, transactive control, and price control. Cen-

tralized control assumes the operator directly schedules EV recharging operations via real-

time communication. Transactive control is a kind of distributed control mechanism to

achieve supply–demand equilibrium in an electricity market. Price control relies on a dynamic

electricity pricing design to regulate electricity supply and demand disequilibrium for EVs.

The strategy of coordinating spatio-temporal supply-demand mismatch to enhance the system

efficiency has also been studied for the collaborative logistics problems [9–11].

Iacobucci [12] pointed out that studies for the design of charging strategies for shared EVs

are still limited. The authors propose a two-layer model predictive control strategy for relocat-

ing and charging shared autonomous electric vehicles (SAEVs). Several charging optimization

and idle vehicle relocation models have been proposed for electric car-sharing systems [13–

16]. For dynamic dial-a-ride service using EVs, a number of works have proposed mathemati-

cal models for optimizing shared electric autonomous vehicles operations. For example,

Zhang and Chen [17] proposed a charging optimization strategy to balance the charging

demand of SAEVs in a high-priced electricity period to reduce total charging cost. The battery

levels of individual vehicles are first sorted, and then individual vehicles with low battery levels

are set to recharge. The number of concurrent charging SAEVs is regulated by the ratio

between the energy demand of SAEVs, the available number of chargers for SAEVs, and SAEV

recharge rates. Queuing delays and charging station assignment are not explicitly considered.

Bongiovanni [18] proposed a two-phase metaheuristic to solve the dynamic dial-a-ride prob-

lems using electric autonomous vehicles. The proposed approach first solves a static dial-a-

ride problem under battery constraint to initiate vehicles’ routing plans. New requests are then

inserted into vehicles’ planned routes to minimize a weighted objective function by consider-

ing both operational costs, customer inconvenience, and demand. A two-phase metaheuristic

is proposed to find good EV vehicle routing solutions. Zalesak and Samaranayake [19] pro-

posed a batch-optimization framework based on the shareability network concept for ride-

pooling using EVs. New requests are assigned first to vehicles under current charging schedule

constraints. Upon new assigned requests, a charging planning model is used to update the

charging schedules of vehicles. A more realistic battery charging model considering the non-

linear relationship of battery state of charge and charging time is used. Some recent studies for-

mulated the dynamic ridesharing problems using EVs as a Markov decision process and

proposed approximate dynamic programming approaches to maximize the profit of operators

[20, 21].

Several studies propose mathematical models to evaluate the impact of deploying e-taxis or

SAEVs on the level of service. The charging strategy is mainly based on a full-charge policy to

recharge EVs to a maximum level at nearest charging stations whenever an EV’s battery level

is lower than a threshold [22, 23]. Tian et al. [24] proposed a real-time charging station recom-

mendation system for e-taxis based on the historical driving patterns of vehicles. When receiv-

ing a vehicle’s charging request, the recommendation system suggests the charging station

with the least total access time and waiting time when arriving at the charging station, accord-

ing to the order of received requests. The results show that the proposed recommendation sys-

tem could significantly reduce vehicle’s waiting times compared to the nearest charging

station assignment policy. From an individual taxi driver perspective, this first-come-first-

served policy is most beneficial for each new charging request. However, from a fleet charging

management perspective, charging operations can be further optimized by coordinating the

charging demand over non-rush hours and allowing partial recharging to reduce taxis’ idle
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time. For example, Yuan et al. [25] proposed an e-taxi charging scheduling model under a

receding horizon control framework allowing partial recharging to minimize taxi fleet idle

time under dynamic taxi demand. The results suggest that partial charging allows for reducing

vehicle waiting times and increasing the number of available taxis in rush hour. However, the

considered charging infrastructure is assumed to be homogeneous and charging station

assignment is not optimized to minimize total queuing delays.

The partial recharge policy raises the issue of what battery levels are necessary to satisfy a

vehicle’s driving needs and how to determine the optimal charging plans for vehicles based on

individual vehicle’s driving patterns. Iversen et al. [26] proposed a model to optimize the

charging level plan of an individual PEV based on individual vehicles’ historical driving pat-

terns. The problem is considered as a stochastic dynamic programming problem to minimize

the total charging cost while satisfying the vehicle’s energy needs for driving. An inhomoge-

neous Markov model is fitted by using individual vehicles’ stochastic driving patterns to esti-

mate the state transition probability from being idled to a driving state. A summary of existing

studies on charging policies for on-demand shared mobility services is shown in Table 1.

Dynamic dial-a-ride problems using e-fleets present a more complex environment for man-

aging charging operations under stochastic customer demand and charging capacity con-

straints. To the best of our knowledge, the current state of the art has not fully addressed these

issues to minimize total e-fleet idle times and charging cost under dynamic customer demand

and queuing delays at charging stations.

The main contributions of the current work are summarized as follows.

1. We propose a two-stage approach to handle the vehicle charging scheduling problem for

dynamic dial-a-ride services using EVs to minimize the daily charging operational costs

and delays of the fleet. A first vehicle charging scheduling model is formulated as a battery

recharge problem under uncertainty to minimize the total charging operational costs by

considering vehicle probabilistic driving needs, expected charging delays, and charging

costs.

2. A new online vehicle–charger assignment model is proposed as a mixed-integer optimiza-

tion problem to minimize the total vehicle idle times for recharges considering queuing

delays at the level of the chargers. A Lagrangian relaxation algorithm is developed and

tested on large-scale test instances. The computational results show that the LR algorithm

can obtain near-optimal solutions within a couple of seconds/minutes for median-/large-

sized problems.

3. A realistic dynamic dial-a-ride service case study is implemented to assess the performance

of the proposed solution. The results show that significant savings in terms of charging

delay, charging time, and cost can be achieved compared to the state-of-the-art nearest

charging station policy and minimum charging delay policy.

Methodology

We consider a dynamic dial-a-ride problem in which a TNC operates a fleet of homogeneous

EVs to pick up and drop off customers. Ride requests arrive stochastically and are accepted/

rejected on short notice. The fleet of EVs is assumed charged at a certain level (80% or more)

at the beginning of day to ensure a good battery lifespan [17, 22]. A limited number of charg-

ing points are available in the service area to allow EVs to recharge. A dispatching center is

equipped with a dedicated management platform with real-time information on vehicles (loca-

tion and battery level) and charging station status (i.e., number and characteristics of chargers,
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and charging schedules of EVs at the location) [8]. The operator dispatches vehicles to pick up

customers according to a designed vehicle routing and dispatching policy (described in Sec-

tion 4.1). An EV’s battery energy level is monitored in real-time and communicated to the dis-

patch center. Given stochastic vehicle driving patterns, uncertain charging demand from other

EVs, and capacitated charging infrastructure, it is not possible to obtain the exact charging

plans of vehicles (when, where, and how much energy to recharge each vehicle) in advance.

The dynamic dial-a-ride charging scheduling problem is to design an online charging policy

under these uncertainty factors to minimize total charging delays and costs of the e-fleet over

the planning horizon (one day) under a stochastic environment.

Table 1. Summary of charging policies for on-demand shared mobility services.

Studies System Charging policy features

Bischoff and Maciejewski

[22]; Chen et al. [23]

e-taxi On-need policy to assign a vehicle to the nearest charging station

for recharge whenever the vehicle battery level is lower than a

threshold.

Iacobucci [12] SAEV Consider the dynamic electricity price for scheduling vehicle

charges in smart grids. A two-layer model predictive control

approach is proposed to optimize vehicle charging scheduling

over a longer timeframe. Congestion at charging stations is not

considered.

Tian et al. [24] e-taxi Consider the inference of electric taxi states based on historical

taxi charging patterns and position tracking. Uses the first-come-

first-served policy for charging station allocation whenever

vehicle charging intention is identified.

Yuan et al. [25] e-taxi Propose a zone-based charging station allocation policy to

minimize vehicle idle times for recharge. Partial recharge is

allowed without queuing delay consideration.

Ma et al. [13]; Pantelidis et al.

[14]

carsharing Static carsharing vehicle charge scheduling and relocation based

on the facility location model. Stochastic demand and queuing

delays are considered to meet customer demand.

Roni et al. [16] carsharing A capacitated facility location model is proposed for optimal

charging station allocation on a time-space network to minimize

total travel and waiting times of charging operations.

Folkestad [15] carsharing Propose a static carsharing vehicle charging scheduling and

repositioning model to satisfy charging needs with minimal

vehicle relocation costs.

Zhang and Chen [17] SAEV Propose a probabilistic rule for charging station allocation to

regulate charging demand (number of vehicles sent to charge)

and supply (number of available chargers). Considers electricity

price variation to minimize charging costs without queuing delay

considerations.

Rinaldi et al., [27]; Wang

et al. [28]

e-bus Propose a static electric bus charging and route planning model

to minimize the total operational costs of the fleet.

Mkahl et al. [29] fleet of electric

vehicles

Propose a linear programming model for charging station

allocation to keep a vehicle’s battery at its highest possible level

when arriving at a charging station. Full-charge policy without

queuing delay considerations.

Lu et al. [30] e-taxi Propose a multi-commodity network flow model on a space-time

network for a mixed fleet of EVs and gasoline vehicles. Travel

requests are deterministic and known. No charge queuing delay

consideration.

Al-Kanj et al. [20]; Yu et al.

[21]

ridesharing Modeling dynamic electric ridesharing problems as a Markov

decision process and propose approximate dynamic

programming approaches to maximize operator’s profit.

Remark: SAEV: shared autonomous electric vehicle.

https://doi.org/10.1371/journal.pone.0251582.t001
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For this purpose, we discretize the planning horizon into a set of charging decision epochs

and decompose the decision process into two stages. In the first stage, we determine in advance

the optimal vehicle charging schedules (when and how much energy to charge) for each epoch

based on the historical driving patterns of vehicles and the expected time-dependent queueing

delays at charging stations. The problem is formulated as a single-vehicle battery recharge

problem to minimize total charging delays and costs while satisfying vehicle driving needs. At

this stage, the specific charging station location assignment is not considered and waiting

times to be served at charging stations are based on historical information. Given the charging

schedules obtained in the first stage, the second stage determines the optimal vehicle–charger

assignment by solving the charging station assignment problem to minimize total charging

delays. Our computational study shows that the proposed methodology can effectively reduce

total charging delays and system operational costs in a stochastic environment. The two-stage

battery recharge scheduling framework is shown in Fig 1.

Optimal vehicle charging schedules under stochastic driving patterns of

vehicles

Notation

Fig 1. Two-stage battery recharge scheduling framework.

https://doi.org/10.1371/journal.pone.0251582.g001

h Index of charging decision epochs, h2H = {1,2,. . .,|H|}

eh Energy level (state of charge) of a vehicle at the beginning of decision epoch h2H(kWh)

dh Expected energy consumption in epoch h based on vehicles’ historical driving patterns (kWh)

emax Battery capacity or the allowed maximum energy level of vehicle (kWh)

emin Reserved energy level of a vehicle, emin = 0.1B (kWh)

ϑ Energy price (euro/kWh)

φ Charging rate of chargers (kW/min.)

(Continued)
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Given that the considered single-vehicle battery recharge problem has an intrinsic multi-

stage decision-making nature in a stochastic environment, the problem is decomposed into a

sequence of simpler one-stage decision problems. The entire planning period is discretized

into a set of recharge decision epochs,H = {1,. . .,|H|}, with a time interval Δ. The system state

is the battery level eh of a vehicle at the beginning of each epoch h. The decision (control) vari-

able is the amount of energy to charge uh for each epoch h. A cost function is associated with

the charging decision, which depends on the cost of the energy charged and the opportunity

cost of the unavailability of vehicles to serve customers. For simplification, a linear charging

efficiency is assumed that charging time is equal to the amount of charge divided by the charg-

ing efficiency of chargers. Given the average energy consumption from historical driving pat-

terns in each epoch, the system state is updated at the end of each epoch and an optimal

recharge policy can be derived over the planning horizon. The optimal EV battery recharge

problem is formulated as follows.

P1: Optimal single-vehicle battery recharge problem

Min
XjHj

h¼1

½Wuh þ ð�c þ ohÞyh� ð1Þ

subject to

ehþ1 ¼ eh þ uh � dh; for h ¼ 1; . . . ; jHj ð2Þ

eh þ uh � dh þ emin; for h ¼ 1; . . . ; jHj ð3Þ

uh � Myh; for h ¼ 1; . . . ; jHj ð4Þ

e1 ¼ emax ð5Þ

emin � eh � emax; for h ¼ 1; . . . ; jHj ð6Þ

0 � uh � umax; for h ¼ 1; . . . ; jHj ð7Þ

yh 2 f0; 1g; for h ¼ 1; . . . ; jHj ð8Þ

The objective function (1) is to minimize the total cost of charging operations of the vehicle

over the planning horizon. The first term relates to the cost of the amount of charged energy.

The second term �c is a fixed operational cost, which takes into account the set-up cost and the

average access cost (energy consumption of travel distance to reach the charging stations). The

last term ωh is the opportunity cost of not being able to serve customers during recharging

Fig 1. (Continued)

ρ Average gains per minute travelled (euro/min.)

v Vehicle speed (km/min.)

Δ Time interval between any two consecutive epochs (min.)

Decision variables

uh Amount of charged energy in epoch h (kWh)

yh 1 if a vehicle is recharged in epoch h, and 0 otherwise.

https://doi.org/10.1371/journal.pone.0251582.t002
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operations in decision epoch h, defined as Eq (9):

oh ¼ ðT
D
h þ T

W
h Þr ð9Þ

where TDh is the expected duration of a vehicle being in use in h, estimated by the historical

driving patterns of vehicles. TWh is the expected waiting time to be served at charging stations

in h. We estimate TDh ¼
R D

0
pDt dt and TWh ¼

R D
0
pWt dt, where pDt and pWt are the probability of

driving and waiting status, respectively, for a vehicle at time t. ρ is the weight introduced to

convert a vehicle’s unavailable time due to charging operations to the gain loss based on a vehi-

cle’s average earnings. Eq (2) is the state transition function describing the evolution of energy

levels of the vehicle in each epoch. The expected energy consumption dh is defined as the total

driving distance in epoch h divided by the energy efficiency of vehicles; dh = vΔμ, where μ is

the driving efficiency of vehicles (kWh/km). Eq (3) indicates that the total energy level after

recharge needs to be no less than the energy demand plus a minimum reserve energy emin. Eq

(4) ensures that the amount of charged energy is non-negative when the vehicle goes to charge.

Eq (5) is the initial battery level of the vehicle. Eq (6) states the upper and lower bounds of the

energy level at the beginning of each epoch. Eq (7) states that the amount of energy that can be

charged for each epoch is bound by umax = Δφ. Note that umax is an upper bound that the

amount of energy can be charged on an epoch based on the fastest charger in a study area. The

different charging rates of chargers are considered in the second stage for the vehicle-charger

assignment to minimize the overall charging operational cost.

Problem P1 can be efficiently solved by the dynamic programming approach using the

backward induction algorithm [31] or by a standard commercial mixed-integer optimization

solver. Note that in a stochastic environment, each vehicle has different driving patterns dur-

ing the planning horizon, so P1 needs to be solved for each vehicle to obtain the appropriate

charging plans based on its historical driving patterns. The interactions between different vehi-

cles are considered in the vehicle dispatching policy (described in Sect. 4.1). An illustrative

example is given in S1 Appendix to illustrate the model property and the total charging opera-

tional cost savings compared with a reference on-need charging policy.

Charging station assignment under charging capacity constraints

Notation

I Set of vehicles to be recharged at the beginning of a recharging epoch h (index h is dropped)

J Set of chargers in a studied area

tij Travel time from the location of vehicle i to that of charger j
dij Travel distance from the location of vehicle i to that of charger j
ei Energy level of vehicle i at the beginning of epoch h (index h is dropped)

e�i Energy level of vehicle i after recharge at the end of epoch h, determined by the charging plan from P1 (index h is dropped).

tAj Time until which a charger j is occupied by other vehicles from the beginning of epoch h (index h is dropped)

μ Driving efficiency of vehicles (kWh/km)

φj Charging rate of charger j (kW/min.)

M Large positive number

Decision variable

Xij Vehicle i is assigned to charger j for recharge if Xij = 1, and 0 otherwise

Yij Amount of energy recharged at charger j for vehicle i
Wij Artificial variable representing the waiting time of vehicle i at charger j

https://doi.org/10.1371/journal.pone.0251582.t003

PLOS ONE Battery recharging planning for dial-a-ride fleet using electric vehicles under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0251582 May 20, 2021 8 / 27

https://doi.org/10.1371/journal.pone.0251582.t003
https://doi.org/10.1371/journal.pone.0251582


For the second stage, the problem is to assign vehicles to chargers for each epoch h2H
based on the charging schedules obtained beforehand. Given an epoch h, the charging delay of

a vehicle at a charging station is defined as the sum of access time (travel time) to the charging

station, the waiting time to be served at the charging station, and the total charging time. The

problem is formulated as a mixed-integer optimization problem to minimize charging delays

given that the capacitated charging infrastructure is a multi-server queuing system. Different

from existing charging-station-based capacity constraints (the number of vehicles assigned to

a charging station cannot exceed the number of chargers at that station [14, 16]), we consider

each charger explicitly to account for the exact waiting time of a vehicle when arriving at a

charger at time t and the charging power of each individual charger.

The one-stage optimal charging station assignment model is formulated as follows. The

problem is solved for each decision epoch h2H.

P2: Vehicle–charger assignment with minimum charging delay problem

min Z ¼
X

i2I

X

j2J

tijXij þ y1

X

i2I

X

j2J

Yij=φj þ y2

X

i2I

X

j2J

Wij ð10Þ

subject to

X

j2J

Xij ¼ 1; 8i 2 I ð11Þ

X

i2I

Xij � 1; 8j 2 J ð12Þ

emin � ei � mdijXij þMð1 � XijÞ; 8i 2 I; j 2 J ð13Þ

e�i � Yij þ ei � mdijXij þMð1 � XijÞ; 8i 2 I; j 2 J ð14Þ

Yij � MXij; 8i 2 I; j 2 J ð15Þ

tAj � tijXij � Mð1 � XijÞ �Wij; 8i 2 I; j 2 J ð16Þ

Xij 2 f0; 1g; 8i 2 I; j 2 J ð17Þ

Yij � 0; 8i 2 I; j 2 J ð18Þ

Wij � 0; 8i 2 I; j 2 J ð19Þ

The objective function minimizes the total weighted time of charging operations, including

total travel time to arrival at charging stations, recharging time, and waiting time at each

charging connector. θ1 and θ2 are the weights introduced to account for the trade-off between

these elements. Constraints (11) and (12) ensure that each vehicle can be assigned to one char-

ger and that each charger can be plugged in to at most one vehicle; constraint (13) guarantees

that the remaining battery level of a vehicle when arriving at a charging station is no less than a

pre-defined reserve level, e.g., 10%-20% of battery capacity. Constraint (14) states that the

energy level after recharge must be no less than the planned level after recharge from P1. Con-

straint (15) ensures that the amount of recharged energy is non-negative when the vehicle is

assigned to a charger for recharge. Constraint (16) calculates the waiting time to be served for
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vehicle i when arriving at the location of charger j. Note that Eqs (11) and (12) are suitable for

the situation where the number of vehicles is no more than that of charges (|I|�|J|). In case of |

I|>|J|, constraints (11) and (12) are replaced by (20) and (21), respectively.
X

j2J

Xij � 1; 8i 2 I ð20Þ

X

i2I

Xij ¼ 1; 8j 2 J ð21Þ

We refer to the problem of Eqs (10)–(19) as P2, and to Eqs (10) and (13)–(21) as P2J. The

above vehicle–charger assignment problem is a variant of the generalized assignment problem

with additional constraints. We propose a heuristic based on the LR method to solve it for

large instances in order to obtain efficiently near-optimal solutions for real-time applications.

Proposed Lagrangian relaxation algorithm

The LR method is a widely-used methodology for solving mixed-integer optimization prob-

lems [32, 33]. This method first solves an LR problem by relaxing complicated constraints to

obtain a lower-bound (LB) solution. As the LB solution is likely infeasible for the original

problem, a problem-specific repair procedure needs to be developed to find a feasible solution,

providing an upper bound (UB) to the original problem. Afterwards, the Lagrangian multiplier

is updated to maximize the LB. The above steps are repeated until no improvement can be

found or the maximum iteration is reached. For the P2 problem, it is not difficult to find that

we can reformulate it by removing Y andW as follows:

min Z ¼
X

i2I

X

j2J

ðtij þ y2maxðtAj � tij; 0ÞÞXij þ y1

X

i2I

X

j2J

1

φj
ðe�i � ei þ mdijÞXij ð22Þ

subject to (11)–(13) and (17).

We relax constraint (12) and use a non-negative Lagrangian multiplier λj, Aj2J to penalize

the non-satisfaction of this constraint in the objective function. The LR problem can be written

as follows.

min ZLBðlÞ ¼
X

i2I

X

j2J

tij þ lj þ y2maxðtAj � tij; 0Þ þ
y1

φj
ðe�i � ei þ mdijÞ

" #

Xij �
X

j2J

lj ð23Þ

subject to (11), (13), and (17).

We propose the following LB solution algorithm to efficiently solve the above LR problem

and obtain the LB solution Xk
LB for each iteration k. As Xk

LB might be infeasible due to violating

constraint (12), an upper-bound (UB) solution heuristic is proposed to fix the infeasibility and

obtain a good feasible solution. Then the Lagrangian multiplier is updated by the subgradient

method [33]. The proposed LR algorithm is labeled as Algorithm 1.

LB solution algorithm. Given a known λk, we apply a greedy policy to assign vehicles to

chargers one by one according to an increasing order with respect to the objective function

value until all vehicles are assigned. To do so, a cost function C(i,j) is defined as the cost of

assigning vehicle i to charger j as in Eq (24).

Cði; jÞ ¼ tij þ y2maxðtAj � tij; 0Þ þ
y1

φj
e�i � ei þ mdij
� �

ð24Þ

So the greedy policy assigns vehicle i to the charger j�i that minimizes the value of the
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objective function as in Eq (25).

Xij�i ¼ 1; j�i ¼ argminj2Ji ½Cði; jÞ þ lj�; 8i 2 I ð25Þ

where Ji is the set of chargers that are reachable by vehicle i given its current battery level, i.e.,

the subset of chargers satisfying constraint (13).

Ji ¼ fjjei � mdij � emin; 8j 2 Jg;8i 2 I ð26Þ

The obtained LB solution XLB(λk) at iteration k is the optimal solution of the LR problem.

Note that for a P2J problem (|J|<|I|), a similar greedy policy applies by assigning chargers to

vehicles until all chargers are assigned.

UB solution heuristic. We develop two distinguished heuristics to repair the feasibility of

LB solutions and build UB solutions for the problems of P2 and P2J accordingly. The devel-

oped heuristics are described in Algorithm 2. Given an LB solution and constraint (12) for the

P2 problem, the UB algorithm removes vehicles with higher energy levels (more flexible) from

over-assigned chargers (chargers with more than one assigned vehicle) to a pool of unassigned

vehicles. Then these unassigned vehicles are inserted to non-occupied chargers one by one

based on their remaining energy levels (the vehicle with the least remaining energy (less flexi-

ble) is inserted first) using a greedy insertion policy. Afterwards, a local search procedure is

applied to improve the incumbent feasible solution. A similar algorithm design logic is applied

for the heuristic to find a UB solution for the P2J problem.

We test the proposed model on an illustrative example to show the model property in S2

Appendix. For large-scale problems, we generate 9 subsets of problems with up to 1000 vehi-

cles and chargers. Our computational study in S2 Appendix shows that the proposed LR algo-

rithm can obtain near-optimal solutions and suitable for large-scale real-time application for

EV charging station assignment.
Algorithm 1: Lagrangian relaxation algorithm
1: Input: λ0 = 0, k = 0, ZUB = INF, ZLB = −INF, 0<δ<2, �ε, and kmax.
2: Solve the LR problem by the LB solution algorithm and obtain the LB
solution XkLB.
3: Update the LB: If ZkLB > ZLB; set ZLB ¼ ZkLB
4: Repair the infeasible LB solution with the UB solution heuristic
and obtain a feasible UB solution XkUB.
5: Update UB: If ZkUB < ZUB; set ZUB ¼ ZkUB.
6: Update Lagrangian multipliers based on the subgradient method:

Compute the step size tk ¼ dðZUB � ZLBÞP
j2J
ð
P

i2I
XkLB � 1Þ2

and update the multipliers

as l
kþ1
¼ maxflk þ tkð

P
i2IX

k
LB � 1Þ; 0g.

7: Evaluate the optimality gap εk ¼ ZUB � ZLB
ZUB

. If εk � �ε or k = kmax, stop;

otherwise k: = k+1 go to step 2.
8: Output: X� = XUB.
Algorithm 2: Heuristics to find UB solutions
// Heuristic to find UB solutions for P2 (|I|�|J|).
1: Given the current lower-bound solution XLB(λ), a set of vehicles I
and set of chargers J, initialize unassigned vehicle list �I ¼ ; and tem-
porary solution Xtemp = XLB(λ).
2: //remove vehicles from over-assigned chargers
3: Find the list of chargers J1 with more than one assigned vehicle.
4: for all chargers j2J1
5: Sort ei for all vehicles assigned to charger j in descending
order.
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6: Remove k–1 vehicles with the highest ei from charger j to �I,
where k is the number of vehicles assigned to charger j. Update Xtemp
accordingly.
7: End for
8: //Assign unassigned vehicles to unoccupied chargers
9: Sort ei for all vehicles i 2 �I in ascending order and obtain �I sorted
list.
10: for all i 2 �I sorted
11: Assign i to an unoccupied charger j that has the min-
imum C(i,j), then update Xtemp accordingly.
12: End for
13: // Local search for P2
14: For any two assigned vehicles (i1, i2) with their current assigned
chargers (j1, j2), if C(i1, j1)+C(i2, j2)−C(i1, j2)−C(i2, j1)>0 and both
(i1, j2) and (i2, j1) satisfy Eq (13), exchage their current assigned
chargers. Update Xtemp accordingly.
15: Output: XUB = Xtemp
// Heuristic to find UB solutions for P2J (|I|>|J|)
16: Given the current lower-bound solution XLB(λ), set of vehicles I,
and set of chargers J, initialize unassigned charger list �J ¼ ; and tem-
porary solution Xtemp = XLB(λ).
17: //remove chargers from over-assigned vehicles
18: Find the list of vehicles I1 with more than one assigned charger.
19: for all vehicles i2I1
20: Sort C(i,j) for all assigned chargers in descending order.
21: Remove k–1 chargers with the highest C(i,j) to �J, where k is
the number of chargers assigned to
Vehicle i. Update Xtemp accordingly.
22: End for
23: // insert unassigned vehicles to available chargers
24: if there are unoccupied chargers, then
25: Sort ei for all non-assigned vehicles in ascending order and
obtain �I sorted list.
26: for all i 2 �I sorted
27: Insert i to an unoccupied charger j with minimum C(i,j) if
the assignment (i, j) satisfies Eq (13).

Update unoccupied charger list and Xtemp accordingly. If
each charger is assigned by one

vehicle, break.
28: End for
29: End if
30: // repair infeasible solution if the above procedure fails
31: while the number of unoccupied chargers >0
32: Sort ei for all assigned vehicles in descending order.
33: Pop up the vehicle in the sorted assigned vehicle list with
highest ei, update unassigned vehicle and

charger lists.
34: for all unassigned vehicles i and unoccupied chargers j
35: Assign i to j with the minimum C(i,j) while satisfy-
ing Eq (13). Update the unassigned vehicle and

charger lists and Xtemp accordingly. If each charger
is occupied by one vehicle, leave the loop.

End for
36: End while
37: // local search
38: For any unassigned vehicles, exchange with current assigned vehi-
cles if the resulting solution decreases the objective function value.
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39: Apply the exchange procedure of step 14 to improve the current
solution.
40: Output: XUB = Xtemp.

Computational study for dynamic dial-a-ride services using EVs in

Luxembourg

The proposed methodology is applied for a realistic dynamic dial-a-ride service using EVs in

Luxembourg. The goal is to demonstrate the benefit of the proposed methodology for reducing

the total charging operation delay and assess its impact on system performance. The computa-

tional study is implemented on the simulation platform previously used for dynamic rideshar-

ing with transit transfers [34, 35] but is extended to handle EVs recharging as a multi-server

queuing system.

Dynamic dial-a-ride simulation platform using EVs

Consider a TNC operating a fleet of homogeneous EVs to provide dial-a-ride service in Lux-

embourg. Ride requests are unknown in advance and arrive stochastically. The operator

makes vehicle dispatch and routing decisions over time. We adopt a non-myopic vehicle dis-

patching policy to anticipate future system delays [35]. This policy minimizes the marginal sys-

tem cost increases when inserting a new customer on an existing tour by considering the

future system cost as an M/M/1 queue delay. A traveling salesman problem with pickup and

delivery problem is solved by a re-optimization-based heuristic to insert a new request on

existing routes which satisfies vehicle capacity constraint and precedence constraint (a pick-up

location is visited before its corresponding drop-off location). Following the previous studies

[35], no time window constraints are associated with customer requests. The applied vehicle

routing policy can be substituted by other approaches considering time windows and other

vehicle operational constraints. In an EV-enabled dial-a-ride system, the vehicle’s remaining

energy level needs to be considered when assigning a new request to an existing vehicle tour.

We assume that the remaining energy of a vehicle after serving all customers (including the

new request) and returning to its depot needs to be no less than the minimum reserve energy

emin, as in Eq (27):

eðv; �xvt Þ � eðv; x
v
t Þ � emin ð27Þ

where xvt is the current tour of vehicle v. �xvt is the post-evaluated tour after inserting the new

request. When dispatching vehicles to pick up a new customer, the dispatching center first

determines a list of energy-feasible vehicle candidates (satisfying Eq (27)). If no vehicles are

energy-feasible, the new request is rejected. Otherwise, the customer is assigned to the vehicle

with lowest marginal system cost, as in Eq (28).

fv�; xvt�g ¼ argminv2V 0;x½cðv; �x
v
t Þ � cðv; x

v
t Þ� ð28Þ

where V0 is the set of vehicles satisfying Eq (27). c(v, x) is a cost function with service tour x
defined as Eq (29).

cðv; xÞ ¼ gTðv; xÞ þ ð1 � gÞ bTðv; xÞ2 þ
X

n2Pv

�Ynðv; xÞ
� �

ð29Þ

where T(v, x) is the travel time of tour x. �Ynðv; xÞ is the journey time (i.e., waiting time plus in-

vehicle travel time) for passenger n among the set of passengers Pv assigned to vehicle v.
Parameter α is a weight considering the trade-off between operational cost and customer

inconvenience. β is a parameter between 0 and 1. When β = 0, the resulting vehicle dispatching
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policy is myopic since it does not consider future approximate system delays for the current

vehicle dispatching decision.

For the recharging policy, the entire planning period is discretized into a set of charging

decision epochs with the time interval Δ. The latter is set as
emax � emin
φmax

to allow EVs to be

recharged to the desired energy level (emax) within a charging decision epoch. Note that the

impact of epoch length will be analyzed in Section 4.3.4. φmax is the maximum charging rate of

all chargers in the studied area.

We first solve the P1 problem for each vehicle and obtain its optimal charging plan for each

decision epoch. The inputs of the P1 problem are the probability distributions of vehicles in

the driving state and expected waiting times at charging stations, which can be obtained from

the historical driving and charging patterns of vehicles. These data can be easily obtained by

the operator using dedicated fleet management software with GPS tracking. The output of the

P1 problem provides the vehicle-specific charging schedule (plan). Then we solve the P2/P2J

problem for each charging decision epoch. Due to the stochastic nature of customer arrivals

and charging station occupancy, a vehicle’s exact charging time and amount of recharged

energy depends on the charging rate of its assigned charging station and the battery level when

arriving at a charging station. Moreover, vehicles can go to recharge only after all customers

on board are served. We apply the discrete event simulation technique to include queueing

delays at charging stations.

Luxembourg case study

We apply the proposed methodology to a dynamic dial-a-ride case study using EVs in Luxem-

bourg. Such services using conventional gasoline shuttles have been operating in Luxembourg

(e.g. Flexibus, https://www.sales-lentz.lu/en/individuals/shuttle-upon-request/). Luxembourg

has promoted a sustainable mobility initiative aimed at shifting mobility practices from the

current high car dependency towards multimodal and soft mobility alternatives. To promote

e-mobility, the government plans to install 1600 charging points, named Chargy (https://

chargy.lu/), with 22 kWh Level 2 chargers in the entire country in order to meet the future

charging needs of electric/hybrid vehicles. Currently, a total of 814 Level 2 charging plugs have

been installed. We consider a TNC that provides dynamic dial-a-ride services in Luxembourg

using EVs and the Chargy network for recharge in the daytime. For simplicity, the use of

charging infrastructure from other EVs (private EVs or other types of EVs) is not considered

in this study. The impact of the charging needs of the other stochastically arriving EVs will be

discussed in Section 4.4.

We use the Luxmobil open trip dataset obtained from the 2017 Luxmobil survey [36] (for

which 40,000 households in Luxembourg and 45,000 cross-border workers were surveyed in

2017, with response rates ranging from 26% to 30%) to generate customer demand in Luxem-

bourg. The trip dataset contains 82000 trips representing typical one-workday trips for Luxem-

bourg residents and its cross border workers from France, Germany, and Belgium. The trip

dataset is anonymized and provides trip information related to departure time, origin, and

destination at the level of neighborhood, transportation means, etc. The extrapolation from

the Luxmobil survey data to the entire population (i.e. Luxembourg residents and its cross bor-

der workers) was done for German, French and Belgian commuters by the number of workers

in Luxembourg per municipality/district. Residents of Luxembourg are extrapolated based on

the number of inhabitants and the age distribution of each municipality/district. We randomly

generate 1000 customer ride requests from 6:30–22:00 in Luxembourg. The impact of different

demand intensities is evaluated in the Sect. Sensitivity analysis. As the survey data contains

trip origins and destinations at the neighborhood level, we use another geo-referenced data set
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(https://data.public.lu/fr/datasets/adresses-georeferencees-bd-adresses/) to randomly generate

the geographical coordinates within the same neighborhoods. The geo-referenced data set

includes all neighborhoods in Luxembourg and contains all building addresses appearing in

the national register of streets and neighborhoods. Fig 2 shows the heat map of a one-day data

set of 1000 customers’ pickup locations in the study area. We can observe that most trips are

distributed between Luxembourg City and the cities of Esch-sur-Alzette, Dudelange, and

Mersch. Fig 3 depicts the distribution of customer arrival times. We observe that a morning

arrival peak occurs between 7:00 and 8:00, and an afternoon peak occurs between 17:00 and

19:00.

The fleet size is assumed to include 50 homogeneous 8-seater fully electric shuttles, repre-

senting 20 customers/vehicle/day. The characteristics of the EVs are based on Volkswagen’s

8-seat 100% electric Tribus (https://www.tribus-group.com/zero-emission-volkswagen-e-

crafter-electric-wheelchair-minibus/). The battery range of the Tribus is 35.8 kWh, with a

practical range up to 150 km. The average energy consumption per kilometer travelled is

assumed to be constant. For practical applications, a drive cycle can be applied instead of a

constant energy consumption policy. We assume that EVs are recharged to 80% of their bat-

tery capacity to maximize battery lifetimes. Vehicles are initially located at 7 different depots

Fig 2. Heat maps of customer pickup location between 6:30–22:00 in the study area.

https://doi.org/10.1371/journal.pone.0251582.g002
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around the municipality centers of Luxembourg City, Esch-sur-Alzette, Ettelbruck, Dude-

lange, Mersch, Remich, and Wiltz. Vehicle dispatching and routing policy is based on the non-

myopic policy in Section 4.1.

On the charging infrastructure side, we test the proposed methodology based on three dif-

ferent charging infrastructure configuration scenarios as follows.

• Scenario 1 (Chargy only): EVs can only be recharged in the daytime on Luxembourg’s cur-

rent public Chargy infrastructure, which comprises 814 level 2 (L2) chargers with 22 kWh

power. Based on this scenario, recharging EVs using an L2 charger from 0% to 80% require

around 1.3 hours. Fig 4 shows the spatial distribution of the charging stations in

Luxembourg.

• Scenario 2 (DC fast only): EVs recharge exclusively on 9 DC fast chargers with 50 kWh

power, distributed in different municipalities in Luxembourg (see Fig 4).

• Scenario 3 (Chargy+DC fast): EVs can be recharged both on the Chargy network or at DC

fast charging stations.

Note that we assume that all charging stations are available at the beginning of each day.

EVs are initially charged to 80% at their depot and maintain an energy level no less than 10%

for customer service operations. For practical applications, higher minimum charge levels can

be applied if necessary.

The charging decision epoch is 30 minutes, reflecting the charging time for a Tribus vehicle

from emin (10% of battery capacity) to emax (80% of battery capacity) using a 50 kWh DC fast

charger. We randomly generate 13 independent 1000-customer demand data sets from the

Luxmobil open trip dataset. A total of 10 simulation runs on distinguished demand data are

conducted to derive the probability distribution of a vehicle being in the driving state and the

expected waiting time when arriving at charging stations using a need-based charging policy

(reference policy). In practice, such information can be easily collected by an operator based

Fig 3. Example of 1000 customer arrivals from 6:30–22:00 in the study area.

https://doi.org/10.1371/journal.pone.0251582.g003
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on vehicles’ historical driving patterns and the waiting times experienced at charging stations.

The reference policy states that EVs go to the nearest unoccupied charger to recharge their

batteries to 80% whenever the battery level is lower than 20% after serving all customers on

board [17, 22]. The three remaining demand data sets are used to test the performance of the

proposed charging strategy.

Table 2 shows the details of the simulation parameter settings and the parameters used for

the charging schedule and charging station assignment models.

Results

We first derive the charging plan for each vehicle under different charging infrastructure sce-

narios. Then we run the dynamic dial-a-ride simulation under the different charging policies

and charging infrastructure configuration scenarios. The discrete probability distribution is

estimated using the frequency of a vehicle being in the driving state over 10 runs using inde-

pendent random demand samples as previously mentioned. The charging policy is based on

the reference policy using the Chargy network only for vehicle recharge. Fig 5 shows an exam-

ple of the empirical probability distribution that a vehicle is in the driving state. Here we select

two vehicles with quite different driving patterns. Vehicle 1 is initially located in Luxembourg

City, with higher customer demand, while vehicle 40 with its depot at Mersch has lower cus-

tomer demand.

Fig 6 reports the expected waiting time to be served when arriving at charging stations in

each charging decision epoch. We vary the charging infrastructure configuration scenarios to

Fig 4. Charging station locations in the study area.

https://doi.org/10.1371/journal.pone.0251582.g004
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obtain the respective expected waiting times under each scenario. We can observe that when

using the Chargy network only, a peak in the expected waiting time of 30 minutes appears

around at 9:00, which reduces to less than 10 minutes after around 10:30. When adding 9 DC

fast chargers to the existing Chargy network, the peak in the expected waiting time at 9:00 is

Table 2. List of parameters used for the Luxembourg case study.

Number of customers 1000 ρ 0.2485 (euro/min.)2

Number of vehicle depots 7 ϑ 0.2756 (euros/kWh) 3

Fleet size 50 μ 0.2387 (kWh/km)4

Capacity of vehicles 8 pers./veh. �c 5.77 euros5

Vehicle speed 50 km/hour Δ 30 min.

Battery capacity 35.8 kWh1 T 6:30–22:00

Number of chargers

Level 2 (22 kWh) 814 φL2 22/60 (kW/min.)

DC fast (50 kWh) 9 φDC fast 50/60 (kW/min.)

Battery capacity 35.8 kWh β 0.025

emin 0.1B γ 0.5

emax 0.8B

Remark:

1. EV characteristics are based on a Volkswagen-powered 100% electric minibus with a 150 km range (https://www.

tribus-group.com/zero-emission-volkswagen-e-crafter-electric-wheelchair-minibus/).

2. Equivalent to a 14.9 euros/hour wage rate. As a reference, the range of the gross salary of bus drivers in

Luxembourg is 2474–4846 euros/month (around 14.4–28.2 euros/hour, https://www.paylab.com/lu/salaryinfo).

3. Electricity price is based on the current fare using Chargy’s plugs (https://www.eida.lu/en/chargy) with VAT.

4. Based on the driving efficiency of the Tribus (μ = 35.8/150).

5. Based on the energy consumption cost of the average access distance to charging stations of 5 km.

https://doi.org/10.1371/journal.pone.0251582.t004

Fig 5. Example of the probability distribution of a vehicle being in the driving state.

https://doi.org/10.1371/journal.pone.0251582.g005
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reduced to around 15 minutes. We find that when all vehicles recharge only at DC fast char-

gers, the profile of the expected waiting time in each charging decision epoch is higher than

the two other scenarios. Fig 7 shows an example of the optimal charging plan obtained from

P1 for vehicle 1 and vehicle 40. We can observe that vehicle 1 needs to be recharged 4 times to

nearly 80%, at around 10:00, 13:30, 16:30, and 19:30, whereas vehicle 40 requires 3 recharges,

at around 10:30 and 15:30 to around 80% and at 22:30 to around 15%.

To assess the proposed charging policy, two charging reference policies are considered as

follows.

Fig 6. Expected waiting times to be served when arriving at charging stations under different charging infrastructure scenarios.

https://doi.org/10.1371/journal.pone.0251582.g006

Fig 7. Example of vehicle optimal charging plans in different charging decision epochs.

https://doi.org/10.1371/journal.pone.0251582.g007
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• Need-based nearest charging station assignment policy (NS): vehicles recharge to 80% at

the nearest unoccupied charger whenever their battery range is lower than 20% after serving

onboard customers.

• First-Come-First-Served (FCFS) minimum charging delay policy: vehicles go to recharge

whenever their battery range is lower than 20% after serving onboard customers. The

assigned charger j for vehicle i is based on the lowest estimated charging operation time at

time t as in (21).

j�ði; tÞ ¼ argminj2Jftij þ ~WijðtÞg; ð30Þ

where tij is the travel time from the location of vehicle i to charger j. ~WijðtÞ is the expected wait-

ing time estimated as the difference between the earliest available time of chargers and the

arrival time of vehicle i.
We refer to the proposed optimal charging scheduling and assignment policy as the OCP

policy. The computational results are based on the average performance using three indepen-

dent demand data sets.

Table 3 shows the impact of the three charging policies on the total charging delays and the

amount of recharged energy under different charging infrastructure scenarios. The first three

columns report the average charging waiting time, charging time, and vehicle idle time for

recharge per vehicle charging. The other columns report the measures related to the overall

charging costs/times for the fleet for a full day of operation. First, for each vehicle charging

operation, the OCP policy shows the best performance, with the least waiting time, charging

time, and vehicle idle time for recharge over all three scenarios. The average charging waiting

time over the three scenarios is 3.1 min., compared to the 9.9 min. (–68.9%) of NS and 11.3

min. for FCFS (–72.6%). Regarding the average charging time, the OCP policy results in 37.4

min., compared to NS with 51 min. (–26.8%) and FCFS with 52.4 min. (–28.6%). Similar

Table 3. Impact of different charging policies on total system delays, recharged energy, and costs.

Scenario Charging

policy

Average charging

waiting time1

(min.)

Average

charging time1

(min.)

Average operational

time for charge2

(min.)

Total waiting

time3 (hour)

Total charging

time3 (hour)

Total amount of

charged energy3

(kWh)

Total charged

energy cost3

(euro)

Chargy only NS 11.1 65.0 76.4 27.2 159.6 3512.1 967.9

FCFS 9.7 65.0 75.5 23.5 158.1 3477.3 958.3

OCP 4.7 53.6 61.9 9.9 112.5 2475.9 682.3

DC fast only NS 10.0 28.4 45.3 24.3 69.0 3452.2 951.4

FCFS 17.0 28.5 54.6 41.8 70.1 3504.1 965.7

OCP 3.7 24.8 35.4 7.8 52.3 2614.2 720.5

Chargy+DC

fast

NS 8.7 59.7 69.4 21.7 148.7 3567.4 983.2

FCFS 7.1 63.6 71.6 17.3 155.1 3493.2 962.7

OCP 0.8 33.7 38.4 1.7 69.0 2534.0 698.4

Average over

three scenarios

NS 9.9 51.0 63.7 24.4 125.8 3510.6 967.5

FCFS 11.3 52.4 67.2 27.5 127.8 3491.5 962.3

OCP 3.1 37.4 45.2 6.5 77.9 2541.4 700.4

Remark:
1 Measured as the time per recharge per vehicle.
2 Includes vehicle travel time to reach a charger, charging waiting time, and charging time.
3 Measured for the e-fleet for a full day of operation.

https://doi.org/10.1371/journal.pone.0251582.t005
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results can be found for the average vehicle idle time per vehicle recharge, with an average sav-

ings of 29%–32.7%.

Second, in terms of the total waiting time of the fleet, the results show that using the NS pol-

icy would lead to a high charging delay, with 27.2 hours for Chargy only, 24.3 hours for DC

fast only, and 21.7 hours for Chargy plus DC fast. Adopting the FCFS policy would not signifi-

cantly reduce the waiting time compared to the NS policy. However, the benefit of the OCP

policy is very significant in terms of reducing the charging operation delay: on average, –73.5%

compared to that of the NS policy and –76.5% compared to the FCFS policy over the three sce-

narios. In terms of the total charging time of the fleet, it can be observed that using Chargy

only, the NS policy would lead to a high value of 159.6 charging hours, compared to that of

using DC fast chargers only (69 hours) and Chargy+DC fast chargers (148.7 hours). Using the

OCP policy would lead to significant total charging time savings under the three charging

infrastructure scenarios, and in particular the Chargy+DC fast charger scenario. On average,

the benefit in terms of reducing the total charging time is –38.1% compared to the NS policy

and –39.0% compared to the FCFS policy. Finally, using the OCP policy can significantly

reduce the amount of total charged energy and energy costs. On average, the total charged

energy cost saving is around 27% compared to the other two policies.

Table 4 shows the system performance from the customer perspective under different

charging policies. It can be observed that using the NS and FCFS policies, almost all customers

(99.5%) are served given different charging infrastructure scenarios. The OCP policy has, on

average, a 94.1% (–5.5%) customer service rate. This is due to the stochasticity of ride requests;

the charging plans of the OCP policy obtained from historical vehicle driving patterns might

not be able to fit certain long-trip requests perfectly, resulting in rejections due to insufficient

energy remaining in the vehicles. This trade-off between the service quality and efficiency can

be improved by increasing the fleet size or using a mixed fleet of gasoline and electric vehicles.

Second, the results indicate that for the DC-fast-only scenario, customer inconvenience can be

improved due to the overall charging time savings given the current charging demand of the

fleet. In terms of customer inconvenience, adopting the OCP policy would increase customer

waiting times by 2.7 minutes on average over three scenarios and passenger journey times by 5

minutes compared to the NS and FCFS policies.

Table 4. System performance under different charging policies.

Scenario Charging policy Mean passenger waiting time Mean passenger journey time Mean vehicle travel time % of customers served

Chargy only NS 13.3 34.0 393.5 99.3

FCFS 13.1 33.8 392.5 99.3

OCP 15.8 39.0 367.7 92.9

DC fast only NS 10.0 29.3 392.2 100.0

FCFS 10.6 30.4 390.9 100.0

OCP 14.1 36.6 380.9 96.2

Chargy+DC fast NS 13.4 34.2 396.8 99.5

FCFS 13.0 33.9 392.1 99.3

OCP 14.9 37.4 374.7 93.2

Average over three scenarios NS 12.2 32.5 394.2 99.6

FCFS 12.2 32.7 391.8 99.5

OCP 14.9 37.6 374.4 94.1

NS: nearest station charging policy; OCP: optimal charging plan policy; AOCP: adapted optimal charging plan policy. Passenger journey time includes passenger

waiting time and in-vehicle travel time.

https://doi.org/10.1371/journal.pone.0251582.t006
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We can conclude that adopting the OCP policy can lead to a significant reduction in charg-

ing operation delays and costs compared to the NS and FCFS policies, while maintaining a

high customer service rate with very limited perturbation in terms of customer inconvenience.

Sensitivity analysis

To investigate the impact of model parameters on the performance of the proposed method, a

sensitivity analysis is designed to answer the following questions.

• What is the impact of the length of charging decision epochs on the charging queueing delay

and customer inconvenience?

• How do ride demand changes affect the total charging delays and costs?

• What are the benefits of increasing the vehicle battery range in terms of reductions in charg-

ing delays, costs, and customer inconvenience?

The reported results are based on the average of 3 runs using the three independent cus-

tomer demand test data sets on the Chargy+DC fast chargers scenario.

a) Impact of the length of the charging decision epochs. The length of the charging deci-

sion epoch determines the frequency of vehicles scheduled for recharge, which may influence

the effectiveness of vehicle charge scheduling and delays. A longer decision epoch would post-

pone the charging operations of vehicles, while a shorter decision epoch would limit the

amount of energy to be charged within one epoch and increase the number of charging opera-

tions and the vehicle idle time due to charging operations. We vary the length of charging deci-

sion epochs from 10 to 60 minutes with a 10-minute interval and assess the impact on the total

charging delay and energy costs. The results are shown in Table 5 and Fig 8. Two insights can

be drawn: 1) The length of the charging decision epoch impacts the total charging delay and

energy costs. When the epoch length is too short (less than 30 minutes), the maximum amount

energy of energy that can be charged within a decision epoch is constrained, compromising

the obtained charging plans of vehicles. Consequently, the vehicles need to charge more fre-

quently, resulting in higher charging delays and a lower customer service rate; 2) when the

decision epoch is greater than a critical value (30 minutes, allowing vehicles to be charged to

80% on a DC fast charger), the charging delays and energy costs are similar thanks to the

adapted vehicle driving probability and charging waiting time in each epoch. This suggests

that the charging decision epoch length should be long enough to allow vehicles to be charged

to the desired energy level within one epoch using the faster chargers.

b) Impact of customer demand variation. We vary customer demand as 500, 1000, 1500,

and 2000 trip requests, respectively, randomly sampled from the Luxmobil open trip dataset.

The results in Table 6 indicate that using the OCP policy can significantly reduce the total

Table 5. The impact of the charging decision epoch length on the performance of the OCP policy.

Charging decision

epoch length

Total waiting

time (hour)

Total charging

time (hour)

Total amount of

energy charged

(kWh)

Total charged

energy cost (euro)

Mean passenger

waiting time (min.)

Mean passenger

journey time (min.)

% of customers

served

10 5.9 23.7 932.1 256.9 17.1 38.5 54.0

20 5.3 66.0 2300.5 634.0 15.9 38.2 86.9

30 1.7 69.0 2534.0 698.4 14.9 37.4 93.2

40 1.6 73.1 2485.6 685.0 15.1 37.3 92.6

50 1.3 69.4 2548.7 702.4 14.6 36.6 94.7

60 1.2 74.5 2461.7 678.4 14.3 37.1 92.8

https://doi.org/10.1371/journal.pone.0251582.t007
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charging waiting times of the fleet compared to the NS and FCFS policies, given different cus-

tomer demand. We found that when demand increases, the total amount of energy charged

may vary depending on the total distance traveled by vehicles to serve customers. The OCP

policy allows reducing the total energy costs of vehicle charges from –12.0% to –38.6% com-

pared to the NS and FCFS policies, depending on the different customer demand intensities

and service rates.

c) Impact of battery range. To evaluate the impact of the vehicle battery range, we extend

the battery capacity of the current Tribus from 35.8 kWh to 53.7 kWh (+50%) and 71.6 kWh

(+100%), respectively. The results in Table 7 show that extending the battery range would sig-

nificantly reduce the total waiting times of the NS policy and FCFS policy, while applying the

OCP policy would increase the total waiting times from 1.7 hours to 3.6 hours due to the lon-

ger charging times of vehicles. The gains from the reduction of total charged energy (costs) are

very significant for the OCP policy (from 2534 kWh to 1372 kWh, –45.8%). Moreover, the cus-

tomer service rate is improved from 93% to 98%, close to the other charging policies. However,

the NS and FCFS policies still charge a similar amount of energy (3352 kWh on average) over

different battery capacities due to the 80%-charge policy for vehicle charging operations.

Discussion

The computational study first illustrates the characteristics of the charging scheduling model

and the vehicle–charger assignment on a small example. Then the LR algorithm for solving

Fig 8. The impact of charging decision epoch length on the total charging waiting time of the fleet, the total amount of charged energy,

and the percentage of served customers.

https://doi.org/10.1371/journal.pone.0251582.g008

Table 6. Total charging delays and costs of the fleet given different charging policies and customer demand.

Demand 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

Charging policy Total charging waiting time (hours) Total charged energy cost (euro) % of customers served

NS 4.1 21.7 8.3 8.4 493.4 983.2 1039.5 739.9 100.0 99.5 78.9 51.2

FCFS 5.9 17.3 12.1 14.4 483.9 962.7 1124.8 768.5 100.0 99.3 79.5 51.0

OCP 1.0 1.7 5.5 1.2 302.8 698.4 880.3 651.3 96.8 93.2 77.9 50.4

https://doi.org/10.1371/journal.pone.0251582.t008
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online vehicle–charger assignment is evaluated on several numerical test instances. A realistic

dynamic dial-a-ride service case study in Luxembourg is designed to assess the performance of

the proposed approach and compare it with two widely used charging policies. A number of

insights can be summarized as follows.

• The single-vehicle charging scheduling problem for dynamic shared on-demand mobility

services can be decomposed into a multi-stage vehicle battery recharge problem to deter-

mine when and how much energy to charge in each charging decision epoch. The objective

is to minimize charging operational costs while meeting vehicle driving needs for the next

stage and battery-level-related constraints. The minimum amount of energy to charge for

each vehicle is solved sequentially to obtain vehicle daily charging schedules that consider

the expected queuing delays for charging and stochastic driving needs over time.

• The real-time vehicle–charger assignment model considering the current charging system

queuing states considerably reduces vehicle charging waiting times and vehicle idle times for

recharge in a dynamic environment. The LR algorithm allows for solving the mixed-integer

assignment problem for large-scale test instances with 1000 vehicles and 1000 chargers within 3

minutes, with an optimality gap of 0.5%. The algorithm is suitable for the real-time vehicle-char-

ger assignment of electric fleet charging operations to minimize total vehicle charging delays.

• The realistic dynamic dial-a-ride case study in Luxembourg under different charging infrastruc-

ture settings shows that the proposed charging schedule policy can reduce, on average, the total

charging waiting time (–74.9%), charging time (–38.6%), and charging cost (–27.4%) compared

to the nearest charging station charging policy and the minimum charging delay policy.

• A sensitivity analysis provides insight into the impact of the length of the charging decision

epoch, of customer demand intensity, and of the battery range. The results show that the

length of the charging decision epoch should allow a vehicle to be charged up to the allowed

maximum energy level (80% in our case) using a fast charger. Shorter charging decision

epochs would lead to higher charging frequencies and charging costs, resulting in greater

customer inconvenience.

• When increasing the level of customer demand and the vehicle battery capacity, the pro-

posed approach minimizes the charging operation time and costs to meet service needs. In

contrast, the two reference charging policies apply the full-charge (80% full) policy, leading

to charging more energy than necessary and resulting in higher costs and longer vehicle idle

times for charging operations.

• The charging needs of other (individual-owned/commercial) EVs that compete for limited

public charging facility resources are not considered here. The operator cannot know in

advance the waiting time at a charger occupied by other EVs. Such a problem is well-known

for EV charging at public charging stations as charging port reservation is still not available

Table 7. The impact of battery range on the performance of the OCP policy.

Battery capacity (KWh)

Charging policy

35.8 53.7 71.6 35.8 53.7 71.6 35.8 53.7 71.6

Total charging waiting time

(hours)

Total amount of energy charged

(kWh)

Customer service rate

(%)

NS 21.7 9.3 5.1 3567.4 3364.0 3145.4 100 100 100

FCFS 17.3 17.3 7.9 3493.2 3320.5 3219.8 99 100 100

OCP 1.7 3.0 3.6 2534.0 1913.1 1372.3 93 97 98

https://doi.org/10.1371/journal.pone.0251582.t009
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on the market [37]. In this case, vehicles can be assigned to chargers that are not occupied by

other EVs in order to overcome this issue. Another alternative is to incorporate some statisti-

cal information (arrival rates and charging duration distribution) from the charging station

operators to estimate the expected waiting time at a charger occupied by another non-opera-

tor-owned EV.

Conclusions

The electrification of shared on-demand mobility services requires control over charging man-

agement as the fleet needs to frequently charge several times a day given limited public charg-

ing infrastructure. Such charging operation constraints represent significant costs for the

operator due to charging queuing delays and energy costs. The operator faces the problem of

scheduling the charging of the fleet in a stochastic environment with several sources of uncer-

tainty, including the availability of charging stations, charging price variation, and stochastic

customer demand. In this study, we propose a two-stage solution for handling the dynamic

vehicle charging scheduling problem for dynamic dial-a-ride services using EVs that is com-

prised of two components: vehicle charging scheduling and vehicle–charger assignment.

Charging scheduling is considered on the basis of each vehicle as a battery recharge problem,

which decomposes the problem into multistage decision-making to minimize the charging

costs at each stage while satisfying vehicle driving needs for the next stage. Given the charging

plans of vehicles, the second component determines online vehicle–charger assignment based

on the principle of the vehicle idle time for recharge minimization, considering the queuing

status at the level of chargers. We apply the method to a realistic dynamic electric dial-a-ride

service in Luxembourg under different charging infrastructure scenarios. The results show

that significant savings can be obtained for the daily charging operations of the fleet (50 electric

shuttles with 1000 customers per day): –73.4% and –76.4% in terms of the total charging wait-

ing times, –38.1% and –39% for the total charging time, and –27.6% and –27.2% for the total

charged energy costs, compared to the widely-used nearest charging station policy and mini-

mum charging delay policy, respectively.

The approach can be extended to manage the vehicle charging scheduling of other dynamic

shared mobility services such as e-taxis or ride-hailing in a dynamic environment. Future

extensions can consider incorporating the charging patterns of other private EVs for more

accurate waiting time estimations for chargers occupied by other private/commercial vehicles.

Another direction is incorporating a day-to-day learning mechanism or a prediction model to

anticipate short-term vehicle driving patterns and energy needs when demand is volatile.

Moreover, the approach can be extended to consider a more realistic energy consumption

model in the urban environment [38] or a mixed gasoline and electric vehicle fleet to reduce

charging operational costs [27].
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