
RESEARCH ARTICLE

The influence on oxidative stress markers,

inflammatory factors and intestinal injury-

related molecules in Wahui pigeon induced by

lipopolysaccharide

Fei Wang1, Jin Liu1, Xiaofen Hu1, Youbao Zhong2, Feng Wen3, Xiaoen Tang4,

Shanshan Yang1, Shengwei Zhong1, Zuohong Zhou1, Xu Yuan1, Yong LiID
1*

1 College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi,

China, 2 Technology Center of Experimental Animals, Jiangxi University of Traditional Chinese Medicine,

Nanchang, 330004, Jiangxi, China, 3 College of Life Science and Engineering, Foshan University, Foshan,

528231, Guangdong, China, 4 Fuzhou Husbandry Breeding Farm, Linchuan, 344000, Jiangxi, China

* liyong2912@163.com

Abstract

Introduction

The intestinal structure is the foundation for various activities and functions in poultry. An

important question concerns the changes in the intestinal status under endotoxin stimula-

tion. This study aimed to investigate the mechanism of intestinal injury induced by lipopoly-

saccharide (LPS) in Wahui pigeons.

Methods

Thirty-six 28-day-old healthy Wahui pigeons were randomly divided into two groups. The

experimental group was injected with LPS (100 μg/kg) once per day for five days, and the

control group was treated with the same amount of sterile saline. Blood and the ileum were

collected from pigeons on the first, third, and fifth days of the experiment and used for oxida-

tive stress assessment, inflammatory factor detection, histopathological examination, and

positive cell localization. In addition, intestinal injury indices and mRNA expression levels

(tight junction proteins, inflammatory cytokines, and factors related to autophagy and apo-

ptosis) were evaluated.

Results

Villi in the ileum were shorter in the LPS group than in the control group, and D-lactic acid

levels in the serum were significantly increased. Glutathione and catalase levels significantly

decreased, but the malondialdehyde content in the serum increased. TNF-α and IL-10 were

detected at higher levels in the serum, with stronger positive signals and higher mRNA

expression levels, in the LPS group than in the control group. In addition, the levels of TLR4,

MyD88, NF-κB, and HMGB1 in the inflammatory signaling pathway were also upregulated.
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Finally, the mRNA expression of Claudin3, Occludin, and ZO-1 was significantly decreased;

however, that of Beclin1 and Atg5 was increased in the LPS group.

Conclusion

Ileal pathological changes and oxidative stress were caused by LPS challenge; it is pro-

posed that this triggering regulates the inflammatory response, causing excessive autop-

hagy and apoptosis, promoting intestinal permeability, and leading to intestinal injury in

Wahui pigeons.

1. Introduction

It is well known that poultry meat is very popular owing to its competitive price, lack of reli-

gious and geographical restrictions, and high nutritional value [1]. Pigeon meat contains a

high protein and low fat content, and its digestion and absorption rate can reach more than

91%. However, in pigeons bred for meat, salmonellosis frequently occurs. This disease can

lead to fever, dysentery, arthritis, neurological symptoms, or acute septicemia in later stages,

with high mortality in squabs. LPS, which is a known endotoxin, is a key molecule in the outer

membrane of gram-negative bacteria, and is considered a main pathogenic factor [2]. During

endotoxemic shock, immune cells release several mediators and cytokines that lead to hypo-

tension, fever and tissue injury [3]. Stimulation with LPS has extensively been employed in

many endotoxic models for the understanding of underlying complex molecular mechanisms

of endotoxin-mediated acute intestine tissue damage [4–7].

LPS can cause oxidative stress by promoting the formation of reactive oxygen species (ROS)

in several cell types [4,8], indicating that oxidative stress plays an important role in the patho-

genesis of LPS. Oxidative stress induced by ROS is closely related to inflammatory responses

[9]. High LPS exposure can increase the production of ROS and take a regulatory role in inflam-

mation, leading to peripheral inflammation in many models [10]. Excessive ROS can cause oxi-

dative stress, autophagy, and apoptosis in hepatocytes [11,12]. In addition, LPS can promote

epithelial cell apoptosis and proliferation and induce proinflammatory processes that cause

inflammatory responses through the nuclear factor-κB (NF-κB) signaling pathway [13].

Inflammation is a protective reaction to infections and tissue damage that is triggered by

innate immunocytes responding to external stimuli [14]. Immune cells can initiate signaling

cascades that activate crucial transcription factors, including NF-κB, mitogen-activated pro-

tein kinases (MAPKs), and activator protein 1, which in turn regulate inflammation-specific

genes [15,16]. The interaction between LPS and Toll-like receptor 4 (TLR4) leads to the forma-

tion of an LPS signaling complex consisting of surface molecules, including myeloid differenti-

ation primary response gene 88 (MyD88), toll-interleukin-1 receptor domain-containing

adapter inducing interferon β, and TNF-α receptor association factor 6, and the activation of

transcription factors, which then induce the activation of the inflammatory response [17].

The intestinal barrier is considered to be a selective barrier against exogenous noxious anti-

gens and pathogens [18]. Disruption of the intestinal barrier promotes the transit of luminal anti-

gens to the subepithelial tissues, inducing mucosal and systemic inflammatory responses, which

is the major pathogenesis in intestinal disease [19]. Multiple factors, including inflammation and

oxidative stress, can cause intestinal barrier damage [18–21]. Evidence has demonstrated that

LPS stimulates intestinal immune cells to rapidly produce proinflammatory cytokines, which

leads to structural and functional injury in the intestine [22]. Furthermore, exposure to
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intraperitoneal LPS at low doses to laboratory animals can selectively increase intestinal perme-

ability by tight junction modulation and cause a pro-inflammatory state in the intestine [23].

The mucosal immune system is well known as an important part of the entire immune network

in poultry. As an independent immune system, it plays critical roles with unique structure-func-

tion features in fighting against infections [24]. Intestinal mucosa is not only the crucial site for

food digestion and nutrient absorption but also an immune structure, where the largest number

of immune cells collectively presents to form a strict defense system [25]. Therefore, normal

intestinal structure plays a key role for its immunity. The current study explored the dynamic

changes in the intestinal microstructure, degree of oxidative stress, expression of inflammatory

factors, and activity of autophagy, apoptosis in Wahui pigeons induced by Salmonella LPS. The

objective was to clarify the pathogenic mechanism of intestinal injury in pigeons with LPS treat-

ment and to provide theoretical evidence for intestinal immunity.

2. Materials and methods

Experimental animals

In this experiment, thirty-six 28-day-old healthy Wahui pigeons (body weight: 0.47 ± 0.05 kg)

were purchased from Pigeon Farm (Nanchang, Jiangxi, China) and had ad libitum access to

feed and water. After two days of pre-feeding to alleviate any stress response, the pigeons were

randomly divided into two groups. The LPS group was injected intraperitoneally with LPS

(L6511; Sigma-Aldrich, St. Louis, MO, USA) at 100 μg/kg body weight every day, and the con-

trol group was injected with the same volume of saline. On the first, third, and fifth days of the

experiment, six pigeons were randomly selected from each group for blood collection (5 mL)

after a anaesthetization by CO2 inhalation. Subsequently, we dissected the abdominal cavity

and instantly harvested the ileum samples. Parts of the ileum was fixed in Bouin’s solution and

4% paraformaldehyde for 24–72 h, and the remaining portion was quickly placed in liquid

nitrogen and then stored in a freezer at -80˚C. All procedures in this experiment were

approved by the Institutional Animal Care and Use Committee of Jiangxi Agricultural Univer-

sity (approval number: JXAULL-2020-35).

Detection of biochemical and antioxidant indices in the serum

The main compounds of interest in the serum were superoxide dismutase (SOD), catalase

(CAT), glutathione (GSH), and malondialdehyde (MDA), which were evaluated by using a

spectrophotometric method according to the corresponding diagnostic kits (Nanjing Jian-

cheng Bioengineering Institute Inc., Nanjing, Jiangsu, China). The content of D-lactic acid

(D-LA) in the serum was measured using enzyme-linked immunosorbent assay (ELISA). The

method was carried out according to the instructions for the serum ELISA kit (Nanjing Jian-

cheng Bioengineering Institute Inc.).

Detection of inflammatory factors in the serum

HMGB1, TNF-α, and IL-10 concentrations in the serum were measured by ELISA according

to the corresponding kit instructions (Nanjing Jiancheng Bioengineering Institute Inc.). The

concentrations of HMGB1, TNF-α, and IL-10 were calculated according to a standard curve

and are expressed as ng/L.

Hematoxylin-eosin (HE) staining

Fixed tissues were rinsed with running water for 5–10 h and then dehydrated in 70%, 80%,

90%, 95%, and anhydrous ethanol using a LEICA ASP200S automatic dehydrator (LEICA
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Camera AG, Wetzlar, Germany). Samples were then rinsed in xylene three times and dipped

in paraffin for 3–4 h. Then, 4-μm-thick sections were made with a LEICA semiautomatic

microtome (LEICA Camera AG). Half of the sections were processed by HE staining, and the

other half was used for immunohistochemical staining, as previously described [26]. The tissue

sections were sequentially subjected to two rinses in xylene and two rinses in anhydrous etha-

nol, 95%, 90%, 80%, and 70% ethanol and then stained in a 1% hematoxylin solution for 1

min. Subsequently, the sections were rapidly processed through a color separation solution

and blue-black fluid and dyed in an eosin solution for 30–45 s. Finally, the sections were dehy-

drated in 70%, 80%, 90%, 95%, and anhydrous ethanol; rinsed twice in xylene; and then

mounted with neutral balsam and cover slips. The intestinal microstructure was observed and

imaged using an Olympus BX53 microscope (Olympus, Japan), and ten villus heights (VH)

and ten crypt depths (CD) were measured in each visual field. Ten visual fields were evaluated

in each section at random, and the ratio of villus height/crypt depth (VH/CD) was calculated.

Immunohistochemical staining

Immunohistochemistry was performed as previously described [27]. After deparaffinization,

an endogenous peroxidase blocking solution was added to tissue sections, which were then

incubated at 37˚C for 15 min. Antigen retrieval was performed at 98˚C for 12 min, and then

the sections were incubated with goat serum at 37˚C for 20 min. Rabbit anti-TNF-α (1:600)

and mouse anti-IL-10 (1:250) polyclonal antibodies were added dropwise to the sections and

incubated at 4˚C overnight. After the primary antibody was ligated, the sections were incu-

bated with biotinylated goat anti-rabbit and goat anti-mouse secondary antibodies at 37˚C for

30 min, combined with peroxidase-labeled streptavidin at room temperature for 10 min, and

then visualized using a DAB coloring agent for 1–5 min. The sections were counterstained in a

hematoxylin solution for 2 min, processed in 1 mL/L hydrochloric acid alcohol differentiation

and blue-black fluid, and rinsed with distilled water. Finally, the sections were dehydrated,

cleared and mounted with neutral balsam and cover slips. The primary antibody was replaced

with a 0.01 mol/L PBS solution in the control group, but the remaining steps were performed

as described above. All sections were observed and imaged using an Olympus BX53 micro-

scope (Olympus, Japan), and six fields of vision were chosen according to different regions of

each ileum section. Image-Pro Plus (IPP) 6.0 software (Media Cybernetics, USA) was used to

calculate the integral optical density (IOD) for positive staining and the graphs were prepared

by Prism software version 8.0 (GraphPad Software, Inc., San Diego, USA). The average optical

density (AOD = IOD/area) was calculated.

RNA extraction and cDNA synthesis

RNA was extracted from the ileum using a TRIzol extraction method. Briefly, frozen speci-

mens were powdered in liquid nitrogen and homogenized in RNAiso Plus (TAKARA Bio Inc.,

Shiga, Japan); then, 500 mL of sample was transferred to a tube. Chloroform (200 μL) was

added to each tube, and the tubes were violently shaken for 15 s and centrifuged at 4˚C and

12000 rpm for 15 min. Each sample was divided into three layers: the yellow organic phase,

middle layer, and upper colorless water phase. The upper water phase was transferred to a new

1.5-mL tube, and then 500 μL of isopropanol was added to this tube and mixed gently. The

mixture was kept at room temperature for 10 min and then centrifuged at 4˚C and 12000 rpm

for 10 min. After the supernatant was discarded, the isolated total RNA was washed with 1 mL

of 95% ethanol prepared with RNase-free double-distilled water. Then, 30 μL of diethylpyro-

carbonate water (TAKARA Bio Inc.) was added to fully dissolve the precipitate, which was

then placed in a freezer at -80˚C (Thermo Fisher Scientific, Waltham, MA, USA). RNA
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concentration and optical density values were detected using an ultraviolet spectrophotometer

(Beckman Coulter Inc., Brea, CA, USA). First-strand cDNA was synthesized using the Easy-

Script One-Step gDNA Removal and cDNA Synthesis SuperMix Kit (TransGen Biotech Co.,

Ltd., Beijing, China) and then placed in a freezer at -20˚C.

Quantitative real-time PCR detection

The mRNA expression of related genes in the ileum was detected by real-time fluorescence

quantitative PCR. The cDNA generated from each tissue sample was used as a template, and

the GAPDH gene was used as an internal reference. The reaction system had a total volume of

20 μL and consisted of the following components: 10 μL of 2 × qPCR Mix, 0.4 μL of 10 μmol/L

upstream and downstream primers (S1 Table), 2 μL of cDNA, and 7.2 μL of nuclease-free

water. The PCR conditions were as follows: predenaturation of the template at 94˚C for 30 s

and a total of 42 cycles of 94˚C for 5 s and 62˚C for 30 s for template amplification, with a final

slow increase in temperature by 0.5˚C every 10 s from 55˚C to 95˚C. Results were calculated

using the 2-44Ct method.

Statistical analysis

One-way analysis of variance was performed to compare differences between the control and

LPS groups using SPSS 17.0 software (Chicago, IL, USA), and differences were considered sig-

nificant if p< 0.05 (�p < 0.05, ��p< 0.01). All data are presented as the mean ± standard devi-

ation. Graph Prism 8.0 software (GraphPad, San Diego, CA, USA) was used to generate the

corresponding graphs.

3. Results

Effects of LPS on antioxidant indices

Oxidative stress is a critical factor involved in the barrier disruption in intestinal diseases [28].

It can destroy essential cellular molecules, such as lipids, proteins, and DNA, resulting in a

series of diseases, including intestinal barrier injury [20]. Therefore, several antioxidant indices

were tested for evaluating oxidative stress. Compared with those in the control group, the

activity of catalase (CAT) and content of glutathione (GSH) in the LPS group were signifi-

cantly decreased in the serum on the first, third, and fifth days, while the malondialdehyde

(MDA) content was increased on the first and third days (Fig 1A, 1B and 1D). Superoxide dis-

mutase (SOD) showed lower activity in the serum of LPS-treated Wahui pigeons than in that

of saline-treated Wahui pigeons (Fig 1C).

Effects of LPS on inflammatory factors

According to enzyme-linked immunosorbent assay (ELISA) results (Fig 2), the concentrations

of TNF-α and IL-10 were significantly greater in LPS-treated pigeons than in saline-treated

pigeons on day 1 (p< 0.01), while the concentration of HMGB1 showed no significant differ-

ence between the two groups (p> 0.05). The TNF-α, HMGB1, and IL-10 concentrations were

extremely significantly greater in LPS-treated Wahui pigeons than in saline-treated pigeons on

days 3 and 5 (p< 0.01).

Effects of LPS on intestinal function and morphology

D-LA is a chemical marker that is usually present at low levels in the circulatory system of

healthy individuals; these levels increase significantly with the destruction of the intestinal bar-

rier [29]. After LPS stimulation, on the first, third, and fifth days, D-LA levels were
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significantly higher in the LPS-treated pigeons than in the saline-treated pigeons evaluated on

the same date (p< 0.01 for all three days; Fig 3).

Compared with pigeons of the same age injected with saline, pigeons treated with LPS

showed significant shortening of the ileal villi, deeper crypts (p< 0.05, S2 Table and Fig 4),

and a significantly decreased ratio of villus height/crypt depth (VH/CD) (p < 0.01, S2 Table

and Fig 4).

Localization of TNF-α and IL-10 in the intestine

Positive immunohistochemical staining for TNF-α and IL-10 were predominantly detected in

the cytoplasm, as indicated by brown staining. TNF-α and IL-10 were diffusely distributed in

the villi, crypt, muscularis mucosa, muscular layer, and serosa and were predominant in the

muscularis mucosa, muscular layer, and serosa. Significantly more positive areas of TNF-α
and IL-10 staining were found in the intestine of LPS-treated Wahui pigeons than in that of

Fig 1. Antioxidant indices of Wahui pigeons treated with LPS or saline. The antioxidant indices of Wahui pigeons

were detected in both groups on the first, third, and fifth days. Data represent the mean ± standard deviation (n = 6 in

each group); �p< 0.05, ��p< 0.01. Abbreviations: CAT—catalase; GSH—glutathione; SOD—superoxide dismutase;

MDA—malondialdehyde.

https://doi.org/10.1371/journal.pone.0251462.g001

Fig 2. TNF-α, HMGB1, and IL-10 concentrations detected in the serum by ELISA on the first, third and fifth

days. Data represent the mean ± standard deviation (n = 6 in each group); �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0251462.g002
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saline-treated Wahui pigeons (Figs 5 and 6). The average optical density (AOD) was signifi-

cantly different between the two groups on different days. The AOD of the TNF-α-positive

cells was significantly higher in the LPS-treated Wahui pigeons than in the saline-treated

pigeons on days 1, 3, and 5 (p< 0.01 for all three days; Fig 5D). The AOD of the IL-10-positive

cells was higher in the LPS-treated Wahui pigeons than in the saline-treated pigeons on days 1,

3 and 5 (p< 0.01, p< 0.05, and p < 0.01, respectively; Fig 6D).

Occludin, Claudin3, and ZO-1 gene assays at intestinal tight junctions

As essential cell-cell junction for forming intestinal barrier, tight junction takes a role in struc-

tural strength and stability of intestine, the levels of gene expression, including Occludin, Clau-

din3, and ZO-1 related to tight junction, were detected. Compared to those in the control

group, the expression levels of Occludin, Claudin3, and ZO-1 in the LPS group were signifi-

cantly decreased on days 1, 3, and 5 (Fig 7). In addition, the expression levels of Occludin and

Claudin3 in the LPS group showed a downward trend during the experiment (Fig 7A and 7B).

Fig 3. Detection of D-LA content in serum of Wahui pigeons. Data represent the mean ± standard deviation (n = 6 in each group); �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0251462.g003
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Expression changes of key genes in multiple signaling pathways induced by

LPS

In the autophagic signaling pathway, both factors showed similar results. Atg5 expression in

the LPS group was significantly higher than that in the control group on days 1, 3, and 5

(p< 0.01, p< 0.05, p< 0.01, respectively; Fig 8B), and Beclin1 expression was also signifi-

cantly higher in the LPS group than in the control group on days 3 and 5 (p< 0.01 and

p< 0.05, respectively), but the difference was not significant on day 1 (Fig 8A).

In the apoptotic signaling pathway, the expression level of Caspase-3 was significantly

lower in the LPS group than in the control group on day 1 (p< 0.05); however, the expression

levels of Caspase-3 and Bcl-2 were significantly increased on day 3 (p< 0.01 and p< 0.01,

respectively) and were also elevated on day 5 (p> 0.05, Fig 8C and 8D).

In the inflammatory signaling pathway, TLR4 was expressed at a significantly lower level in

the LPS group than in the control group (p< 0.05), while NF-κB expression was significantly

higher on day 1 (p < 0.01). The expression of TLR4, MyD88, and NF-κB in the LPS-treated

Wahui pigeons was significantly higher than that in the saline-treated pigeons on day 3

(p< 0.01, p< 0.01, and p< 0.05, respectively), but there were no significant differences

between the two groups on day 5 (p> 0.05, Fig 8E–8G). On day 1, the TNF-α and IL-10 levels

in the LPS group were significantly higher than those in the control group (p< 0.05 and

p< 0.01, respectively). On day 3, the TNF-α and HMGB1 levels in the LPS group were signifi-

cantly higher than those in the control group (p< 0.01 and p< 0.05, respectively). On day 5,

the expression levels of HMGB1 and IL-10 in the LPS-treated pigeons were higher than those

in the saline-treated pigeons (p< 0.05 and p < 0.05, respectively; Fig 8H–8J).

Fig 4. The intestinal microstructure of Wahui pigeons after LPS or saline treatment (100×). A, B, and C show the

ileum of saline-treated Wahui pigeons on days 1, 3, and 5, respectively; a, b, and c show the ileum of LPS-treated

Wahui pigeons on days 1, 3, and 5, respectively.

https://doi.org/10.1371/journal.pone.0251462.g004
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4. Discussion

The integrity of the intestine plays an essential role in nutrient absorption, gut homeostasis,

and animal growth and health [18,19,28]. VH, CD, and the VH/CD ratio are common indices

Fig 5. Detection of TNF-α in the ileum of LPS- and saline-treated Wahui pigeons. The black arrows indicate TNF-

α-positive cells (400×). A, B, and C show the ileum of saline-treated Wahui pigeons on days 1, 3, and 5, respectively; a,

b, and c show the ileum of LPS-treated Wahui pigeons on days 1, 3, 5, respectively. D: The average optical density

(AOD) of TNF-α. Data represent the mean ± standard deviation (n = 6 in each group), and six visual fields were

evaluated in each section; �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0251462.g005
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for evaluating intestinal morphology [18]. The reason these indices are used is related to the

fact that an increased VH and elevated VH/CD are directly correlated with increased epithelial

turnover [30], and longer villi are linked with the activation of cell mitosis, while shortening of

Fig 6. Detection of IL-10 in the ileum of LPS- and saline-treated Wahui pigeons. The black arrows indicate IL-

10-positive cells (400×). A, B, and C show the ileum of saline-treated Wahui pigeons on days 1, 3, and 5, respectively; a,

b, and c show the ileum of LPS-treated Wahui pigeons on days 1, 3, and 5, respectively. D: The average optical density

(AOD) of IL-10. Data represent the mean ± standard deviation (n = 6 in each group), and six visual fields were

evaluated in each section; �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0251462.g006
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villi and deeper crypts lead to poor nutrient absorption [31], increased secretion in the gastro-

intestinal tract, and reduced performance [32]. A change in the integrity of the intestinal bar-

rier induced by LPS can be detected by monitoring morphological changes in the intact

intestinal villi and detecting chemical markers. Morphological changes in the intact intestinal

villi are an indication of intestinal barrier injury, including LPS-induced injury [33,34]. D-LA

is produced by intestinal microorganisms in vivo. When the intestinal mucosa is damaged and

its permeability increases, D-LA will enter the blood, resulting in an increase in the serum

D-LA level. The content of serum D-LA therefore reflects the health of the intestinal tract [35].

The present study demonstrated acute intestinal damage, with broken intestinal villi, a short-

ened VH, and an increased CD in the ileum, accompanied by higher D-LA levels in the serum.

It has been indicated that tight junctions between intestinal epithelial cells play an irreplace-

able role in the function of the intestinal barrier [36]. Tight junctions act as receptors or targets

of bacterial virulence factors during the infection of a range of viral and bacterial pathogens.

Disruption of tight junctions leads to increased epithelial permeability and facilitates the trans-

location of pathogens into the body and colonization, usually resulting in diarrhea [37].

Increased expression of tight junction proteins enhances the function of the intestinal mucosal

barrier. A series of proteins, including Claudins, Occludins, and ZOs, contribute to the forma-

tion of tight junctions. Numerous studies have reported that Occludin, Claudin3, and ZO-1

are key components of tight junction complexes and play important roles in intestinal perme-

ability [38–40]. In the current study, the mRNA expression levels of Occludin, Claudin3, and

ZO-1 were significantly decreased in the ileum of Wahui pigeons after LPS administration,

suggesting that the intestinal barrier was damaged during injury.

Dysfunction of the intestinal barrier can increase intestinal mucosal permeability, induce

the translocation of enteric pathogenic organisms, and in turn exacerbate the loss of intestinal

barrier integrity. This can lead to systemic infection, multiorgan failure, and septic shock,

which is a common pathological progression in many intestinal diseases [41]. A previous

report showed that LPS exposure could lead to oxidative stress in the intestine [42]. LPS

administration induces systemic and intestinal inflammation, accompanied by intestinal oxi-

dative stress and increased intestinal permeability [4]. ROS are not only byproducts of inflam-

matory processes but also capable of causing damage to epithelial cell integrity and are closely

linked to apoptosis in a variety of cell types [20]. Evidence from intestinal epithelial cells shows

that elevated oxidative stress can inhibit cell proliferation and induce apoptosis [20,43]. In

Fig 7. Evaluation of the intestinal tight junctions of Wahui pigeons treated with LPS or saline. The mRNA

expression of Occludin, Claudin3, and ZO-1 in the ileum was detected by RT-qPCR on the first, third, and fifth days

after LPS or saline treatment, and GAPDH was used as a reference gene. Data represent the mean ± standard deviation

(n = 6 in each group); For Wahui pigeons of the same age, �p< 0.05 and ��p< 0.01.

https://doi.org/10.1371/journal.pone.0251462.g007
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animals, there are many antioxidant enzymes and nonenzymatic antioxidants that protect the

organism from oxidative damage [44]. MDA, as a product of lipid peroxidation, is acknowl-

edged to be an index of cellular damage and excessive oxidative stress [45]. SOD converts

superoxide (O2
−) into H2O2, which is dissociated into H2O by CAT [46]. SOD levels indirectly

reflect the capacity of organisms to neutralize ROS, and MDA content reflects the severity of

the body’s exposure to free radicals [47]. In the current study, the levels of CAT and GSH were

significantly decreased, but that of MDA was increased, indicating that oxidative stress

occurred in the pigeons as a result of LPS treatment.

Oxidative stress and redox signaling can induce the release of proinflammatory factors,

and the course of “ROS-induced inflammation” has been considered a contributor in the

progression of most chronic diseases [48]. When foreign microorganisms invade, the innate

immune system is activated to regulate antigen-presenting cells and initiate acquired

Fig 8. Levels of indicators of various signaling pathways in Wahui pigeons treated with LPS or saline. The mRNA

expression levels of Beclin1, Atg5, Caspase-3, Bcl-2, TLR4, MyD88, NF-κB, TNF-α, HMGB1, and IL-10 were detected

by RT-qPCR on the first, third, and fifth days after LPS or saline treatment, and GAPDH was used as a reference gene.

Data represent the mean ± standard deviation (n = 6 in each group); For Wahui pigeons of the same age, �p< 0.05 and
��p< 0.01.

https://doi.org/10.1371/journal.pone.0251462.g008
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immunity in the body. As an innate immune pattern recognition receptor, TLR4 can specif-

ically recognize LPS from the outer membrane of gram-negative bacteria and forms the first

line of defense called innate immunity. LPS binds to TLR4/MD2 to form a complex that

selectively activates the MyD88-dependent pathway, resulting in the activation of the tran-

scription factor NF-κB [49]. NF-κB plays important roles in the regulation of cytokines,

adhesion molecules, inflammation, and oxidative stress and is also an important regulator

of the intracellular inflammatory cascade. Numerous proinflammatory signals, including

TNF-α and IFN-γ, promptly activate NF-κB to control target genes. Activated NF-κB enters

the nucleus and stimulates the expression of a variety of genes that participate in immuno-

regulation and inflammatory reactions [50]. TNF-α is not only a factor related to the sys-

temic inflammatory response but also the most important cytokine that causes an acute

inflammatory response [51]. TNF-α is secreted mainly by macrophages, which activates

macrophages to release a large number of proinflammatory factors, such as IL-1β, IL-6, and

IFN-γ, through feedback regulation. This feedback plays a central role in the regulation of

inflammation. TNF-α can also act as an endogenous pyrogen, causing fever and apoptosis

[52,53]. HMGB1 is a fatal inflammatory factor caused by sepsis. Its release occurs later than

that of inflammatory cytokines (such as IL-1β, IL-6, and TNF-α), and it is called a late risk

signal factor [54]. HMGB1 activates Aspergillus fumigatus in alveolar macrophages in

chronic obstructive pulmonary disease through the MyD88/NF-κB and syk/PI3K signal

transduction pathways, leading to inflammation [55]. It has been reported that glycyrrhizic

acid, an inhibitor of HMGB1, can mediate renal injury and inflammation in diabetic rats by

regulating the activation of the RAGE/TLR4-related ERK and p38MAPK/NF-κB signaling

pathways [56]. In addition, HMGB1 is overexpressed in thyroid cancer patient samples and

cell lines and acts as a positive regulator of autophagy [57]. The stress in piglets responding

to LPS challenge results in increased levels of proinflammatory cytokines [58,59]. In the

present study, the mRNA expression levels of TNF-α, HMGB1, and IL-10 were increased in

the ileum; the contents of TNF-α, HMGB1, and IL-10 were relatively high in the serum; and

the protein levels of TNF-α and IL-10 were relatively high in the ileum. These findings sug-

gest that LPS causes an inflammatory response could regulate by the TLR4/MyD88/NF-κB

signaling pathway in Wahui pigeons.

It has been reported that a variety of Toll-like receptor ligands, such as double-stranded

RNA and LPS, can lead to apoptosis [60–62]. As an important transcription factor, NF-κB

not only controls inflammation but also acts in apoptosis [63]. NF-κB induces a variety of

antiapoptotic factors, including inhibitors of caspase activation and activity, antiapoptotic

Bcl-2 family members, and inhibitors of Jnk activation, which can prevent TNF-α-induced

apoptosis [64]. Caspase-3 is another apoptosis-induced protein. Caspases generally play a

central role in apoptosis induction [65]. Autophagy can be induced by a variety of stimuli

and upstream signaling changes, including activation of the TLR4 signaling pathway. The

pathogen-associated molecular molecule LPS activates the TLR4 signaling pathway and

increases the level of autophagy in macrophages [66]. Another study demonstrated that

LPS-induced autophagy is a TRIF-dependent and MyD88-independent signaling pathway

[66]. Autophagy activated by TLR4 is regulated by the interaction of MyD88 and TRIF with

Beclin-1 [67]. Binding of TLR4 with ligands induces the molecular interaction of MyD88,

TRIF, and Beclin-1 but reduces the binding between Bcl-2 and Beclin-1, relieving the inhi-

bition of Beclin-1 by Bcl-2 and promoting the occurrence of autophagy [67]. An NF-κB

inhibitor, SN50, was found to inhibit NF-κB nuclear translocation and activate autophagy

[68]. The key genes of autophagy and apoptosis pathway were almost continuously

expressed at a high level after LPS challenge here, the intestinal injury probably took place

along with autophagy and apoptosis of ileal cells.
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5. Conclusion

In summary, continuous LPS challenge can induce oxidative stress, which promotes the release

of inflammatory mediators, activates local and/or systemic inflammatory responses, causes

apoptosis and autophagy, and reduces the expression of tight junction proteins, resulting in

intestinal barrier dysfunction, thus reducing intestinal immunity and eventually leading to

intestinal injury. This provides novel evidence for the pathological mechanism of intestine

induced by Salmonella LPS in pigeon.
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