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Abstract

Learning styles are critical to educational psychology, especially when investigating various

contextual factors that interact with individual learning styles. Drawing upon Biglan’s taxon-

omy of academic tribes, this study systematically analyzed the learning styles of 790 sopho-

mores in a blended learning course with 46 specializations using a novel machine learning

algorithm called the support vector machine (SVM). Moreover, an SVM-based recursive

feature elimination (SVM-RFE) technique was integrated to identify the differential features

among distinct disciplines. The findings of this study shed light on the optimal feature sets

that collectively determined students’ discipline-specific learning styles in a college blended

learning setting.

Introduction

Research background

Learning style, as an integral and vital part of a student’s learning process, has been constantly

discussed in the field of education and pedagogy. Originally developed from the field of psy-

chology, psychological classification, and cognitive research several decades ago [1], the term

“learning style” is generally defined as the learner’s innate and individualized preference for

ways of participation in learning practice [2]. Theoretically, learning style provides a window

into students’ learning processes [3, 4], predicts students’ learning outcomes [5, 6], and plays a

critical role in designing individualized instruction [7]. Knowing a student’s learning style and

personalizing instruction to students’ learning style could enhance their satisfaction [8],

improve their academic performance [9], and even reduce the time necessary to learn [10].

Researchers in recent years have explored students’ learning styles from various perspec-

tives [11–13]. However, knowledge of the learning styles of students from different disciplines

in blended learning environments is limited. In an effort to address this gap, this study aims to

achieve two major objectives. First, it investigates how disciplinary background impacts stu-

dents’ learning styles in a blended learning environment based on data collected in a
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compulsory college English course. Students across 46 disciplines were enrolled in this course,

providing numerous disciplinary factor resources for investigating learning styles. Second, it

introduces a novel machine learning method named the SVM to the field of education to iden-

tify an optimal set of factors that can simultaneously differentiate students of different aca-

demic disciplines. Based on data for students from 46 disciplines, this research delves into the

effects of a massive quantity of variables related to students’ learning styles with the help of a

powerful machine learning algorithm. Considering the convergence of a wide range of aca-

demic disciplines and the detection of latent interactions between a large number of variables,

this study aims to provide a clear picture of the relationship between disciplinary factors and

students’ learning styles in a blended learning setting.

Literature review

Theories of learning styles. Learning style is broadly defined as the inherent preferences

of individuals as to how they engage in the learning process [2], and the “cognitive, affective

and physiological traits” of students have received special attention [14]. To date, there has

been a proliferation of learning style definitions proposed to explain people’s learning prefer-

ences, each focusing on different aspects. Efforts to dissect learning style have been contested,

with some highlighting the dynamic process of the learner’s interaction with the learning envi-

ronment [14] and others underlining the individualized ways of information processing [15].

One vivid explication involved the metaphor of an onion, pointing out the multilayer nature

of learning styles. It was proposed that the outermost layer of the learning style could change

in accordance with the external environment, while the inner layer is relatively stable [16, 17].

In addition, a strong concern in this field during the last three decades has led to a proliferation

of models that are germane to learning styles, including the Kolb model [18], the Myers-Briggs

Type Indicator model [19] and the Felder-Silverman learning style model (FSLSM) [20].

These learning style models have provided useful analytical lenses for analyzing students’

learning styles. The Kolb model focuses on learners’ thinking processes and identifies four

types of learning, namely, diverging, assimilating, converging, and accommodating [18]. The

Myers-Briggs Type Indicator model classifies learners into extraversion and introversion

types, with the former preferring to learn from interpersonal communication and the latter

inclining to benefit from personal experience [19]. As the most popular available model, the

FSLSM identifies eight categories of learners according to the four dimensions of perception,

input, processing and understanding [20]. In contrast to other learning style models that

divided students into only a few groups, the FSLSM describes students’ learning styles in a

more detailed manner. The four paired dimensions delicately distinguish students’ engage-

ment in the learning process, providing a solid basis for a steady and reliable learning style

analysis [21]. In addition, it has been argued that the FSLSM is the most appropriate model for

a technology-enhanced learning environment because it involves important theories of cogni-

tive learning behaviors [22, 23]. Therefore, a large number of scholars have based their investi-

gations of students’ learning styles in the e-learning/computer-aided learning environment on

FSLSM [24–28].

Learning styles and FSLSM. Different students receive, process, and respond to informa-

tion with different learning styles. A theoretical model of learning style can be used to catego-

rize people according to their idiosyncratic learning styles. In this study, the FSLSM was

adopted as a theoretical framework to address the collective impacts of differences in students’

learning styles across different disciplines (see Fig 1).

The FSLSM includes learning styles scattered among four dimensions. Visual learners

process information best when it is presented as graphs, pictures, etc., while verbal learners
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prefer spoken cues and remember best what they hear. Sensory learners like working with

facts, data, and experimentation, while intuitive learners prefer abstract principles and theo-

ries. Active learners like to try things and learn through experimentation, while reflective

learners prefer to think things through before taking action. Sequential learners absorb knowl-

edge in a linear fashion and make progress step by step, while global learners tend to grasp the

big picture before filling in all the details.

Learning styles and academic disciplines. Learning styles vary depending on a series of

factors, including but not limited to age [29], gender [30], personality [2, 31], learning environ-

ment [32] and learning experience [33]. In the higher education context, the academic disci-

pline seems to be an important variable that influences students’ distinctive learning styles,

which echoes a multitude of investigations [29, 34–41]. One notable study explored the learn-

ing styles of students from 4 clusters of disciplines in an academic English language course and

proposed that the academic discipline is a significant predictor of students’ learning styles,

with students from the soft-pure, soft-applied, hard-pure and hard-applied disciplines each

favoring different learning modes [42]. In particular, researchers used the Inventory of Learn-

ing Styles (ILS) questionnaire and found prominent disparities in learning styles between stu-

dents from four different disciplinary backgrounds in the special educational field of

vocational training [43]. These studies have found significant differences between the learning

styles of students from different academic disciplines, thus supporting the concept that learn-

ing style could be domain dependent.

Learning styles in an online/blended learning environment. Individuals’ learning styles

reflect their adaptive orientation to learning and are not fixed personality traits. Consequently,

learning styles can vary among diverse contexts, and related research in different contexts is

vital to understanding learning styles in greater depth. Web-based technologies eliminate bar-

riers of space and time and have become integrated in individuals’ daily lives and learning hab-

its. Online and blended learning have begun to pervade virtually every aspect of the education

landscape [40], and this warrants close attention. In addition to a series of studies that reflected

upon the application of information and communication technology in the learning process

[44, 45], recent studies have found a mixed picture of whether students in a web-based/

blended learning environment have a typical preference for learning.

Online learning makes it possible for students to set their goals and develop an individual-

ized study plan, equipping them with more learning autonomy [46]. Generally, students with a

more independent learning style, greater self-regulating behavior and stronger self-efficacy are

Fig 1. The adapted Felder-Silverman learning style model. This model specifies the four dimensions of the construct

of learning style: visual/verbal, sensing/intuitive, active/reflective, and sequential/global. These four dimensions

correspond to four psychological processes: input, perception, processing, and understanding.

https://doi.org/10.1371/journal.pone.0251545.g001
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found to be more successful in an online environment [47]. For now, researchers have made

substantial contributions to the identification and prediction of learning styles in an online

learning environment [27, 48–51]. For instance, an inspiring study focused on the manifesta-

tion of college students’ learning styles in a purely computer-based learning environment to

evaluate the different learning styles of web-learners in the online courses, indicating that stu-

dents’ learning styles were significantly related to online participation [49]. Students’ learning

styles in interactive E-learning have also been meticulously investigated, from which online

tutorials have been found to be contributive to students’ academic performance regardless of

their learning styles [51].

As a flexible learning method, blended courses have combined the advantages of both

online learning and traditional teaching methods [52]. Researchers have investigated students’

learning styles within this context and have identified a series of prominent factors, including

perceived satisfaction and technology acceptance [53], the dynamics of the online/face-to-face

environment [54], and curriculum design [55]. Based on the Visual, Aural, Reading or Write

and Kinesthetic model, a comprehensive study scrutinized the learning styles of K12 students

in a blended learning environment, elucidating the effect of the relationship between personal-

ity, learning style and satisfaction on educational outcomes [56]. A recent study underscored

the negative effects of kinesthetic learning style, whereas the positive effects of visual or audi-

tory learning styles on students’ academic performance, were also marked in the context of

blended learning [57].

Considering that academic disciplines and learning environment are generally regarded as

essential predictors of students’ learning styles, some studies have also concentrated on the

effects of academic discipline in a blended learning environment. Focusing on college students’

learning styles in a computer-based learning environment, an inspiring study evaluated the

different learning styles of web learners, namely, visual, sensing, global and sequential learners,

in online courses. According to the analysis, compared with students from other colleges, lib-

eral arts students, are more susceptible to the uneasiness that may result from remote teaching

because of their learning styles [11]. A similar effort was made with the help of the CMS tool

usage logs and course evaluations to explore the learning styles of disciplinary quadrants in the

online learning environment. The results indicated that there were noticeable differences in

tool preferences between students from different domains [12]. In comparison, within the con-

text of blended learning, a comprehensive study employed chi-square statistics on the basis of

the Community of Inquiry (CoI) presences framework, arguing that soft-applied discipline

learners in the blended learning environment prefer the kinesthetic learning style, while no

correlations between the learning style of soft-pure and hard-pure discipline students and the

CoI presences were identified. However, it is noted that students’ blended learning experience

depends heavily on academic discipline, especially for students in hard-pure disciplines [13].

Research gaps and research questions

Overall, the research seems to be gaining traction, and new perspectives are continually intro-

duced. The recent literature on learning styles mostly focuses on the exploration of the disci-

plinary effects on the variation in learning styles, and some of these studies were conducted

within the blended environment. However, most of the studies focused only on several discrete

disciplines or included only a small group of student samples [34–41]. Data in these studies

were gathered through specialized courses such as academic English language [42] rather than

the compulsory courses available to students from all disciplines. Even though certain investi-

gations indeed boasted a large number of samples [49], the role of teaching was emphasized

rather than students’ learning style. In addition, what is often overlooked is that a large
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number of variables related to learning styles could distinguish students from different aca-

demic disciplines in a blended learning environment, whereas a more comprehensive analysis

that takes into consideration the effects of a great quantity of variables related to learning styles

has remained absent. Therefore, one goal of the present study is to fill this gap and shed light

on this topic.

Another issue addressed in this study is the selection of an optimal measurement that can

effectively identify and differentiate individual learning styles [58]. The effective identification

and differentiation of individual learning styles can not only help students develop greater

awareness of their learning but also provide teachers with the necessary input to design tailor-

made instructions in pedagogical practice. Currently, there are two general approaches to

identify learning styles: a literature-based approach and a data-driven approach. The litera-

ture-based approach tends to borrow established rules from the existing literature, while the

data-driven approach tends to construct statistical models using algorithms from fields such as

machine learning, artificial intelligence, and data mining [59]. Research related to learning

styles has been performed using predominantly traditional instruments, such as descriptive

statistics, Spearman’s rank correlation, coefficient R [39], multivariate analysis of variance [56]

and analysis of variance (ANOVA) [38, 43, 49, 57]. Admittedly, these instruments have been

applied and validated in numerous studies, in different disciplines, and across multiple time-

scales. Nevertheless, some of the studies using these statistical tools did not identify significant

results [36, 53, 54] or reached only loose conclusions [60]; this might be because of the inability

of these methods to probe into the synergistic effects of variables. However, the limited func-

tions of comparison, correlation, prediction, etc. are being complemented by a new generation

of technological innovations that promise more varied approaches to addressing social and sci-

entific issues. Machine learning is one such approach that has received much attention both in

academia and beyond. As a subset of artificial intelligence, machine learning deals with algo-

rithms and statistical models on computer systems, performing tasks based on patterns and

inference instead of explicit instruction. As such, it can deal with high volumes of data at the

same time, perform tasks automatically and independently, and continuously improve its per-

formance based on past experience [54]. Similar machine learning approaches have been pro-

posed and tested by different scholars to identify students’ learning styles, with varying results

regarding the classification of learning styles. For instance, a study that examined the precision

levels of four computational intelligence approaches, i.e., artificial neural network, genetic

algorithm, ant colony system and particle swarm optimization, found that the average preci-

sion of learning style differentiation ranged between 66% and 77% [61]. Another study that

classified learning styles through SVM reported accuracy levels ranging from 53% to 84% [62].

A comparison of the prediction performance of SVM and artificial neural networks found that

SVM has higher prediction accuracy than the latter [63]. This was further supported by

another study, which yielded a similar result between SVM and the particle swarm optimiza-

tion algorithm [64]. Moreover, when complemented by a genetic algorithm [65] and ant col-

ony system [66], SVM has also shown improved results. These findings across different fields

point to the reliability of SVM as an effective statistical tool for identification and differentia-

tion analysis.

Therefore, a comprehensive investigation across the four general disciplines in Biglan’s tax-

onomy using a strong machine learning approach is needed. Given the existence of the

research gaps discussed above, this exploratory study seeks to address the following questions:

1. Can students’ learning styles be applied to differentiate various academic disciplines in the

blended learning setting? If so, what are the differentiability levels among different aca-

demic disciplines based on students’ learning styles?
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2. What are the key features that can be selected to determine the collective impact on differ-

entiation by a machine learning algorithm?

3. What are the collective impacts of optimal feature sets?

Materials and methods

This study adopted a quantitative approach for the analysis. First, a modified and translated

version of the original ILS questionnaire was administered to collect scores for students’ learn-

ing styles. Then, two alternate data analyses were performed separately. One analysis involved

a traditional ANOVA, which tested the main effect of discipline on students’ learning styles in

each ILS dimension. The other analysis involved the support vector machine (SVM) technique

to test its performance in classifying students’ learning styles in the blended learning course

among 46 specializations. Then, SVM-based recursive feature elimination (SVM-RFE) was

employed to specify the impact of students’ disciplinary backgrounds on their learning styles

in blended learning. By referencing the 44 questions (operationalized as features in this study)

in the ILS questionnaire, SVM-RFE could rank these features based on their relative impor-

tance in differentiating different disciplines and identify the key features that collectively dif-

ferentiate the students’ learning style. These steps are intended to not only identify students’

learning style differences but also explain such differences in relation to their academic disci-

plinary backgrounds.

Participants

The participants included 790 sophomores taking the blended English language course from

46 majors at Z University. Sophomore students were selected for this study for two reasons.

First, sophomores are one of the only two groups of students (the other group being college

freshmen) who take a compulsory English language course, namely, the College English lan-

guage course. Second, of these two groups of students, sophomores have received academic

discipline-related education, while their freshmen counterparts have not had disciplinary

training during the first year of college. In the College English language course, online activi-

ties, representing 55% of the whole course, include e-course teaching designed by qualified

course teachers or professors, courseware usage for online tutorials, forum discussion and

essay writing, and two online quizzes. Offline activities, which represent 45% of the whole

course, include role-playing, ice-breaker activities, group presentations, an oral examination,

and a final examination. Therefore, the effects of the academic discipline on sophomores’

learning styles might be sufficiently salient to warrant a comparison in a blended learning set-

ting [67]. Among the participants, 420 were male, and 370 were female. Most participants

were aged 18 to 19 years and had taken English language courses for at least 6 years. Based on

Biglan’s typology of disciplinary fields, the students’ specializations were classified into the

four broad disciplines of hard-applied (HA, 289/37.00%), hard-pure (HP, 150/19.00%), soft-

applied (SA, 162/20.00%), and soft-pure (SP, 189/24.00%).

Biglan’s classification scheme of academic disciplines (hard (H) vs. soft (S) disciplines and

pure (P) vs. applied (A) disciplines) has been credited as the most cited organizational system

of academic disciplines in tertiary education [68–70]. Many studies have also provided evi-

dence supporting the validity of this classification [69]. Over the years, research has indicated

that Biglan’s typology is correlated with differences in many other properties and serves as an

appropriate mechanism to organize discipline-specific knowledge or epistemologies [38] and

design and deliver courses for students with different learning style preferences [41]. There-

fore, this classification provides a convenient framework to explore differences across
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disciplinary boundaries. In general, HA disciplines include engineering, HP disciplines

include the so-called natural sciences, SA disciplines include the social sciences, and SP disci-

plines include the humanities [41, 68, 71].

Instrument

In learning style research, it is difficult to select an instrument to measure the subjects’ learning

styles [72]. The criteria used for the selection of a learning style instrument in this study

include the following: 1) successful use of the instrument in previous studies, 2) demonstrated

validity and reliability, 3) a match between the purpose of the instrument and the aim of this

study and 4) open access to the questionnaire.

The Felder and Soloman’s ILS questionnaire, which was built based on the FSLSM, was

adopted in the present study to investigate students’ learning styles across different disciplines.

First, the FSLSM is recognized as the most commonly used model for measuring individual

learning styles on a general scale [73] in higher education [74] and has remained popular for

many years across different disciplines in university settings and beyond. In the age of person-

alized instruction, this model has breathed new life into areas such as blended learning [75],

online distance learning [76], courseware design [56], and intelligent tutoring systems [77, 78].

Second, the FSLSM is based on previous learning style models; the FSLSM integrates all their

advantages and is, thus, more comprehensive in delineating students’ learning styles [79, 80].

Third, the FSLSM has a good predictive ability with independent testing sets (i.e., unknown

learning style objects) [17], which has been repeatedly proven to be a more accurate, reliable,

and valid model than most other models for predicting students’ learning performance [10,

80]. Fourth, the ILS is a free instrument that can be openly accessed online (URL: https://www.

webtools.ncsu.edu/learningstyles/) and has been widely used in the research context [81, 82].

The modified and translated version of the original ILS questionnaire includes 44 questions

in total, and 11 questions correspond to each dimension of the Felder-Silverman model as fol-

lows: questions 1–11 correspond to dimension 1 (active vs. reflective), questions 12–22 corre-

spond to dimension 2 (sensing vs. intuitive), questions 23–33 correspond to dimension 3

(visual vs. verbal), and questions correspond 34–44 to dimension 4 (sequential vs. global).

Each question is followed by five choices on a five-point Likert scale ranging from “strongly

agree with A (1)”, “agree with A (2)”, “neutral (3)”, “agree with B (4)” and “strongly agree with

B (5)”. Option A and option B represent the two choices offered in the original ILS

questionnaire.

Ethics statements

The free questionnaires were administered in a single session by specialized staff who collabo-

rated on the investigation. The participants completed all questionnaires individually. The

study procedures were in accordance with the ethical standards of the Helsinki Declaration

and were approved by the Ethics Committee of the School of International Studies, Zhejiang

University. All participants signed written informed consent to authorize their participation in

this research. After completion of the informed consent form, each participant was provided a

gift (a pen) in gratitude for their contribution and participation.

Data collection procedure

Before the questionnaires were distributed, the researchers involved in this study contacted

faculty members from various departments and requested their help. After permission was

given, the printed questionnaires were administered to students under the supervision of their

teachers at the end of their English language course. The students were informed of the

PLOS ONE Differentiating the learning styles of college students

PLOS ONE | https://doi.org/10.1371/journal.pone.0251545 May 20, 2021 7 / 26

https://www.webtools.ncsu.edu/learningstyles/
https://www.webtools.ncsu.edu/learningstyles/
https://doi.org/10.1371/journal.pone.0251545


purpose and importance of the study and asked to carefully complete the questionnaires. The

students were also assured that their personal information would be used for research purposes

only. All students provided written informed consent (see S2 File). After the questionnaires

were completed and returned, they were thoroughly examined by the researchers such that

problematic questionnaires could be identified and excluded from further analysis. All ques-

tionnaires eligible for the data analysis had to meet the following two standards: first, all ques-

tions must be answered, and second, the answered questions must reflect a reasonable logic.

Regarding the few missing values, the median number of a given individual’s responses on 11

questions per dimension included in the ILS questionnaire was used to fill the void in each

case. In statistics, using the median number to impute missing values is common and accept-

able because missing values represent only a small minority of the entire dataset and are

assumed to not have a large impact on the final results [83, 84].

In total, 850 questionnaires were administered to the students, and 823 of these question-

naires were retrieved. Of the retrieved questionnaires, the remaining 790 questionnaires were

identified as appropriate for further use. After data screening, these questionnaires were orga-

nized, and their respective results were translated into an Excel format.

Data analysis method

During the data analysis, as a library of the SVM, the free package LIBSVM (https://www.csie.

ntu.edu.tw/~cjlin/libsvm/) was first applied as an alternative method of data analysis. Then, a

traditional ANOVA was performed to examine whether there was a main effect of academic

discipline on Chinese students’ learning styles. ANOVA could be performed using SPSS, a

strong data analysis software that supports a series of statistical analyses. In regard to the exam-

ination of the effect of a single or few independent variables, SPSS ANOVA can produce satis-

factory results. However, SVM, a classic data mining algorithm, outperforms ANOVA for

dataset in which a large number of variables with multidimensions are intertwined and their

combined/collective effects influence the classification results. In this study, the research objec-

tive was to efficiently differentiate and detect the key features among the 44 factors. Alone, a

single factor or few factors might not be significant enough to discriminate the learning styles

among the different disciplines. Selected by the SVM, the effects of multiple features may col-

lectively enhance the classification performance. Therefore, the reason for selecting SVM over

ANOVA is that in the latter case, the responses on all questions in a single dimension are

summed instead of treated as individual scores; thus, the by-item variation is concealed. In

addition, the SVM is especially suitable for statistical analysis with high-dimensional factors

(usually > 10; 44-dimensional factors were included in this study) and can detect the effects

collectively imposed by a feature set [85].

Originally proposed in 1992 [86], the SVM is a supervised learning model related to

machine learning algorithms that can be used for classification, data analysis, pattern recogni-

tion, and regression analysis. The SVM is an efficient classification model that optimally

divides data into two categories and is ranked among the top methods in statistical theory due

to its originality and practicality [85]. Due to its robustness, accurate classification, and predic-

tion performance [87–89], the SVM has high reproducibility [90, 91]. Due to the lack of visual-

ization of the computing process of the SVM, the SVM has been described as a “black box”

method [92]; however, future studies in the emerging field of explainable artificial intelligence

can help solve this problem and convert this approach to a “glass box” method [67]. This algo-

rithm has proven to have a solid theoretical foundation and excellent empirical application in

the social sciences, including education [93] and natural language processing [94]. The mecha-

nism underlying the SVM is also presented in Fig 2.
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The SVM contains the following two modules: one module is a general-purpose machine

learning method, and the other module is a domain-specific kernel function. The SVM train-

ing algorithm is used to build a training model that is then used to predict the category to

which a new sample instance belongs [95]. When a set of training samples is given, each sam-

ple is given the label of one of two categories. To evaluate the performance of SVM models, a

confusion matrix, which is a table describing the performance of a classifier on a set of test

data for which the true values are known, is used (see Table 1).

Based on the confusion matrix, several indicators were developed to measure the perfor-

mance of SVM models; of these indicators, the five most common indicators include accuracy

(ACC), specificity (SPE), sensitivity (SEN) (also known as ‘recall’), area under the receiver

operating characteristic curve (AUC), and F-measure. All five values were used in this study as

performance evaluators of the SVM models and generally have a value ranging from 0 to 1.

The mathematical formulae used to produce these values are provided as follows, along with a

brief explanation of their functions:

ACC ¼ ðTNþ TPÞ=ðTPþ TNþ FPþ FNÞ ð1Þ

SPE ¼ TN=ðTNþ FPÞ ð2Þ

Fig 2. The mechanism underlying the support vector machine. Hyperplanes 1 and 2 are two regression lines that

divide the data into two groups. Hyperplane 1 is considered the best fitting line because it maximizes the distance

between the two groups.

https://doi.org/10.1371/journal.pone.0251545.g002

Table 1. Description of a confusion matrix.

Positive (Predicted) Negative (Predicted)

Positive (Actual) True Positive (TP) False Negative (FN)

Negative (Actual) False Positive (FP) True Negative (TN)

Note. Positive: Observation is positive (e.g., the students belong to this discipline); Negative: Observation is negative

(e.g., the students do not belong to this discipline); True Positive (TP): Observation is positive and is predicted to be

positive; False Negative (FN): Observation is positive but is predicted to be negative; True Negative (TN):

Observation is negative and is predicted to be negative; False Positive (FP): Observation is negative but is predicted to

be positive.

https://doi.org/10.1371/journal.pone.0251545.t001
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SEN ¼ TP=ðTPþ FNÞ ð3Þ

AUC ¼
Z 1

0

ROCðtÞdt ð4Þ

F � measure ¼ 2ððTP=ðTPþ FPÞÞ � SENÞ=ðTP=ðTPþ FPÞ þ SEN ð5Þ

where

ACC represents the proportion of true results, including both positive and negative results,

in the selected population;

SPE represents the proportion of actual negatives that are correctly identified as such;

SEN represents the proportion of actual positives that are correctly identified as such;

AUC is a ranking-based measure of classification performance that can distinguish a ran-

domly chosen positive example from a randomly chosen negative example; and

F-measure is the harmonic mean of precision (another performance indicator) and recall.

The ACC is a good metric frequently applied to indicate the measurement of classification

performance, but the combination of the SPE, SEN, AUC, F-measure and ACC may be a mea-

sure of enhanced performance assessment and was frequently applied in current studies [96].

In particular, the AUC is a good metric frequently applied to validate the measurement of the

general performance of models [97]. The advantage of this measure is that it is invariant to rel-

ative class distributions and class-specific error costs [98, 99]. Moreover, to some extent, the

AUC is statistically consistent and more discriminating than the ACC with balanced and

imbalanced real-world data sets [100], which is especially suitable for unequal samples, such as

the HA-HP model in this study. After all data preparations were completed, the data used for

the comparisons were extracted separately. First, the processed data of the training set were

run by using optimized parameters. Second, the constructed model was used to predict the test

set, and the five indicators of the fivefold cross-validation and fivefold average were obtained.

Cross-validation is a general validation procedure used to assess how well the results of a statis-

tical analysis generalize to an independent data set, which is used to evaluate the stability of the

statistical model. K-fold cross-validation is commonly used to search for the best hyperpara-

meters of SVM to achieve the highest accuracy performance [101]. In particular, fivefold, ten-

fold, and leave-one-out cross-validation are typically used versions of k-fold cross-validation

[102, 103]. Fivefold cross-validation was selected because fivefold validation can generally

achieve a good prediction performance [103, 104] and has been commonly used as a popular

rule of thumb supported by empirical evidence [105]. In this study, five folds (groups) of sub-

sets were randomly divided from the entire set by the SVM, and four folds (training sample) of

these subsets were randomly selected to develop a prediction model, while the remaining one

fold (test sample) was used for validation. The above functions were all implemented with

Python Programming Language version 3.7.0 (URL: https://www.python.org/).

Then, SVM-RFE, which is an embedded feature selection strategy that was first applied to

identify differentially expressed genes between patients and healthy individuals [106], was

adopted. SVM-RFE has proven to be more robust to data overfitting than other feature selec-

tion techniques and has shown its power in many fields [107]. This approach works by remov-

ing one feature each time with the smallest weight iteratively to a feature rank until a group of

highly weighted features were selected. After this feature selection procedure, several SVM

models were again constructed based on these selected features. The performance of the new
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models is compared to that of the original models with all features included. The experimental

process is provided in Fig 3 for the ease of reference.

Results

The classification results produced by SVM and the ranking of the top 20 features produced by

SVM-RFE were listed in Table 2. Twenty variables have been selected in this study for two rea-

sons: a data-based reason and a literature-based reason. First, it is clear that models composed

of 20 features generally have a better performance than the original models. The performance

of models with more than 20 is negatively influenced. Second, SVM-based studies in the social

sciences have identified 20 to 30 features as a good number for an optimal feature set [108],

and 20 features were selected for inclusion in the optimal feature set [95]. Therefore, in this

study, the top 20 features were selected for subsequent analysis, as proposed in previous analy-

ses that yielded accepted measurement rates. These 20 features retained most of the useful

information from all 44 factors but with fewer feature numbers, which showed satisfactory

representation [96].

Results of RQ (1) What are the differentiability levels among different

academic disciplines based on students’ learning styles?

To further measure the performance of the differentiability among students’ disciplines, the

collected data were examined with the SVM algorithm. As shown in Table 2, the five perfor-

mance indicators, namely, the ACC, SPE, SEN, AUC and F-measure, were utilized to measure

the SVM models. Regarding the two general performance indicators, i.e., the ACC value and

AUC value, the HA-HP, HA-SA, and HA-SP-based models yielded a classification capacity of

approximately 70.00%, indicating that the students in these disciplines showed a relatively

large difference. In contrast, the models based on the H-S, A-P, HP-SA, HP-SP, and SA-SP dis-

ciplines only showed a moderate classification capacity (above 55.00%). This finding suggests

Fig 3. Experimental process and working mechanism of SVM and SVM-RFE.

https://doi.org/10.1371/journal.pone.0251545.g003
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that these five SVM models were not as effective as the other three models in differentiating

students among these disciplines based on their learning styles. The highest ACC and AUC

values were obtained in the model based on the HA-HP disciplines, while the lowest values

were obtained in the model based on the HP-SA disciplines. As shown in Table 2, the AUCs of

the different models ranged from 57.76% (HP-SA) to 73.97% (HA-HP).

To compare the results of the SVM model with another statistical analysis, an ANOVA was

applied. Prior to the main analysis, the students’ responses in each ILS dimension were

summed to obtain a composite score. All assumptions of ANOVA were checked, and no seri-

ous violations were observed. Then, an ANOVA was performed with academic discipline as

the independent variable and the students’ learning styles as the dependent variable. The

results of the ANOVA showed that there was no statistically significant difference in the group

means of the students’ learning styles in Dimension 1, F(3, 786) = 2.56, p = .054, Dimension 2,

F(3, 786) = 0.422, p = .74, or Dimension 3, F(3, 786) = 0.90, p = .443. However, in Dimension

4, a statistically significant difference was found in the group means of the students’ learning

styles, F (3, 786) = 0.90, p = .005. As the samples in the four groups were unbalanced, post hoc

comparisons using Scheffé’s method were performed, demonstrating that the means of the stu-

dents’ learning styles significantly differed only between the HA (M = 31.04, SD = 4.986) and

SP (M = 29.55, SD = 5.492) disciplines, 95.00% CI for MD [0.19, 2.78], p = .016, whereas the

other disciplinary models showed no significant differences. When compared with the results

obtained from the SVM models, the three models (HA-HP, HA-SA, and HA-SP models) pre-

sented satisfactory differentiability capability of approximately 70.00% based on the five

indicators.

In the case of a significant result, it was difficult to determine which questions were repre-

sentative of the significant difference. With a nonsignificant result, it was possible that certain

questions might be relevant in differentiating the participants. However, this problem was cir-

cumvented in the SVM, where each individual question was treated as a variable and a value

was assigned to indicate its relative importance in the questionnaire. Using SVM also

Table 2. Results produced by SVM and SVM-RFE.

Model Algorithm ACC SPE SEN AUC F-measure Top 20 features

H-S SVM 66.67% 69.32% 63.38% 66.35% 66.67% 1, 2, 4, 5, 7, 8, 9, 10, 11, 14, 21, 22, 23, 26, 27, 29, 31, 32, 35, 39

SVM-RFE 87.30% 88.18% 86.20% 87.19% 87.30%

A-P SVM 64.52% 77.78% 55.08% 64.93% 64.52% 3, 4, 5, 6, 7, 11, 15, 17, 18, 19, 21, 30, 31, 32, 33, 35, 39, 42, 43, 44

SVM-RFE 73.44% 86.55% 79.28% 75.09% 74.44%

HA-HP SVM 69.32% 80.00% 67.95% 73.97% 69.32% 1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 19, 21, 26, 28, 29, 31, 34, 39, 40, 44

SVM-RFE 82.59% 82.30% 78.26% 89.13% 79.59%

HA-SA SVM 68.47% 63.64% 70.51% 67.07% 68.47% 1, 2, 4, 7, 8, 9, 10, 11, 14, 18, 21, 26, 27, 29, 32, 35, 37, 38, 39, 41

SVM-RFE 77.74% 75.00% 68.22% 78.11% 77.74%

HA-SP SVM 68.97% 73.68% 66.67% 70.18% 68.97% 1, 2, 7, 9, 10, 11, 12, 14, 19, 20, 21, 22, 23, 27, 31, 32, 34, 35, 37, 39

SVM-RFE 76.09% 74.00% 67.70% 77.35% 69.09%

HP-SA SVM 55.16% 56.52% 58.00% 57.76% 56.16% 1, 2, 4, 5, 6, 7, 9, 10, 12, 15, 16, 21, 26, 27, 28, 29, 31, 33, 39, 44

SVM-RFE 74.63% 72.00% 70.04% 75.02% 69.63%

HP-SP SVM 58.33% 57.90% 60.00% 58.95% 58.33% 1, 2, 5, 7, 8, 12, 13, 15, 16, 18, 19, 21, 23, 27, 29, 32, 33, 34, 35, 40

SVM-RFE 70.83% 75.00% 68.00% 72.50% 70.83%

SA-SP SVM 60.00% 63.16% 56.25% 59.70% 60.00% 3, 4, 5, 7, 8, 9, 11, 13, 15, 18, 19, 21, 27, 31, 32, 35, 37, 39, 41, 44

SVM-RFE 70.46% 75.00% 76.25% 71.28% 71.46%

Note: Indicators in the upper row belong to original SVM models, while those in the lower row belong to the models with 20 features.

https://doi.org/10.1371/journal.pone.0251545.t002
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circumvented the inherent problems with traditional significance testing, especially the reli-

ance on p-values, which might become biased in the case of multiple comparisons [109].

Results of RQ (2) What are the key features that can be selected to

determine the collective impact on differentiation by a machine learning

algorithm?

To examine whether the model performance improved as a result of this feature selection pro-

cedure, the 20 selected features were submitted to another round of SVM analysis. The same

five performance indicators were used to measure the model performance (see Table 2). By

comparing the performance of the SVM model and that of the SVM-RFE model presented in

Table 2, except for the HA-SP model, all other models presented a similar or improved perfor-

mance after the feature selection process. In particular, the improvement in the HA-HP and

HP-SA models was quite remarkable. For instance, in the HA-HP model, the ACC value

increased from 69.32% in the SVM model to 82.59% in the SVM-RFE model, and the AUC

score substantially increased from 73.97% in the SVM model to 89.13% in the SVM-RFE

model. This finding suggests that the feature selection process refined the model’s classification

accuracy and that the 20 features selected, out of all 44 factors, carry substantive information

that might be informative for exploring disciplinary differences. Although results for the indi-

cators of the 20 selected features were not very high, all five indicators above 65.00% showed

that the model was still representative because only 20 of 44 factors could present the classifica-

tion capability. Considering that there was a significant reduction in the number of questions

used for the model construction in SVM-RFE (compared with those used for the SVM model),

the newly identified top 20 features by SVM-RFE were effective enough to preserve the differ-

ential ability of all 44 questions. Thus, these newly identified top 20 factors could be recognized

as key differential features for distinguishing two distinct disciplines.

To identify these top 20 features in eight models (see Table 2), SVM-RFE was applied to

rank order all 44 features contained in the ILS questionnaire. To facilitate a detailed under-

standing of what these features represent, the questions related to the top 20 features in the

HA-HP model are listed in Table 3 for ease of reference.

Results of RQ (3) What are the collective impacts of optimal feature sets?

The collective impacts of optimal feature sets could be interpreted from four aspects, namely,

the complexities of students’ learning styles, the appropriate choice of SVM, the ranking of

SVM-RFE and multiple detailed comparisons between students from different disciplines.

First, the FSLSM considers the fact that students’ learning styles are shaped by a series of fac-

tors during the growth process, which intertwine and interact with each other. Considering

the complex dynamics of the learning style, selecting an approach that could detect the com-

bined effects of a group of variables is needed. Second, recent years have witnessed the emer-

gence of data mining approaches to explore students learning styles [28, 48–50, 110].

Specifically, as one of the top machine learning algorithms, the SVM excels in identifying the

combined effects of high-order factors [87]. In this study, the SVM has proven to perform well

in classifying students’ learning styles across different disciplines, with every indicator being

acceptable. Third, the combination of SVM with RFE could enable the simultaneous discovery

of multiple features that collectively determine classification. Notably, although SVM-FRE

could rank the importance of the features, they should be regarded as an entire optimal feature

set. In other words, the combination of these 20 features, rather than a single factor, could dif-

ferentiate students’ learning styles across different academic disciplines. Last but not least, the

multiple comparisons between different SVM models of discipline provide the most effective
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learning style factors, giving researchers clues to the nuanced differences between students’

learning styles. It can be seen that students from different academic disciplines understand, see

Table 3. Question descriptions of the top 20 features in the HA-HP model.

Question

Number

Question Answer Option

1 I understand something better after I A. try it out.

B. think it through.

4 I tend to A. understand the details of a subject but may be fuzzy about its overall

structure.

B. understand the overall structure but may be fuzzy about the details.

5 When I am learning something new, it helps me to A. talk about it.

B. think about it.

6 If I were a teacher, I would rather teach a course A. that addresses facts and real-life situations.

B. that addresses ideas and theories.

7 I prefer to obtain new information from A. pictures, diagrams, graphs, or maps.

B. written directions or verbal information.

8 Once I understand A. all the parts, I understand the whole thing.

B. the whole thing, I see how the parts fit.

10 I find it easier A. to learn facts.

B. to learn concepts.

12 When I solve math problems A. I usually work my way to the solutions one step at a time.

B. I often just see the solutions but then have to struggle to figure out the

steps to get to them.

13 In the classes I have taken A. I usually got to know many students.

B. I rarely got to know many students.

14 In reading nonfiction, I prefer A. something that teaches me new facts or tells me how to do something.

B. something that gives me new ideas to think about.

19 I remember best A. what I see.

B. what I hear.

21 I prefer to study A. in a study group.

B. alone.

26 When I am reading for enjoyment, I like writers to A. clearly say what they mean.

B. say things in creative, interesting ways.

28 When considering a body of information, I am more likely to A. focus on the details and miss the big picture.

B. try to understand the big picture before getting into the details.

29 I more easily remember A. something I have done.

B. something I have thought a lot about.

31 When someone is showing me data, I prefer A. charts or graphs.

B. text summarizing the results.

34 I consider it higher praise to call someone A. sensible.

B. imaginative.

39 For entertainment, I would rather A. watch television.

B. read a book.

40 Some teachers start their lectures with an outline of what they will cover.

Such outlines are

A. somewhat helpful to me.

B. very helpful to me.

44 When solving problems in a group, I would be more likely to A. think of the steps in the solution process.

B. think of possible consequences or applications of the solution in a wide

range of areas.

Note. Question descriptions and answer options were openly accessed online from the ILS (URL: https://www.webtools.ncsu.edu/learningstyles/).

https://doi.org/10.1371/journal.pone.0251545.t003
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and reflect things from individualized perspectives. The 20 most effective factors for all models

scattered within 1 to 44, verifying students’ different learning styles in 4 dimensions. There-

fore, the FSLSM provides a useful and effective tool for evaluating students’ learning styles

from a rather comprehensive point of view.

Discussion

The following discussions address the three research questions explored in the current study.

Levels of differentiability among various academic disciplines based on

students’ learning styles with SVM

The results suggest that SVM is an effective approach for classification in the blended learning

context in which students with diverse disciplinary backgrounds can be distinguished from

each other according to their learning styles. All performance indicators presented in Tables 2

and 3 remain above the baseline of 50.00%, suggesting that between each two disciplines, stu-

dents’ learning style differences can be identified. To some extent, these differences can be

identified with a relatively satisfactory classification capability (e.g., 69.32% of the ACC and

73.97% of the AUC in the HA-HP model shown in Table 2). Further support for the SVM

algorithm is obtained from the SVM-RFE constructed to assess the rank of the factors’ classifi-

cation capacity, and all values also remained above the baseline value, while some values

reached a relatively high classification capability (e.g., 82.59% of the ACC and 89.13% of the

AUC in the HA-HP model shown in Table 2). While the results obtained mostly show a mod-

erate ACC and AUC, they still provide some validity evidence supporting the role of SVM as

an effective binary classifier in the educational context. However, while these differences are

noteworthy, the similarities among students in different disciplines also deserve attention. The

results reported above indicate that in some disciplines, the classification capacity is not rela-

tively high; this was the case for the model based on the SA-SP disciplines.

Regarding low differentiability, one explanation might be the indistinct classification of

some emerging “soft disciplines.” It was noted that psychology, for example, could be identi-

fied as “a discipline that can be considered predominantly ‘soft’ and slightly ‘purer’ than

‘applied’ in nature” [111] (p. 43–53), which could have blurred the line between the SA and SP

disciplines. As there is now no impassable gulf separating the SA and SP disciplines, their disci-

plinary differences may have diminished in the common practice of lecturing in classrooms.

Another reason comes from the different cultivation models of “soft disciplines” and “hard

disciplines” for sample students. In their high school, sample students are generally divided

into liberal art students and science students and are then trained in different environments of

knowledge impartation. The two-year unrelenting and intensive training makes it possible for

liberal art students to develop a similar thinking and cognitive pattern that is persistent. After

the college entrance examination, most liberal art students select SA or SP majors. However, a

year or more of study in university does not exert strong effects on their learning styles, which

explains why a multitude of researchers have traditionally investigated the SA and SP disci-

plines together, calling them simply “social science” or “soft disciplines” compared with “natu-

ral science” or “hard disciplines”. There have been numerous contributions pointing out

similarities in the learning styles of students from “soft disciplines” [37, 112–114]. However,

students majoring in natural science exhibit considerable differences in learning styles, dem-

onstrating that the talent cultivation model of “hard disciplines” in universities is to some

extent more influential on students’ learning styles than that of the “soft disciplines”. Further

compelling interpretations of this phenomenon await only the development of a sufficient

level of accumulated knowledge among scholars in this area.
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In general, these results are consistent with those reported in many previous studies

based on the Felder-Silverman model. These studies tested the precision of different

computational approaches in identifying and differentiating the learning styles of students.

For example, by means of a Bayesian network (BN), an investigation obtained an overall

precision of 58.00% in the active/reflective dimension, 77.00% in the sensing/intuitive

dimension and 63.00% in the sequential/global dimension (the visual/verbal dimension was

not considered) [81]. With the help of the keyword attributes of learning objects selected by

students, a precision of 70.00% in the active/reflective dimension, 73.30% in the sensing/

intuitive dimension, 73.30% in the sequential/global dimension and 53.30% in the visual/

verbal dimension was obtained [115].

These results add to a growing body of evidence expanding the scope of the application of

the SVM algorithm. Currently, the applications of the SVM algorithm still reside largely in

engineering or other hard disciplines despite some tentative trials in the humanities and social

sciences [26]. In addition, as cross-disciplines increase in current higher education, it is essen-

tial to match the tailored learning styles of students and researchers studying interdisciplinary

subjects, such as the HA, HP, SA and SP disciplines. Therefore, the current study is the first to

incorporate such a machine learning algorithm into interdisciplinary blended learning and

has broader relevance to further learning style-related theoretical or empirical investigations.

Verification of the features included in the optimal feature sets

Features included in the optimal feature sets provided mixed findings compared with previous

studies. Some of the 20 identified features are verified and consistent with previous studies. A

close examination of the individual questions included in the feature sets can offer some useful

insights into the underlying psychological processes. For example, in six of the eight models

constructed, Question 1 (“I understand something better after I try it out/think it through”)

appears as the feature with the number 1 ranking, highlighting the great importance attached

to this question. This question mainly reflects the dichotomy between experimentation and

introspection. A possible revelation is that students across disciplines dramatically differ in

how they process tasks, with the possible exception of the SA-SP disciplines. This difference

has been supported by many previous studies. For example, it was found that technical stu-

dents tended to be more tactile than those in the social sciences [116], and engineering stu-

dents (known as HA in this study) were more inclined toward concrete and pragmatic

learning styles [117]. Similarly, it was explored that engineering students prefer “a logical

learning style over visual, verbal, aural, physical or solitary learning styles” [37] (p. 122), while

social sciences (known as SA in this study) students prefer a social learning style to a logical

learning style. Although these studies differ in their focus to a certain degree, they provide an

approximate idea of the potential differences among students in their relative disciplines. In

general, students in the applied disciplines show a tendency to experiment with tasks, while

those in the pure disciplines are more inclined towards introspective practices, such as an

obsession with theories. For instance, in Biglan’s taxonomy of academic disciplines, students

in HP disciplines prefer abstract rules and theories, while students in SA disciplines favor

application [67]. Additionally, Question 10 (“I find it easier to learn facts/to learn concepts”) is

similar to Question 1, as both questions indicate a certain level of abstraction or concreteness.

The difference between facts and concepts is closely related to the classification difference

between declarative knowledge and procedural knowledge in cognitive psychology [35, 38].

Declarative knowledge is static and similar to facts, while procedural knowledge is more

dynamic and primarily concerned with operational steps. Students’ preferences for facts or

concepts closely correspond to this psychological distinction.
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In addition, Questions 2, 4, 7, and 9 also occur frequently in the 20 features selected for the

different models. Question 2 (“I would rather be considered realistic/innovative”) concerns

taking chances. This question reflects a difference in perspective, i.e., whether the focus should

be on obtaining pragmatic results or seeking original solutions. This difference cannot be eas-

ily connected to the disciplinary factor. Instead, there are numerous factors, e.g., genetic, social

and psychological factors, that may play a strong role in defining this trait. The academic disci-

pline only serves to strengthen or diminish this difference. For instance, decades of research in

psychology have shown that males are more inclined towards risk taking than females [118–

121]. A careful examination of the current academic landscape reveals a gender difference;

more females choose soft disciplines than males, and more males choose hard disciplines than

females. This situation builds a disciplinary wall classifying students into specific categories,

potentially strengthening the disciplinary effect. For example, Question 9 (“In a study group

working on difficult material, I am more likely to jump in and contribute ideas/sit back and lis-

ten”) emphasizes the distinction between active participation and introspective thinking,

reflecting an underlying psychological propensity in blended learning. Within this context, the

significance of this question could also be explained by the psychological evaluation of “loss

and gain”, as students’ different learning styles are associated with expected reward values and

their internal motivational drives, which are determined by their personality traits [122].

When faced with the risk of “losing face”, whether students will express their ideas in front of a

group of people depends largely on their risk and stress management capabilities and the pres-

ence of an appropriate motivation system.

The other two questions also convey similar messages regarding personality differences.

Question 4 concerns how individuals perceive the world, while Question 7 concerns the pre-

ferred modality of information processing. Evidence of disciplinary differences in these

respects was also reported [35, 123–125]. The other questions, such as Questions 21, 27, and

39, show different aspects of potential personality differences and are mostly consistent with

the previous discussion. This might also be a vivid reflection of the multi-faceted effects of

blended learning, which may differ in their consonance with the features of each discipline.

First, teachers from different domains use technology in different ways, and student from dif-

ferent disciplines may view blended learning differently. For instance, the characteristics of

soft-applied fields entail specialized customization in blended courses, further broadening the

gulf between different subjects [126]. Second, although blended learning is generally recog-

nized as a stimulus to students’ innovation [127], some students who are used to an instructi-

vist approach in which the educator acts as a ‘sage on the stage’ will find it difficult to adapt to

a social constructivist approach in which the educator serves as a ‘guide on the side’ [128].

This difficulty might not only negatively affect students’ academic performance but also

latently magnify the effects of different academic disciplines.

Interpretation of the collective impact of optimal feature sets

In each SVM model based on a two-discipline model, the 20 key features (collectively known

as an optimal feature set) selected exert a concerted effect on students’ learning styles across

different disciplines (see Table 2). A broad examination of the distribution of collective impact

of each feature set with 20 features in the eight discipline models suggests that it is especially

imperative considering the emerging cross-disciplines in academia. Current higher education

often involves courses with crossed disciplines and students with diverse disciplinary back-

grounds. In addition, with the rise of technology-enhanced learning, the design of personal-

ized tutoring systems requires more nuanced information related to student attributes to

provide greater adaptability [59]. By identifying these optimal feature sets, such information
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becomes accessible. Therefore, understanding such interdisciplinary factors and designing tai-

lor-made instructions are essential for promoting learning success [9]. For example, in an

English language classroom in which the students are a blend of HP and SP disciplines,

instructors might consider integrating a guiding framework at the beginning of the course and

stepwise guidelines during the process such that the needs of both groups are met. With the

knowledge that visual style is dominant across disciplines, instructors might include more

graphic presentations (e.g., Question 11) in language classrooms rather than continue to use

slides or boards filled with words. Furthermore, to achieve effective communication with stu-

dents and deliver effective teaching, instructors may target these students’ combined learning

styles. While some methods are already practiced in real life, this study acts as a further

reminder of the rationale underlying these practices and thus increases the confidence of both

learners and teachers regarding these practices. Therefore, the practical implications of this

study mainly concern classroom teachers and educational researchers, who may draw some

inspiration for interdisciplinary curriculum design and the tailored application of learning

styles to the instructional process.

Conclusions

This study investigated learning style differences among students with diverse disciplinary

backgrounds in a blended English language course based on the Felder-Silverman model. By

introducing a novel machine learning algorithm, namely, SVM, for the data analysis, the fol-

lowing conclusions can be reached. First, the multiple performance indicators used in this

study confirm that it is feasible to apply learning styles to differentiate various disciplines in

students’ blended learning processes. These disciplinary differences impact how students

engage in their blended learning activities and affect students’ ultimate blended learning suc-

cess. Second, some questions in the ILS questionnaire carry more substantive information

about students’ learning styles than other questions, and certain underlying psychological pro-

cesses can be derived. These psychological processes reflect students’ discipline-specific episte-

mologies and represent the possible interaction between the disciplinary background and

learning style. In addition, the introduction of SVM in this study can provide inspiration for

future studies of a similar type along with the theoretical significance of the above findings.

Despite the notable findings of this study, it is subject to some limitations that may be per-

fected in further research. First, the current analysis examined the learning styles without

allowing for the effects of other personal or contextual factors. The educational productivity

model proposed by Walberg underlines the significance of the collected influence of contextual

factors on individuals’ learning [129]. For example, teachers from different backgrounds and

academic disciplines are inclined to select various teaching methods and to create divergent

learning environments [130], which should also be investigated thoroughly. The next step is

therefore to take into account the effects of educational background, experience, personality

and learning experience to gain a more comprehensive understanding of students’ learning

process in the blended setting.

In conclusion, the findings of this research validate previous findings and offer new per-

spectives on students’ learning styles in a blended learning environment, which provides

future implications for educational researchers, policy makers and educational practitioners

(i.e., teachers and students). For educational researchers, this study not only highlights the

merits of using machine learning algorithms to explore students’ learning styles but also pro-

vides valuable information on the delicate interactions between blended learning, academic

disciplines and learning styles. For policy makers, this analysis provides evidence for a more

inclusive but personalized educational policy. For instance, in addition to learning styles, the
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linkage among students’ education in different phases should be considered. For educational

practitioners, this study plays a positive role in promoting student-centered and tailor-made

teaching. The findings of this study can help learners of different disciplines develop a more

profound understanding of their blended learning tendencies and assist teachers in determin-

ing how to bring students’ learning styles into full play pedagogically, especially in interdisci-

plinary courses [131–134].
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