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Abstract

Differential evolution (DE) is favored by scholars for its simplicity and efficiency, but its ability

to balance exploration and exploitation needs to be enhanced. In this paper, a hybrid differ-

ential evolution with gaining-sharing knowledge algorithm (GSK) and harris hawks optimiza-

tion (HHO) is proposed, abbreviated as DEGH. Its main contribution lies are as follows.

First, a hybrid mutation operator is constructed in DEGH, in which the two-phase strategy of

GSK, the classical mutation operator “rand/1” of DE and the soft besiege rule of HHO are

used and improved, forming a double-insurance mechanism for the balance between explo-

ration and exploitation. Second, a novel crossover probability self-adaption strategy is pro-

posed to strengthen the internal relation among mutation, crossover and selection of DE.

On this basis, the crossover probability and scaling factor jointly affect the evolution of each

individual, thus making the proposed algorithm can better adapt to various optimization

problems. In addition, DEGH is compared with eight state-of-the-art DE algorithms on 32

benchmark functions. Experimental results show that the proposed DEGH algorithm is sig-

nificantly superior to the compared algorithms.

1 Introduction

Whether in the field of science or engineering, problem optimization is a hot topic. Many

researchers are keen to use meta-heuristic algorithms to solve optimization problems, leading

to the emergence of various meta-heuristic algorithms, such as Evolution strategies (ES) [1],

genetic algorithm (GA) [2], differential evolution [3], particle swarm optimization (PSO) [4],

artificial bee colony (ABC) [5], gravitational search algorithm (GSA) [6], teaching–learning-

based optimization (TLBO) [7], moth-flame optimization (MFO) [8], whale optimization algo-

rithm (WOA) [9], harris hawks optimization (HHO) [10] and gaining-sharing knowledge

algorithm (GSK) [11].

Since its inception, differential evolution (DE) has become one of the most commonly used

meta-heuristic algorithms for solving optimization problems [12]. Many scholars have

improved DE and applied it in diverse fields, such as clinical medicine [13], text classification
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[14], optics [15], energy [16] and neural network [17]. Improvements studies to DE can be

divided into two broad categories: 1) Changes of DE compositions, which enhance the perfor-

mance of the original DE by improving the mutation, crossover, selection operation and

adjusting control parameters; 2) hybrid DE with other meta-heuristic algorithms to improve

performance by combing their respective advantages.

At each generation, the evolution of individuals in differential evolution mainly goes

through three stages: mutation, crossover and selection. These stages are the critical targets for

the improvements of DE components, among which the mutation operation is the most

important. Zhang and Sanderson [18] proposed the famous “DE/current−to−pbest/1” muta-

tion operator in their proposed adaptive DE algorithm (JADE), which improved the mutation

by using the first 100p% individuals and an external archive containing suboptimal individu-

als. Wang et al. [19] facilitate a self-adaptive differential evolution algorithm with improved

mutation mode (IMMSADE), which ameliorate the classic mutation operator “DE/rand/1” by

attaching a benchmark factor to the basis vector. Zheng et al. [20] proposed a collective infor-

mation-powered DE (CIPDE), a collective individual contained in the mutation operator of

which is a linear combination of m individuals with optimal fitness values. Mohamed et al.

[21] proposed two enhanced DE variants (EBDE and EDE), in which three different individu-

als were ranked to participate in mutations, the difference being that the former’s individuals

were randomly selected from the top p individuals and from the entire population, while the

latter three individuals were all randomly chosen from the population. Li et al. [22] presented

an improved differential evolution algorithm with dual mutation strategies collaboration

(DMCDE), which applied the improved DE/rand/2 and DE/best/2 based on an elite guidance

mechanism. Ghosh et al. [23] proposed a switched parameter DE, in which each individual

randomly selected binary crossover operator or BLX−α−β crossover operator. Tian et al. [24]

presented a DE with improved individual-based parameter setting and selection strategy

(IDEI), which developed a diversity selection strategy based on the newly defined weighted fit-

ness value. Cheng et al. [25] proposed an improved DE with fitness and diversity ranking-

based mutation operator (FDDE), which judged the contribution of individuals participating

in the "DE/rand/1" mutation strategy to population diversity according to their fitness values,

and rearranged the positions of the three random individuals based on the ranking informa-

tion of individual diversity and fitness values.

The control parameters of DE include population size NP, scaling factor F and crossover

probability CR, which are the other direction of improvements of DE components. Tanabe

and Fukunaga [26] proposed a success-history based parameter adaptation for DE (SHADE).

By establishing new historical storages Mcr and Mf, CR and F with good performance in the

past were preserved, and new parameter pairs were sampled from them. Shortly after that,

Tanabe and Fukunaga [27] raised an enhanced version that added a population size reduction

rule to the SHADE (LSHADE). After the end of each evolutionary process, the population size

of the next generation was reduced by a linear function. Poláková et al. [28] described a new

mechanism of population size adaption to DE, which evaluated the current population diver-

sity based on European distance and adjusted the NP size according to the evaluation results.

Meng et al. [29] put forward a DE variant with novel control parameter adaptation (PaDE),

which included a grouping strategy for adjusting F and CR and a parabolic reduction rule for

changing NP. Li et al. [30] proposed an enhanced adaptive ED algorithm (EJADE), which

introduced a crossover probability sorting mechanism and dynamic population reduction

strategy based on JADE. Wang et al. [31] proposed a self-adaptive ensemble-based DE

(SAEDE), which set the control parameters of each generation through self-adaptive and inte-

gration mechanisms, reducing the need for user setting. Xue and Chen introduced [32] an

adaptive compact DE (ACDE), in which F and CR obeyed the Cauchy distribution and
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uniform distribution respectively and were adaptively adjusted according to their respective

weighted Lehmer means.

Compared with component improvement, the study of mixing with other algorithms to

improve the performance of DE is more novel, which often integrates the advantages of DE

and different meta-heuristic algorithms. Guo et al. [33] presented an enhanced self-adaptive

DE (ESADE) that combined simulated annealing in the selection stage. By comparing ESADE

with the version without simulated annealing, the experimental results showed that ESADE

with simulated annealing had better global search capability. Jadon et al. [34] proposed a

hybrid artificial bee colony with DE (HABCDE), which applied DE to the onlooker bee stage

of the ABC algorithm for faster convergence. Mohamed et al. [35] introduced a semi-paramet-

ric adaptation method in the LSHADE hybridized with covariance matrix adaptation evolu-

tion strategy (LSHADE-SPACMA), where the crossover operation of DE was applied to the

covariance matrix adaptation evolution strategy improve the exploration capability. Zhao et al.

[36] proposed a hybrid algorithm based on self-adaptive gravitational search algorithm and

DE (SGSADE), which introduced the mutation and crossover of DE into the GSA, improved

the local search ability and prevented the rapid loss of population diversity. A hybrid algorithm

for DE and particle swarm optimization (DEPSO) was proposed by Wang et al. [37]. At each

generation of DEPSO, each individual was determined by a selection factor whether to adopt

the improved rand/1 mutation operator or the PSO mutation operator. Luo and Shi [38]

mixed a modified DE with whale optimization algorithm (MDE-WOA), which took advantage

of the modified DE strong searching ability to avoid WOA falling into local optimal and

increased population diversity. Li et al. [39] proposed a hybrid adaptive teaching–learning-

based optimization with DE (ATLDE), which embed DE into the learning stage of TLBO. The

population of a hybrid symbiotic DE moth-flame optimization algorithm (HSDE-MFO) pro-

posed by Wu et al. [40] was divided into two groups, which were used for exploration-oriented

DE strategy and exploitation-oriented MFO strategy respectively. Taking advantage of the ease

implementation of boltzmann annealing algorithm [41] and the good diversity of solutions

and effective iteration process of DE, Li et al. [42] proposed a modified boltzmann annealing

Differential Evolution algorithm (BADE). Ahmadianfar et al. [43] proposed an adaptive DE

with PSO (A-DEPSO), which utilized PSO to improve the mutation operation of DE to pro-

mote the global search ability and accelerate convergence, and introduced a crossover proba-

bility adaptation rate in the crossover operation of DE to increase the local search capability.

Although the performance of DE has been enhanced by the methods mentioned above,

some inherent problems are still worth pondering. First of all, whether it is the improvement

of DE components or hybridization of DE with other meta-heuristic algorithms, the mutation,

crossover, and selection steps of these methods are relatively independent, and the internal

connection of DE framework is not high. Secondly, for the research of hybrid improvement,

most of them are based on the combination of DE and a certain meta-heuristic algorithm. Not

only the meta-heuristic algorithm used is not novel enough, but also the balance between

exploration and exploitation is considered in a single way. Therefore, a hybrid differential evo-

lution algorithm based on gaining-sharing knowledge algorithm and harris hawks optimiza-

tion (DEGH) is proposed in this paper.

The rest of this paper is structured as follows. Section 2 covers the basics of differential evo-

lution (DE), gaining-sharing knowledge algorithm (GSK), and harris hawks optimization

(HHO). Section 3 introduces the proposed DEGH in detail. Section 4 presents a series of

experimental results and analyses. Section 5 summaries the whole paper and puts forward the

research direction in the future.
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2 Preliminaries

This section describes the basic principles of differential evolution (DE), gaining-sharing

knowledge algorithm (GSK) and harris hawks optimization (HHO).

2.1. Differential evolution

The framework structure of DE mainly includes four stages: initialization, mutation, crossover

and selection, among which the last three stages are the cyclic evolution process based on the

population.

2.1.1 Initialization. For a minimization problem minf(X), the population Pg in DE can be

defined as:

Pg ¼ fX1;g;X2;g; � � � ;XNP;gg; g ¼ 0; 1; 2; � � � ;G

Xi;g ¼ fx1
i;g; x

2
i;g; � � � ; x

D
i;gg; i ¼ 1; 2; � � � ;NP

s:t: xmin
i � xj

i � xmax
i ; j ¼ 1; 2; � � � ;D

ð1Þ

8
>><

>>:

where g and G denote the current and the maximum generation number. NP is the population

size, D represents the dimension of the problem. xmin
i and xmax

i are the upper and lower bound-

aries of the solution space, respectively. The original population P0 is determined by random

initiation in the solution space, and then the following cyclic evolution process is performed.

2.1.2 Mutation. At generation g, a mutation individual Vi;gþ1 ¼ fv1
i;gþ1

; v2
i;gþ1

; � � � ; vD
i;gþ1
g is

generated for each individual Xi,g, commonly treated as follows.

Vi;gþ1 ¼ Xr1;g þ F � ðXr2;g � Xr3;gÞ; r1 6¼ r2 6¼ r3 6¼ i ð2Þ

where Xr1,g, Xr2,g and Xr3,g are randomly selected individuals from the population Pg, r1,r2,r32
[1,2,� � �,NP]. The scaling factor F controls the amplification of the difference vector (Xr2,g−Xr3,

g).

2.1.3 Crossover. By means of binary crossover, the components are extracted from the

target individual Xi,g and the mutation individual Vi,g+1 to form the trial individual

Ui;gþ1 ¼ fu1
i;gþ1

; u2
i;gþ1

; � � � ; uD
i;gþ1
g.

uj
i;gþ1 ¼

vj
i;gþ1; randj � CR or j ¼ jrand

xj
i;g; otherwise

ð3Þ

(

where randj is a real random number in [0,1], jrand is a random integer in [1,D]. The crossover

probability CR determines the amount of replication from the mutation individual Vi,g+1.

2.1.4 Selection. After evaluating the fitness of the target individual and the trial individual,

the winner goes on to the next generation.

Xi;gþ1 ¼
Ui;gþ1; f ðUi;gþ1Þ � f ðXi;gÞ

Xi;g; otherwise
ð4Þ

(

2.2 Gaining-sharing knowledge algorithm

Gaining-sharing knowledge optimization algorithm (GSK) [11] is a nature-inspired algorithm

that mimics the process of gaining and sharing knowledge throughout the human life, includ-

ing the junior gaining-sharing phase and the senior gaining-sharing phase. In GSK, Djunior

dimensions are randomly selected from each individual to adopt the junior scheme, and the

remaining Dsenior = D−Djunior dimensions to use the senior scheme. D is the dimension of the
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problem, and Djunior is determined by the following formula.

Djunior ¼ D � 1 �
g
G

� �k
ð5Þ

where the knowledge rate k is a constant, g and G represent the current and the maximum gen-

eration number.

2.2.1 Junior gaining-sharing phase. In this phase, all individuals are arranged in ascend-

ing order according to fitness values: Xbest,g,� � �,Xi−1,g,Xi,g,Xi+1,g� � �,Xworst,g. When the Knowl-

edge ratio kr>randj (a random number in [0,1]), the jth dimension of each individual remains

unchanged. Otherwise, it is updated as follows.

xj
i;gþ1 ¼

xj
i;g þ kf � ½ðx

j
i� 1;g � xj

iþ1;gÞ þ ðxj
r;g � xj

i;gÞ�; f ðXi;gÞ > f ðXr;gÞ

xj
i;g þ kf � ½ðx

j
i� 1;g � xj

iþ1;gÞ þ ðx
j
i;g � xj

r;gÞ�; f ðXi;gÞ � f ðXr;gÞ
ð6Þ

(

where the knowledge factor kf is a real number greater than zero. xj
i;gþ1 and xj

i;g represent the

jth dimension of Xi at the current generation and the next generation, respectively. xj
i� 1;g, x

j
iþ1;g

and xj
r;g are the jth dimensional components of individuals Xi−1,g, Xi+1,g and Xr,g, respectively. f

(Xi,g) and f(Xr,g) denote the fitness values of Xi,g and Xr,g, respectively.

2.2.2 Senior gaining-sharing phase. At this stage, after sorting by fitness values, all the

individuals are divided into three groups: best people {Xpb,g}, middle people {Xm,g} and worst

people {Xpw,g}, with the number of 100p%, N−(2�100p%), 100p%, respectively. Similarly, the

jth dimension of each individual remains unchanged when kr>randj, otherwise it is updated

as follows.

xj
i;gþ1 ¼

xj
i;g þ kf � ½ðx

j
rpb;g � xj

rpw;gÞ þ ðx
j
rm;g � xj

i;gÞ�; f ðXi;gÞ > f ðXrm;gÞ

xj
i;g þ kf � ½ðx

j
rpb;g � xj

rpw;gÞ þ ðx
j
i;g � xj

rm;gÞ�; f ðXi;gÞ � f ðXrm;gÞ
ð7Þ

(

where xj
rpb;g, xj

rpw;g, x
j
rm;g represent the jth dimension of individuals Xrpb,g,Xrpw,g,Xrm,g, and indi-

viduals Xrpb,g,Xrpw,g,Xrm,g are randomly selected from groups {Xpb,g}, {Xpw,g}, {Xm,g}.

2.3 Harris hawks optimization

Harris hawks optimization (HHO) is a novel swarm-based algorithm proposed by Heidari

et al. [10], which imitates the cooperative behavior and chase pattern of Harris hawks in the

process of hunting. In HHO, there are three primary phases: exploration, transition from

exploration to exploitation, exploitation.

2.3.1 Exploration phase. At this phase, the hawks use the following two strategies to find

prey.

Xi;gþ1 ¼
Xrand;g � r1 � jXrand;g � 2 � r2 � Xi;gj; q � 0:5

ðXrabbit;g � Xmean;gÞ � r3 � ðLBþ r4 � ðUB � LBÞÞ; q < 0:5
ð8Þ

(

Xmean;g ¼
1

N

XN

i¼1
Xi;g ð9Þ

where Xmean,g and Xi,g denote the mean and current location vector of the Harris hawk at the

current generation g, Xrand,g and Xrabbit,g are positions of a randomly selected hawk and the

prey. Xi,g+1 indicates the location vector of the hawk at the next generation g+1. r1, r2, r3, r4
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and q are real random numbers in [0,1], UB and LB are the upper and lower range,

respectively.

2.3.2 Transition from exploration to exploitation. Through the rabbit’s escaping energy

E, the HHO algorithm can realize the transition from exploration to exploitation. The escaping

energy E is formulated as:

E ¼ 2 � E0 � 1 �
g
G

� �
ð10Þ

where g and G indicate the current and the maximum generation number, E0 is the initial

energy in (−1,1).

2.3.3 Exploitation phase. According to the escaping energy E and the successful escaping

chance r of the prey, diverse exploitative behaviors are adopted, such as soft besiege, hard

besiege, soft besiege with progressive rapid dives and hard besiege with progressive rapid

dives. The successful escaping chance r is a real random number in [0,1].

• Soft besiege (r�0.5 and |E|�0.5). The Harris hawks softly encircled the prey, modelled as

follows.

Xi;gþ1 ¼ DXi;g � E � jJ � Xrabbit;g � Xi;gj ð11Þ

DXi;g ¼ Xrabbit;g � Xi;g ð12Þ

where J = 2�(1−r5) indicates the random jump intensity of the prey, and r5 is a real random

number in [0,1].

• Hard besiege (r�0.5 and |E|�0.5). The Harris hawks hardly encircled the prey, and their

positions are updated as follows:

Xi;gþ1 ¼ Xrabbit;g � E � jDXi;gj ð13Þ

where ΔXi,g is the difference between positions of the rabbit and the current hawk, which can

be seen in Eq (12).

• Soft besiege with progressive rapid dives (r<0.5 and |E|�0.5). The prey still has enough

energy to escape, and the Harris hawks respond as follows.

Y ¼ Xrabbit;g � E � jJ � Xrabbit;g � Xi;gj ð14Þ

Z ¼ Y þ S � LFðDÞ ð15Þ

Xi;gþ1 ¼
Y; if f ðYÞ < f ðXi;gÞ

Z; if f ðZÞ < f ðXi;gÞ
ð16Þ

(

where f(Y) and f(Z) represent the fitness values of Y and Z, respectively. D denotes the dimen-

sion of the problem, LF(D) is the Levy fight that can be obtained through the following
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formula.

LF Dð Þ ¼ 0:01 �
u � s
jvj1=b

; s ¼
Gð1þ bÞ � sinðpb=2Þ

Gð1þ b=2Þ � b � 2ðb� 1=2Þ

� �1=b

ð17Þ

where u and v are random numbers in [0,1], β is a constant value of 1.5.

• Hard besiege with progressive rapid dives (r<0.5 and |E|�0.5). In contrast to the previous

behavior, the rabbit’s escaping energy is insufficient, and the behavior of the Harris hawks

are modelled as follows.

Y ¼ Xrabbit;g � E � jJ � Xrabbit;g � Xmean;gj ð18Þ

Z ¼ Y þ S � LFðDÞ ð19Þ

Xi;gþ1 ¼
Y; if f ðYÞ < f ðXi;gÞ

Z; if f ðZÞ < f ðXi;gÞ
ð20Þ

(

where Xmean,g is the average position calculated by Eq (9).

3 The proposed algorithm

This section is a detailed introduction to the proposed algorithm, including its motivation,

hybrid mutation operator and Crossover probability self-adaption.

3.1 Motivations

According to the above introduction, changes based on DE components and hybridization

with other meta-heuristic algorithms can improve the performance of DE. As for GSK algo-

rithm, its two-stage model has been able to balance exploration and exploitation effectively

[11]. On this basis, a mutation strategy “DE/rand/1” with global exploration ability and HHO’s

Soft Obsessed strategy with exploitation ability are considered. By applying these four strate-

gies to mutation operation, a balanced double insurance mechanism for exploration and

exploitation is formed.

Besides, for most DE variants, the operations of mutation, crossover and selection are rela-

tively independent. In DEGH, these operations are linked together by the control parameters

F, CR and a binary variable h that records the historical evolution state, making the connection

within the whole DE framework even tighter.

3.2 Hybrid mutation operator

In order to achieve a better balance between exploration and exploitation, DEGH adopts a

dual insurance mechanism in the mutation operation, which contains four mutation strategies.

First, the strategy of GSK in the junior phase (Eq (6) and senor phase (Eq 7) in GSK are intro-

duced and streamlined, which help maintain a sufficient balance between global exploration

and local exploitation capabilities in the search process [44]. The two strategies are as abbrevi-

ated as GSK/J-mutation and GSK/S-mutation. Second, in order to further strengthen this bal-

ance, DE’s classic mutation strategy "DE/rand/1" and the soft besiege in the exploitation phase

of HHO are added to the hybrid mutation operator, which are called “DE/rand /1-mutation”

and “HHO/SB-mutation”, respectively. Thus, GSK/J-mutation and GSK/S-mutation,
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combined with DE/rand/1-mutation and HHO/SB-mutation, form a hybrid mutation opera-

tor, which is a dual-insurance mechanism for balancing global exploration and local exploita-

tion capabilities.

Before mutation operation, all individuals are arranged according to fitness values to form

a new population Pg = {Xbest,g,X2,g,� � �,XNP−1,g,Xworst,g}, which is grouped into best people {Xpb,

g}, middle people {Xpw,g} and worst people {Xm,g}, as shown in Fig 1. The population sequenc-

ing and grouping strategy of DEGH is the same as that of GSK. On this basis, two random dis-

tribution numbers R1i,g and R2i,g, as well as control parameters F and CRi,g, together

determine the mutation strategy adopted by each individual. Among them, R1i,g,R2i,g and CRi,

g are implemented at the individual level.

3.2.1 GSK/J-mutation. When R1i,g�F and R2i,g<CRi,g, the strategy of the junior phase

(Eq (6)) of GSK is improved. The scaling factor F is substituted for the knowledge factor kf,
and the mutation individual Vi,g+1 generated is as follows.

Vi;gþ1 ¼ Xi;g þ F � ðXi� 1;g � Xiþ1;gÞ þ F � ðXr;g � Xi;gÞ ð21Þ

where Xi−1,g and Xi+1,g are the nearest better and worsen individuals of the target individual Xi,

g. if Xi,g is Xbest,g, Xi−1,g and Xi+1,g are X2,g and X3,g. if Xi,g is Xworst,g, Xi−1,g and Xi+1,g are XNP−2,g

and XNP−1,g. Xr,g denotes a randomly selected individual in the new population PG.

3.2.2 GSK/S-mutation. When R1i,g<F and R2i,g�Cri,g, similarly, the strategy in Eq (7) of

the senior phase of GSK is also changed, and the mutation individual Vi,g+1 is generated by the

following mode.

Vi;gþ1 ¼ Xi;g þ F � ðXrpb;g � Xrpw;gÞ þ F � ðXi;g � Xrm;gÞ ð22Þ

where Xrpb,g, Xrpw,g and Xrm,g are randomly chosen individuals from best people {Xpb,g}, middle

people {Xpw,g} and worst people {Xm,g}, respectively.

3.2.3. DE/rand/1-mutation. when R1i,g�F and R2i,g�CRi,g, the mutation individual Vi,g+1

is produced by the classic mutation operator of DE in Eq (2), which is famous for its strong

global search capability.

3.2.4 HHO/SB-mutation. when R1i,g<F and R2i,g<CRi,g, according to the enhanced ver-

sion of the soft besiege rule of exploitation phase in HHO, the mutation individual Vi,g+1 is

obtained as follows.

Vi;gþ1 ¼ DXþ F � ðXbest;g � Xi;gÞ ð23Þ

DX ¼ Xbest;g � Xi;g ð24Þ

3.3 Crossover probability self-adaption

As shown in the mutation operation above, the crossover probability CR affects the selection

of the mutation operator adopted by each individual. In order to make the internal phases of

Fig 1. Schematic of population sequencing and grouping in DEGH.

https://doi.org/10.1371/journal.pone.0250951.g001
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DE more closely linked, the adjustment of CR is associated with mutation and selection

operations.

At each generation of DEGH, the frequencies used for GSK/J-mutation, GSK/S-mutation,

DE/rand/1-mutation and HHO/SB-mutation are counted and represented as anum,bnum,

cnum and dnum respectively. At the same time, the mutation strategy adopted by each individ-

ual is labelled with flag: individuals with GSK/J-mutation are flag = 1; individuals with GSK/S-

mutation are flag = 2; individuals with DE/rand/1-mutation are flag = 3; individuals with

HHO/SB-mutation are flag = 4. Besides, in the selection operation of DEGH, a binary variable

h recording the evolutionary status of the trial individual is introduced and participated in the

adjustment of CR. If the trial individual fails to evolve, hi,g+1 is set to 0 and CR is assigned a

random number in [0,1]. On the contrary, hi,g+1 is set to 1 and the adaptive adjustment of CR
is as follows.

CRi ¼

anum=NP ; if flagi ¼ 1

bnum=NP ; if flagi ¼ 2

cnum=NP ; if flagi ¼ 3

dnum=NP ; if flagi ¼ 4

ð25Þ

8
>>>>><

>>>>>:

where flagi records the mutation strategy applied by individual Xi,g and NP is the population

size.

3.4 Pseudocode of the proposed algorithm

Based on the above description, pseudo-code of the proposed DEGH algorithm is reported in

Fig 2, where the hybrid mutation operator is shown in lines 11–27 and the crossover probabil-

ity self-adaptation strategy is used in lines 28–34.

3.5 Computational complexity

The computational complexity of the DEGH depends on the following aspects: initialization,

sorting, evaluation, mutation, crossover, and selection. Compared with the original DE,

DEGH only increases the complexity of sorting. The computational complexity of the initial

DE is O(NP�D�G), and the sorting complexity is O(NP), so in general, the computational com-

plexity of DEGH remains the same as the original DE, which is O(NP�D�G).

4 Experimental results and analysis

The performance of the proposed DEGH is evaluated by 32 well-known benchmark functions

[45, 46] listed in Table 1, in which f1~f14 are unimodal functions and f15~f32 are multimodal

functions. Besides, DEGH is compared with eight enhanced DE algorithms including

IMMSADE [19], CIPDE [20], EBDE [21], EDE [21], EJADE [30], LSHADE-SPACMA [35],

DEPSO [37] and ATLDE [39] at D = 30,100. The former five algorithms are based on changes

in DE components, while the latter three algorithms are mixtures of DE and other meta-heu-

ristic algorithms.

4.1 Experimental setting

In the following experiments, to ensure a fair comparison, the common parameters of all algo-

rithms are set the same: the maximum generation number G is set to 1000, the population size

NP is set to 100, and 30 independent runs are conducted. Other parameter settings of each

algorithm are shown in Table 2.
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4.2 Parameter study

In this section, the sensitivity analysis of population size NP and scaling factor and the effi-

ciency analysis of crossover probability are studied through relevant experiments.

4.2.1 Sensitivity analysis to population size. As one of the control parameters of DE, the

influence of population size NP on the performance of DEGH is studied on the 32 benchmark

functions at D = 30. DEGH variants with NP = 50,150,200,250 are compared with the standard

DEGH with NP = 100, the optimization results of which are evaluated by Friedman, Kruskal-

Wallis and Wilcoxon’s rank-sum tests [47]. The statistical tests results are shown in Fig 3 and

Table 3.

As can be seen from Fig 3, with the increase of NP, the performance of DEGH improves.

DEGH performs best at NP = 250. From the data listed in Table 3, there is no significant differ-

ence in the performance of DEGHs with different NP values, that is, DEGH is not sensitive to

Fig 2. The pseudo-code of DEGH.

https://doi.org/10.1371/journal.pone.0250951.g002
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Table 1. The benchmark test functions.

Name Function Domain f(�)
Sphere f1ðxÞ ¼

PD
i¼1

xi
2 [−100,100]D 0

Elliptic f2 xð Þ ¼
PD

i¼1
ð106Þ

i� 1
D� 1xi

2 [−100,100]D 0

Bent Cigar f3ðxÞ ¼ x1
2 þ 106

PD
i¼2

xi
2 [−100,100]D 0

Schwefel 1.2 f4ðxÞ ¼
PD

i¼1
ð
Pi

j¼1
xjÞ

2 [−100,100]D 0

Schwefel 2.22 f5ðxÞ ¼
PD

i¼1
jxij þ

QD
i¼1
jxij [−10,10]D 0

Schwefel 2.21 f6(x) = max{|xi|, 1�i�D} [−100,100]D 0

Sum of Different Power f7ðxÞ ¼
PD

i¼1
jxij

iþ1 [−100,100]D 0

Sum Squares f8ðxÞ ¼
PD

i¼1
ixi

2 [−10,10]D 0

Discus f9ðxÞ ¼ 106x1
2 þ

PD
i¼2

xi
2 [−100,100]D 0

Different Powers f10 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD

i¼1
jxij

2þ4 i� 1
D� 1

q
[−100,100]D 0

Exponential f11ðxÞ ¼ � expð� 0:5
PD

i¼1
xi

2Þ [−1,1]D -1

Zakharov f12ðxÞ ¼
PD

i¼1
xi

2 þ ð
PD

i¼1
0:5xiÞ

2
þ ð
PD

i¼1
0:5xiÞ

4 [−5,10]D 0

Step f13ðxÞ ¼
PD

i¼1
ðjxi þ 0:5jÞ

2 [−100,100]D 0

Noise quartic f14ðxÞ ¼
PD

i¼1
ixi

4 þ rand½0; 1Þ [−1.28,1.28]D 0

Rosenbrock f15ðxÞ ¼
PD� 1

i¼1
½100�ðxi

2 � xiþ1Þ
2
þ ðxi � 1Þ

2
� [−30,30]D 0

Griewank f16ðxÞ ¼
PD

i¼1
xi

2=4000 �
QD

i¼1
cosðxi=

ffiffi
i
p
Þ þ 1 [−600,600]D 0

Rastrigin f17ðxÞ ¼
PD

i¼1
ðxi

2 � 10 cosð2pxiÞ þ 10Þ [−5.12,5.12]D 0

Apline f18ðxÞ ¼
PD

i¼1
jxi sin xi þ 0:1xij [−100,100]D 0

Bohachevsky_2 f19ðxÞ ¼
PD� 1

i¼1
½xi

2 þ 2x2
iþ1
� 0:3 cosð3pxiÞcosð3pxiþ1Þ þ 0:3� [−100,100]D 0

Salomon f20ðxÞ ¼ 1 � cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD

i¼1
xi

2

q

Þ þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD

i¼1
xi

2

q
[−100,100]D 0

Scaffer2 f21ðxÞ ¼
PD

i¼1
ðxi

2 þ x2
iþ1
Þ

0:25
ðsinð50ðx2

i þ x2
iþ1
Þ

0:1
Þ þ 1Þ xDþ1 ¼ x1

[−100,100]D 0

Ackley f22ðxÞ ¼ � 20expð� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD

i¼1
xi

2=D
q

Þ � expð
PD

i¼1
cosð2pxiÞ=DÞ þ 20þ e [−32,32]D 0

Weierstrass f23ðxÞ ¼
PD

i¼1
ð
Pkmax

k¼0
½ak cosð2pbkðxi þ 0:5ÞÞ�Þ � D

Pkmax
k¼0
½akcosð2pbk � 0:5Þ� [−0.5,0.5]D 0

a = 0.5, b = 3, kmax = 20

Katsuura
f24 xð Þ ¼ 10

D2

QD
i¼1

1þ i
P32

j¼1

j2j xi � roundð2jxiÞj
2j

� � 10

D1:2

� 10

D2

[−100,100]D 0

HappyCat f25ðxÞ ¼ j
PD

i¼1
xi

2 � Dj1=4
þ ð0:5

PD
i¼1

xi
2 þ

PD
i¼1

xiÞ=Dþ 0:5 [−100,100]D 0

HGBat
f26ðxÞ ¼ jð

XD

i¼1

xi
2Þ

2
� ð
XD

i¼1

xiÞ
2
j
1=2
þ ð0:5

XD

i¼1

xi
2 þ

XD

i¼1

xiÞ=Dþ 0:5
[−100,100]D 0

Scaffer’s F6 f27ðxÞ ¼
PD

i¼1
ð0:5þ ððsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi

2 þ x2
iþ1

p
ÞÞ

2
� 0:5Þ=ð1þ 0:001ðxi

2 þ x2
iþ1
ÞÞ

2
Þ xDþ1 ¼ x1

[−0.5,0.5]D 0

Expanded Scaffer f28(x) = f27(x1, x2)+f27(x2,x3)+� � �+f27(xD−1, xD)+f27(xD, x1) [−5,5]D 0

Griewank+Rosenbrock f29(x) = f16(f15(x1,x2))+f16(f15(x2, x3))+� � �+f16(f15(xD−1,xD))+f16(f15(xD, x1)) [−5.12,5.12]D 0

NCRastrigin

f30 xð Þ ¼
PD

i¼1
½yi

2 � 10 cosð2pyiÞ þ 10�; yi ¼

xi; jxij < 0:5

roundð2xiÞ

2
; jxij � 0:5

8
<

:

[−10,10]D 0

Levy and Montalvo 1 f31 xð Þ ¼ p

D 10ðsinðpy1ÞÞ
2
þ
PD� 1

i¼1
ðyi � 1Þ

2
½1þ 10ðsinðpyiþ1ÞÞ

2
� þ ðyD � 1Þ

2
g þ

PD
i¼1

uðxi; 10; 100; 4Þ
�

[−10,10]D 0

y ¼ 1þ 1

4
xi þ 1ð Þ; u xi; a; k;mð Þ ¼

kðxi � aÞm ; xi > a

0 ; � a � xi � a

kð� xi � aÞm ; xi < � a

8
>><

>>:

Levy and Montalvo 2 f32ðxÞ ¼ 0:1f10ðsinð3px1ÞÞ
2
þ
PD� 1

i¼1
ðxi � 1Þ

2
½1þ ðsinð3pxiþ1ÞÞ

2
� þ ðxD � 1Þ

2
½1þ ðsinð2pxDÞÞ

2
�g þ

PD
i¼1

uðxi; 5; 100; 4Þ [−5,5]D 0

https://doi.org/10.1371/journal.pone.0250951.t001
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population size NP. In order not to lose universality, the population size NP is set to 100 in the

following experiments.

4.2.2 Sensitivity analysis to scaling factor. In DEGH, the scaling factor F plays a vital role

in the mutation operation. By setting F to F2[0.1,0.9] in steps of 0.1, a series of experiments

are conducted to analyze the sensitivity of the scaling factor. Three nonparametric statistical

tests are used to analyze the optimization results of 30-dimensional problems with different F
values, which are recorded in Fig 4 and Table 4, respectively.

From Fig 4, it is clear that the performance of DEGH is best at F = 0.3. From Table 2, it can

be seen that DEGH is insensitive to F except F = 0.1. Therefore, F = 0.3 can be considered as a

suitable value for subsequent experiments.

4.2.3 Efficiency analysis to crossover probability. In order to investigate the effectiveness

of crossover probability self-adaptation strategy in DEGH, the efficiency of crossover probabil-

ity is analyzed by setting CR = 0.2,0.4,0.8, rand and compared with the proposed DEGH,

where rand represents a random real number inside [0,1]. The results of the non-parametric

statistical tests of these DEGHs are shown in Fig 5 and Table 5.

From Fig 5, it is evident that the proposed DEGH is the best and DEGH with CR = rand is

the second best. It can be concluded from Table 5 that, except for DEGH with CR = 0.2, there

is no significant performance difference between DEGH and its variants. In other words, the

crossover probability self-adaption is effective, but DEGH is less susceptible to crossover

probability.

Fig 3. The results of Friedman and Kruskal-Wallis tests for DEGHs with different population size.

https://doi.org/10.1371/journal.pone.0250951.g003

Table 2. The parameter settings of compared algorithms.

Algorithm Parameters

IMMSADE τ = 0.7, λ2[0.7,1.0], F2[0.1,0.8], CR2[0.3,10]

CIPDE c = 0.1, μF = 0.7, μCR = 0.5

EBDE p = 0.1, H = 100, MF(1:H) = MCR(1:H) = 0.5, F = randn(MF, 0.1), CR =randn(MCR, 0.1)

EDE H = 100, MF(1:H) = MCR(1:H) = 0.5, F = randn(MF, 0.1), CR =randn(MCR, 0.1)

EJADE μF = μCR = 0.5, c = 0.1, p = 0.05, F = randn(μF, 0.1), CR = randn(μCR, 0.1)

LSHADE-SPACMA Pbest = 0.11, H = 1.4, Arc_rate = 5, FCP =s 0.5, c = 0.8

DEPSO c1 = c2 = 2, ω2[0.4,0.9], CR2[0.3,1.0], F2[0.1,0.8], NSmax = 5, γ = 0.001, τ = 0.7, SEP = 0.4�NP
ATLDE CR = 0.9, ε = 0.5

DEGH F = 0.3

https://doi.org/10.1371/journal.pone.0250951.t002
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4.3 Comparison with eight state-of-the-art DE variants

In order to comprehensively evaluate the performance of the proposed algorithm, the optimi-

zation results and convergence properties of DEGH and eight enhanced DE algorithms on 32

benchmark functions at D = 30,50,100 are compared and analyzed.

4.3.1 Optimization results. The optimization results of each algorithm at D = 30, D = 50

and D = 100 are listed in Tables 6–8 respectively, where Mean and STD refer to the average

and standard deviation of the function error value over 30 independent runs. Besides, the Wil-

coxon signed-rank test results on each dimensional problem are shown in Table 9, where the

symbol “+/−/�” indicates the performance of DEGH is “better than/worse than/similar to”

the compared algorithm.

At D = 30, from Table 6, the proposed DEGH gets the global optimal solution on functions

f1~f12, f16~f24, f27, f28 and f30. For step function f13, CIPDE, EBDE, EJADE and LSHADE--

SPACMA obtain global optimum. For noise function f14, ATLDE is the best. EJADE, CIPDE,

EDE and CIPDE give optimal solutions for multimodal functions f15, f25, f26 and f29, respec-

tively. For f31, CIPDE, EBDE, EDE and LSHADE-SPACMA are best. For f32, LSHADE--

SPACMA finds the best solution. As can be seen from the Wilcoxon signed-rank test results of

D = 30 in Table 9, DEGH is superior to IMMSADE, CIPDE, EBDE, ED, EJADE, LSHADE-

SPACMA, DEPSO and ATLDE on 26,19,24,21,24,21,26,25 out of 32 functions, respectively.

At D = 50, it can also be seen from Table 7 that DEGH gives the global minimum on f1~f12,

f16~f24, f27, f28 and f30. For f13 and f25, CIPDE is the best. ATLDE, EJADE, IMMSADE, EBDE

and LSHADE-SPACMA obtain the optimal solutions of f14, f15, f26, f29 and f32, respectively.

CIPDE and LSHADE-SPACMA perform better than other algorithms on f31. According to the

Fig 4. The results of the Friedman and Kruskal-Wallis tests for DEGHs with different F values.

https://doi.org/10.1371/journal.pone.0250951.g004

Table 3. The results of Wilcoxon’s rank-sum test between DEGH with NP = 250 and DEGHs with different popu-

lation size.

DEGH with NP = 250 vs. R+ R− p−value α = 0.05 α = 0.1

DEGH with NP = 50 36 0 8.95e-01 No No

DEGH with NP = 100 36 0 9.09e-01 No No

DEGH with NP = 150 32 4 9.51e-01 No No

DEGH with NP = 200 32 4 9.65e-01 No No

“No” represents no significant performance discrepancy between the two compared.

https://doi.org/10.1371/journal.pone.0250951.t003
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test results of the 50-dimensional problems in Table 9, among the 32 functions, DEGH has

27,24,26,26, 24,25 and 25 items that are better than IMMSADE, CIPDE, EBDE, ED, EJADE,

LSHADE- SPACMA, DEPSO and ATLDE, respectively.

At D = 100, from Table 8, DEGH is best except two multimodal functions f13, f14 and four

multimodal functions f25, f29, f31, f32. For f13, f31 and f32, CIPDE gets optimal solutions.

ATLDE, EDE, and LSHADE-SPACMA find the best solutions on f14, f25 and f29, respectively.

From Table 9, DEGH outperforms IMMSADE, CIPDE, EBDE, ED, EJADE, LSHADE-

SPACMA, DEPSO and ATLDE on 29,27,29,27,29,27,24,24 functions, respectively.

Furthermore, three non-parametric statistical tests are used to analyze these optimization

results. The Friedman and Kruskal-Wallis tests results drawn in Fig 6 show that DEGH is the

best in all dimensions. The Wilcoxon’s rank-sum test results in Table 10 show that all positive

rank sums R+ obtained are far larger than negative rank sums R−, no matter in which dimen-

sion and compared with which algorithm. Moreover, whether the significance test level is 0.5

or 0.1, all p-values obtained are far less than them. In other words, Wilcoxon’s rank-sum test

also confirms that DEGH is significantly superior to other compared algorithms.

4.3.2 Convergence properties. The convergence properties can be summarized into the

following four types, which are depicted in Fig 7.

Table 4. The results of Wilcoxon’s rank-sum test between DEGH with F = 0.3 and DEGHs with different F values.

DEGH with F = 0.3 vs. R+ R− p−value α = 0.50 α = 0.1

DEGH with F = 0.1 173 37 1.43e-02 Yes Yes

DEGH with F = 0.2 24 21 7.49e-01 No No

DEGH with F = 0.4 22 14 9.51e-01 No No

DEGH with F = 0.5 24 12 9.37e-01 No No

DEGH with F = 0.6 31 5 9.09e-01 No No

DEGH with F = 0.7 35 1 8.12e-01 No No

DEGH with F = 0.8 35 1 7.84e-01 No No

DEGH with F = 0.9 35 1 7.84e-01 No No

“Yes” indicates DEGH with F = 0.3 outperforms other DEGHs with different F values. “No” represents no significant

performance discrepancy between the two compared. The bigger the R+, the better the first algorithm.

https://doi.org/10.1371/journal.pone.0250951.t004

Fig 5. The results of Friedman and Kruskal-Wallis tests for DEGH and its variants with different CR values.

https://doi.org/10.1371/journal.pone.0250951.g005
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i. The convergence curves of f1~f12, f16, f22 and f27 are similar, as shown in Fig 7(A). In this

type, DEGH does not show apparent advantages at the beginning of evolution, but it can

quickly converge to the global minimum first.

ii. The convergence attributes of f17~f21, f23, f24, f28 and f30 are divided into a class, as shown in

Fig 7(B). In this type, DEGH shows absolute advantages at the beginning, with the steepest

slope and can quickly converge to the global minimum, while other algorithms evolve

slowly or stall.

iii. In Fig 7(C), the convergence curve of f25 is plotted, which is similar to that of f14, f15, f26

and f29. On these functions, all algorithms are at varying degrees of evolutionary stagnation

or slow evolution.

iv. The evolutionary trend of f13, f31 and f32 is similar, as shown in Fig 7(D). Here, some algo-

rithms fall into evolutionary stagnation, but DEGH continues to evolve downward.

4.4 Discussion on results

The above experiments prove the remarkable superiority of the proposed DEGH. The reasons

for DEGH’s outstanding performance are summarized as follows. (1) DEGH, based on GSK

and HHO algorithms, is an improvement and hybrid on the DE framework. On the one hand,

GSK/J-mutation and GSK/S-mutation operators have a good balance between global explora-

tion and local exploitation. On the other hand, the DE/rand/1-mutation and HHO/SB-muta-

tion are another powerful guarantee for the balance between exploration and exploitation.

These two respects cooperate each other, formed the dual-safeguard mechanism for the bal-

ance between exploration and exploitation. (2) The crossover probability self-adaption strategy

of DEGH strengthens the internal connection between the mutation, crossover and selection

stages, and makes the whole frame structure more harmonious. On this basis, the crossover

probability and scaling factor dynamically adjust the evolution strategy of each individual to

make the proposed algorithm more suitable for various problems.

5 Conclusions

This paper proposes a hybrid differential evolution algorithm based on gaining-sharing knowl-

edge algorithm and harris hawks optimization (DEGH), which can achieve excellent perfor-

mance even with a fixed scaling factor. Through a series of experiments, the effectiveness and

sensitivity of DEGH parameters are investigated. The performance of DEGH is evaluated by

comparing with eight state-of-the-art DE variants like IMMSADE [19], CIPDE [20], EBDE

[21], EDE [21], EJADE [30], LSHADE-SPACMA [35], DEPSO [37] and ATLDE [39] on 32

benchmark functions at D = 30,100. Experiments results show that: 1) DEGH is not sensitive

Table 5. The results of Wilcoxon’s rank-sum test between DEGH and its variants with different F values.

DEGH vs. R+ R− p−value α = 0.05 α = 0.1

DEGH with CR = 0.2 357 21 2.13e-05 Yes Yes

DEGH with CR = 0.4 47 19 4.40e-01 No No

DEGH with CR = 0.6 32 4 9.23e-01 No No

DEGH with CR = 0.8 34 2 8.81e-01 No No

DEGH with CR = rand 20 16 9.51e-01 No No

“Yes” represents that the combined DEGH’s performance is better than its variant significantly. “No” represents no

significant performance discrepancy between the two compared. The bigger the R+, the better the combined DEGH.

https://doi.org/10.1371/journal.pone.0250951.t005
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Table 6. Mean and STD obtained by eight enhanced DEs and DEGH on benchmark functions at 30D.

F IMMSADE CIPDE EBDE EDE EJADE LSHADE-SPACMA DEPSO ATLDE DEGH

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 2.21E-29

±9.12E-29

2.91E-43

±1.19E-42

1.40E-48

±5.00E-48

2.32E-38

±3.98E-38

2.10E-39

±3.34E-39

1.60E-63±2.74E-63 3.35E-93

±1.60E-92

1.50E-54

±2.50E-54

0.00E+00

±0.00E+00

f2 1.58E-23

±8.61E-23

3.62E-40

±1.16E-39

2.27E-43

±6.50E-43

1.71E-33

±5.63E-33

1.06E-34

±3.92E-34

1.83E-54±3.29E-54 6.00E-96

±2.26E-95

1.41E-50

±1.92E-50

0.00E+00

±0.00E+00

f3 8.11E-22

±3.43E-21

3.52E-38

±1.09E-37

3.99E-41

±1.45E-40

7.84E-31

±2.25E-30

1.02E-31

±4.32E-31

1.07E-51±4.73E-51 7.32E-93

±4.01E-92

4.17E-48

±1.34E-47

0.00E+00

±0.00E+00

f4 3.07E+00

±7.02E+00

2.35E-10

±8.88E-10

1.07E-12

±2.78E-12

5.94E-05

±1.08E-04

8.10E-10

±1.37E-09

4.24E-31±1.55E-30 4.49E-91

±2.46E-90

5.68E-53

±2.09E-52

0.00E+00

±0.00E+00

f5 8.87E-16

±2.95E-15

2.27E-20

±7.54E-20

6.77E-26

±1.51E-25

5.55E-21

±9.88E-21

6.79E-17

±1.63E-16

1.56E-33±1.39E-33 3.89E-50

±2.08E-49

2.05E-26

±3.84E-26

0.00E+00

±0.00E+00

f6 3.55E-08

±6.88E-08

1.45E-08

±3.89E-08

7.09E-08

±9.93E-08

6.29E-03

±7.53E-03

2.01E-04

±2.46E-04

7.05E-23±1.66E-22 1.73E-49

±8.89E-49

5.83E-23

±7.42E-23

0.00E+00

±0.00E+00

f7 1.33E-83

±7.22E-83

3.18E-55

±1.74E-54

2.86E-64

±1.57E-63

1.86E-35

±7.83E-35

5.59E-71

±2.13E-70

2.61E-69±1.36E-68 3.44E-113

±1.87E-112

2.68E-115

±1.06E-114

0.00E+00

±0.00E+00

f8 3.29E-26

±1.78E-25

5.84E-45

±2.33E-44

4.81E-50

±9.75E-50

6.11E-39

±7.36E-39

3.06E-40

±5.20E-40

8.50E-68±1.23E-67 2.81E-99

±1.53E-98

1.03E-54

±3.32E-54

0.00E+00

±0.00E+00

f9 1.86E-27

±5.96E-27

1.08E-44

±2.56E-44

9.04E-48

±2.00E-47

1.66E-36

±2.78E-36

4.08E-37

±1.79E-36

9.90E-58±4.49E-57 1.13E-99

±4.45E-99

1.04E-53

±2.10E-53

0.00E+00

±0.00E+00

f10 1.34E-20

±7.29E-20

1.79E-27

±2.90E-27

3.08E-25

±9.17E-25

1.88E-16

±4.26E-16

4.33E-25

±5.22E-25

4.00E-26±9.10E-26 1.04E-54

±5.64E-54

1.43E-35

±4.98E-35

0.00E+00

±0.00E+00

f11 -5.00E-01

±5.04E-01

0.00E+00

±0.00E+00

8.51E-17

±4.78E-17

7.40E-18

±2.82E-17

1.52E-16

±6.17E-17

0.00E+00±0.00E

+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f12 6.02E-27

±3.16E-26

2.76E-48

±7.81E-48

7.27E-48

±1.23E-47

2.62E-35

±7.06E-35

8.22E-38

±2.21E-37

1.17E-67±2.19E-67 7.93E-99

±4.01E-98

4.36E-55

±1.59E-54

0.00E+00

±0.00E+00

f13 5.69E-03

±2.45E-03

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

1.75E-32

±3.27E-33

0.00E+00

±0.00E+00

0.00E+00±0.00E

+00

2.21E+00

±3.15E-01

4.62E+00

±1.00E+00

6.17E-20

±7.02E-20

f14 3.19E-01

±2.34E-01

1.60E-03

±1.20E-03

3.09E-03

±1.45E-03

4.49E-03

±2.21E-03

2.19E-03

±1.09E-03

2.56E-03±1.53E-03 4.14E-01

±2.81E-01

1.48E-03

±6.33E-04

3.90E-03

±2.04E-03

f15 2.58E+01

±2.12E-01

7.46E-01

±7.49E-01

7.41E-01

±1.43E+00

1.29E+01

±1.08E+00

6.67E-01

±1.51E+00

9.52E+00±1.68E+00 2.80E+01

±3.35E-01

2.89E+01

±3.24E-02

2.56E+01

±3.93E-01

f16 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

6.15E-03

±1.06E-02

0.00E+00

±0.00E+00

2.47E-04

±1.35E-03

9.04E-04±2.86E-03 1.28E-03

±4.96E-03

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f17 4.38E+01

±2.96E+01

1.10E+00

±1.07E+00

5.85E-01

±1.06E+00

9.09E+00

±1.80E+00

2.43E+01

±1.29E+01

9.05E+00±2.71E+00 3.88E-09

±2.13E-08

6.09E+00

±3.34E+01

0.00E+00

±0.00E+00

f18 4.06E-14

±1.55E-13

6.10E-03

±1.29E-03

4.85E-16

±5.14E-16

1.36E-02

±6.64E-03

1.09E-12

±5.90E-12

3.18E-15±1.57E-14 5.28E-51

±1.36E-50

1.56E-25

±4.48E-25

0.00E+00

±0.00E+00

f19 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

3.99E-01

±6.27E-01

7.40E-18

±2.82E-17

2.04E-16

±1.64E-16

2.75E-02±1.05E-01 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f20 1.42E-01

±4.78E-02

1.07E-01

±2.54E-02

2.43E-01

±5.04E-02

1.83E-01

±3.79E-02

2.93E-01

±6.91E-02

3.63E-01±8.50E-02 9.99E-02

±1.21E-07

5.00E-02

±5.08E-02

0.00E+00

±0.00E+00

f21 3.09E+01

±7.16E+00

2.53E+00

±7.45E-01

2.69E+00

±5.36E-01

3.70E+00

±7.72E-01

1.29E+01

±8.01E+00

1.24E+00±3.30E-01 6.12E-02

±8.24E-02

1.69E+01

±2.42E+01

0.00E+00

±0.00E+00

f22 4.38E-15

±3.89E-15

3.55E-15

±0.00E+00

6.28E-15

±1.53E-15

5.68E-15

±1.77E-15

2.29E-14

±6.31E-15

3.55E-15±0.00E+00 0.00E+00

±0.00E+00

3.55E-15±0.00E

+00

0.00E+00

±0.00E+00

f23 0.00E+00

±0.00E+00

1.10E-12

±4.30E-12

1.09E-01

±1.65E-01

0.00E+00

±0.00E+00

8.88E-02

±7.20E-02

0.00E+00±0.00E

+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f24 6.24E-01

±1.04E-01

1.89E-02

±3.73E-03

7.86E-03

±2.32E-03

1.83E-02

±1.73E-03

7.36E-02

±4.85E-02

3.78E-02±4.31E-03 6.49E-01

±1.05E-01

1.40E+00

±1.16E+00

0.00E+00

±0.00E+00

f25 4.55E-01

±5.40E-02

1.40E-01

±3.66E-02

2.30E-01

±5.30E-02

2.19E-01

±2.68E-02

2.38E-01

±6.01E-02

2.53E-01±3.94E-02 8.32E-01

±8.93E-02

5.80E-01

±1.20E-01

3.59E-01

±4.85E-02

f26 3.93E-01

±3.92E-02

3.71E-01

±8.88E-02

4.39E-01

±1.94E-01

3.48E-01

±9.30E-02

4.09E-01

±1.33E-01

3.95E-01±1.51E-01 4.98E-01

±5.87E-03

4.40E-01

±3.62E-02

4.18E-01

±2.93E-02
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Table 6. (Continued)

F IMMSADE CIPDE EBDE EDE EJADE LSHADE-SPACMA DEPSO ATLDE DEGH

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f27 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

1.48E-17

±8.11E-17

0.00E+00±0.00E

+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f28 3.43E+00

±4.78E-01

5.49E-01

±9.74E-02

5.43E-01

±7.57E-02

7.37E-01

±8.86E-02

5.70E-01

±6.53E-02

4.12E-01±9.71E-02 4.38E+00

±1.12E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f29 1.21E+01

±8.27E-01

2.01E+00

±2.70E-01

2.23E+00

±1.82E-01

2.80E+00

±2.07E-01

2.95E+00

±3.78E-01

3.18E+00±1.11E+00 1.15E+01

±3.77E-01

1.32E+01

±1.30E+00

7.67E+00

±5.40E-01

f30 1.68E+01

±8.02E+00

0.00E+00

±0.00E+00

1.10E-07

±6.02E-07

0.00E+00

±0.00E+00

3.41E+01

±1.34E+01

1.39E+01±4.21E+00 0.00E+00

±0.00E+00

6.97E+00

±2.69E+01

0.00E+00

±0.00E+00

f31 2.61E-04

±8.77E-05

1.57E-32

±5.57E-48

1.57E-32

±5.57E-48

1.57E-32

±5.57E-48

2.78E-32

±1.35E-32

1.57E-32±5.57E-48 6.99E-02

±2.08E-02

2.52E-01

±9.43E-02

1.04E-22

±1.26E-22

f32 9.31E-03

±3.99E-03

1.36E-31

±2.77E-33

1.35E-31

±6.68E-47

1.42E-31

±1.24E-33

1.35E-31

±6.68E-47

1.35E-31±6.68E-47 3.54E-01

±8.20E-02

1.20E+00

±3.83E-01

1.19E-21

±2.02E-21

Best results are shown in bold

https://doi.org/10.1371/journal.pone.0250951.t006

Table 7. Mean and STD obtained by eight enhanced DEs and DEGH on benchmark functions at 50D.

F IMMSADE CIPDE EBDE EDE EJADE LSHADE-SPACMA DEPSO ATLDE DEGH

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 2.07E-20

±1.03E-19

6.43E-34

±1.54E-33

3.56E-25

±6.06E-25

4.70E-20

±1.41E-19

5.33E-21

±9.49E-21

7.12E-36±1.63E-35 2.92E-95

±1.57E-94

7.20E-54

±1.18E-53

0.00E+00

±0.00E+00

f2 1.19E-16

±6.46E-16

7.56E-29

±1.14E-28

1.26E-19

±5.82E-19

1.68E-15

±7.21E-15

4.17E-16

±7.11E-16

3.11E-12±1.32E-11 2.25E-94

±7.88E-94

2.30E-49

±6.00E-49

0.00E+00

±0.00E+00

f3 3.07E-15

±1.63E-14

1.02E-27

±2.17E-27

3.18E-17

±9.51E-17

4.05E-12

±1.48E-11

6.74E-14

±2.25E-13

2.87E-24±9.59E-24 7.03E-87

±3.85E-86

1.38E-47

±3.17E-47

0.00E+00

±0.00E+00

f4 5.77E+02

±1.03E+03

3.32E-02

±3.51E-02

8.06E-03

±7.01E-03

3.73E+00

±2.75E+00

4.96E-02

±3.69E-02

2.48E-03±3.24E-03 1.56E-90

±8.42E-90

1.59E-52

±3.48E-52

0.00E+00

±0.00E+00

f5 1.97E-12

±7.76E-12

1.12E-17

±1.10E-17

3.86E-13

±7.37E-13

1.25E-12

±1.66E-12

3.02E-08

±4.42E-08

1.18E-23±6.48E-24 1.37E-51

±6.72E-51

2.84E-26

±5.51E-26

0.00E+00

±0.00E+00

f6 2.30E-05

±4.93E-05

3.72E-01

±2.37E-01

6.26E-01

±3.56E-01

1.65E+00

±7.73E-01

1.70E+00

±7.41E-01

1.07E-01±6.23E-02 5.06E-47

±2.75E-46

8.70E-23

±1.73E-22

0.00E+00

±0.00E+00

f7 1.01E-65

±5.47E-65

2.90E-27

±1.58E-26

1.91E-21

±9.86E-21

1.46E-06

±6.55E-06

8.34E-33

±2.25E-32

4.44E-25±1.80E-24 4.10E-115

±2.25E-114

1.67E-113

±6.21E-113

0.00E+00

±0.00E+00

f8 2.68E-24

±1.32E-23

9.36E-35

±8.78E-35

1.44E-25

±2.50E-25

4.52E-21

±1.03E-20

2.19E-21

±4.08E-21

2.42E-41±1.11E-40 2.26E-97

±9.99E-97

5.40E-54

±2.48E-53

0.00E+00

±0.00E+00

f9 2.09E-23

±1.12E-22

4.82E-33

±7.82E-33

4.23E-24

±1.19E-23

1.96E-19

±6.00E-19

7.29E-20

±1.52E-19

2.58E-26±6.25E-26 4.77E-95

±2.61E-94

2.89E-53

±1.03E-52

0.00E+00

±0.00E+00

f10 2.14E-15

±1.16E-14

3.12E-16

±3.43E-16

4.37E-12

±5.19E-12

3.72E-08

±7.10E-08

5.97E-13

±6.78E-13

8.96E-11±2.42E-10 4.43E-53

±2.42E-52

1.80E-32

±2.98E-32

0.00E+00

±0.00E+00

f11 -5.00E-01

±5.04E-01

9.25E-17

±4.21E-17

1.44E-16

±5.17E-17

1.22E-16

±3.39E-17

6.22E-16

±1.76E-16

0.00E+00±0.00E

+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f12 5.70E-17

±3.08E-16

4.90E-32

±1.11E-31

1.80E-24

±2.24E-24

3.31E-19

±4.44E-19

8.00E-21

±2.01E-20

6.06E-47±1.83E-46 1.70E-98

±9.11E-98

1.99E-54

±4.98E-54

0.00E+00

±0.00E+00

f13 3.62E-02

±1.15E-02

2.95E-32

±1.23E-32

3.48E-25

±5.47E-25

2.06E-20

±5.50E-20

2.27E-21

±2.64E-21

5.75E-32±1.69E-32 6.31E+00

±4.62E-01

9.53E+00

±8.98E-01

2.55E-10

±2.36E-10

f14 4.04E-01

±2.45E-01

2.77E-03

±1.52E-03

1.20E-02

±5.62E-03

7.61E-03

±3.30E-03

9.90E-03

±3.75E-03

6.24E-03±2.86E-03 3.57E-01

±2.41E-01

1.42E-03

±6.74E-04

5.07E-03

±2.53E-03

f15 4.62E+01

±3.55E-01

3.32E+01

±1.46E+01

3.98E+01

±1.89E+01

4.52E+01

±1.29E+01

2.98E+01

±1.13E+01

3.71E+01±1.31E+01 4.81E+01

±3.48E-01

4.89E+01

±3.81E-02

4.62E+01

±2.84E-01

f16 0.00E+00

±0.00E+00

1.23E-03

±3.22E-03

4.51E-03

±6.47E-03

4.93E-04

±1.88E-03

1.48E-03

±3.40E-03

4.76E-03±6.72E-03 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00
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Table 7. (Continued)

F IMMSADE CIPDE EBDE EDE EJADE LSHADE-SPACMA DEPSO ATLDE DEGH

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f17 1.01E+02

±8.39E+01

3.04E+01

±3.96E+00

4.85E+00

±2.75E+00

5.06E+01

±4.17E+00

7.13E+01

±5.00E+01

1.79E+01±3.67E+00 3.32E-02

±1.82E-01

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f18 1.83E-10

±5.52E-10

1.61E-02

±7.54E-03

7.29E-12

±1.83E-11

1.65E-09

±4.57E-09

1.48E-04

±7.40E-04

3.47E-08±7.60E-08 5.02E-47

±2.74E-46

3.23E-26

±5.24E-26

0.00E+00

±0.00E+00

f19 0.00E+00

±0.00E+00

5.31E-02

±1.71E-01

2.40E+00

±1.44E+00

1.59E-01

±4.13E-01

6.38E-01

±6.82E-01

1.10E+00±1.03E+00 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f20 1.87E-01

±3.36E-02

2.33E-01

±4.79E-02

5.40E-01

±1.10E-01

2.73E-01

±4.50E-02

7.87E-01

±1.20E-01

6.53E-01±1.01E-01 9.99E-02

±1.61E-07

5.03E-02

±5.04E-02

0.00E+00

±0.00E+00

f21 4.29E+01

±1.81E+01

1.33E+01

±2.55E+00

1.18E+01

±1.31E+00

1.51E+01

±1.98E+00

3.15E+01

±1.97E+01

5.76E+00±9.21E-01 9.00E-02

±1.44E-01

7.70E-01±2.11E

+00

0.00E+00

±0.00E+00

f22 1.26E-12

±5.58E-12

7.11E-15

±0.00E+00

1.64E+00

±3.02E-01

3.36E-11

±8.02E-11

2.93E-02

±1.60E-01

3.67E-15±6.49E-16 0.00E+00

±0.00E+00

3.55E-15±0.00E

+00

0.00E+00

±0.00E+00

f23 3.11E-10

±1.65E-09

3.16E-04

±1.33E-03

2.69E+00

±1.06E+00

4.70E-03

±1.25E-02

1.08E+00

±3.82E-01

6.68E-02±2.26E-01 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f24 1.18E+00

±1.33E-01

4.31E-02

±6.88E-03

1.27E-02

±6.58E-03

6.26E-02

±6.31E-03

1.53E-01

±6.56E-02

6.26E-02±7.72E-03 1.22E+00

±1.52E-01

1.86E+00

±1.81E+00

0.00E+00

±0.00E+00

f25 6.34E-01

±5.71E-02

2.74E-01

±5.82E-02

4.64E-01

±8.71E-02

3.00E-01

±4.38E-02

4.15E-01

±9.54E-02

4.29E-01±7.21E-02 9.98E-01

±9.79E-02

7.17E-01

±1.20E-01

4.97E-01

±6.37E-02

f26 4.37E-01

±6.17E-02

4.74E-01

±1.15E-01

5.86E-01

±2.60E-01

4.84E-01

±1.34E-01

5.49E-01

±1.92E-01

5.25E-01±2.45E-01 5.00E-01

±3.82E-05

4.65E-01

±3.60E-02

4.40E-01

±2.81E-02

f27 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

7.40E-17

±1.68E-16

1.48E-17

±8.11E-17

1.11E-15

±9.04E-16

0.00E+00±0.00E

+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f28 9.01E+00

±7.50E-01

1.83E+00

±2.76E-01

1.66E+00

±1.94E-01

2.21E+00

±2.53E-01

1.62E+00

±2.41E-01

1.40E+00±1.57E-01 1.15E+01

±2.53E+00

1.68E-16

±9.22E-16

0.00E+00

±0.00E+00

f29 2.65E+01

±1.06E+00

6.35E+00

±5.41E-01

5.90E+00

±5.59E-01

7.60E+00

±5.99E-01

7.67E+00

±1.13E+00

6.63E+00±1.39E+00 2.09E+01

±3.02E-01

2.29E+01

±3.36E-02

1.90E+01

±1.11E+00

f30 9.43E+01

±3.36E+01

3.26E-05

±1.58E-04

1.07E-03

±4.15E-03

3.53E+00

±1.14E+00

9.12E+01

±4.08E+01

3.28E+01±7.36E+00 0.00E+00

±0.00E+00

1.05E-07

±5.72E-07

0.00E+00

±0.00E+00

f31 9.47E-04

±3.81E-04

9.42E-33

±1.39E-48

8.27E-29

±1.65E-28

5.24E-24

±1.15E-23

2.08E-24

±5.75E-24

9.42E-33±1.39E-48 1.68E-01

±3.42E-02

5.00E-01

±1.11E-01

1.41E-13

±1.08E-13

f32 6.04E-02

±1.82E-02

2.05E-31

±7.30E-32

1.29E-27

±3.02E-27

4.29E-23

±5.07E-23

7.47E-22

±3.19E-21

1.45E-31±1.92E-33 9.58E-01

±1.61E-01

3.66E+00

±6.65E-01

3.57E-12

±3.28E-12

Best results are shown in bold

https://doi.org/10.1371/journal.pone.0250951.t007

Table 8. Mean and STD obtained by eight enhanced DEs and DEGH on benchmark functions at 100D.

F IMMSADE CIPDE EBDE EDE EJADE LSHADE-SPACMA DEPSO ATLDE DEGH

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 3.03E-18

±8.83E-18

3.36E-15

±2.32E-15

6.91E-08

±7.44E-08

2.22E-06

±3.59E-06

4.58E-07

±8.46E-07

1.85E-04±2.37E-04 1.95E-95

±8.97E-95

2.54E-53

±5.85E-53

0.00E+00

±0.00E+00

f2 1.67E-14

±8.56E-14

5.43E-10

±7.83E-10

3.98E-03

±6.90E-03

2.31E-02

±3.61E-02

2.62E-01

±6.27E-01

2.01E+03±3.34E+03 1.43E-91

±6.88E-91

4.00E-48

±1.22E-47

0.00E+00

±0.00E+00

f3 5.02E-11

±1.93E-10

1.28E-08

±1.23E-08

3.18E-01

±6.01E-01

3.66E+01

±1.64E+02

2.60E+00

±5.91E+00

1.04E+03±1.40E+03 3.78E-92

±1.88E-91

1.44E-47

±3.00E-47

0.00E+00

±0.00E+00

f4 1.04E+04

±9.86E+03

2.36E+02

±7.04E+01

2.37E+02

±9.21E+01

8.66E+02

±1.95E+02

3.06E+02

±1.33E+02

5.77E+02±2.38E+02 1.98E-89

±1.07E-88

5.20E-50

±2.50E-49

0.00E+00

±0.00E+00

f5 4.44E-09

±2.17E-08

1.48E-07

±2.39E-07

1.11E-03

±1.72E-03

1.06E-03

±2.16E-03

1.43E-02

±2.40E-02

2.02E-06±1.07E-05 1.41E-46

±7.70E-46

5.56E-27

±4.77E-27

0.00E+00

±0.00E+00

f6 1.01E-03

±3.16E-03

8.53E+00

±1.13E+00

1.53E+01

±1.73E+00

9.68E+00

±1.31E+00

1.26E+01

±1.90E+00

9.38E+00±1.62E+00 1.40E-49

±3.71E-49

1.13E-22

±1.51E-22

0.00E+00

±0.00E+00

(Continued)
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Table 8. (Continued)

F IMMSADE CIPDE EBDE EDE EJADE LSHADE-SPACMA DEPSO ATLDE DEGH

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f7 9.83E-51

±5.34E-50

1.92E+33

±1.03E+34

1.38E+42

±6.75E+42

1.66E+52

±9.09E+52

6.20E+24

±2.11E+25

3.33E+28±1.83E+29 4.01E-110

±1.49E-109

4.82E-115

±1.45E-114

0.00E+00

±0.00E+00

f8 5.21E-16

±2.45E-15

2.03E-15

±1.44E-15

2.73E-08

±2.79E-08

4.37E-07

±5.91E-07

2.49E-07

±4.55E-07

4.14E-09±4.98E-09 5.34E-97

±2.07E-96

7.95E-54

±2.06E-53

0.00E+00

±0.00E+00

f9 3.76E-18

±1.55E-17

1.39E-14

±1.04E-14

3.00E-07

±4.65E-07

1.79E-06

±2.28E-06

3.10E-06

±5.36E-06

2.22E-03±4.04E-03 3.86E-95

±1.47E-94

2.24E-52

±5.15E-52

0.00E+00

±0.00E+00

f10 2.52E-11

±1.16E-10

1.27E-06

±6.16E-07

2.37E-03

±1.88E-03

1.99E-02

±1.03E-02

5.39E-04

±4.33E-04

5.09E-02±4.31E-02 6.72E-54

±1.58E-53

3.58E-30

±7.75E-30

0.00E+00

±0.00E+00

f11 -5.00E-01

±5.04E-01

2.66E-16

±6.90E-17

3.19E-12

±4.24E-12

7.66E-11

±1.52E-10

1.50E-11

±1.29E-11

3.59E-16±8.59E-17 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f12 1.55E-13

±6.31E-13

1.86E-13

±1.92E-13

1.25E-08

±1.12E-08

8.12E-07

±1.18E-06

1.79E-07

±1.81E-07

2.55E-12±4.47E-12 7.42E-99

±2.33E-98

1.87E-51

±8.03E-51

0.00E+00

±0.00E+00

f13 5.01E-01

±1.70E-01

5.54E-15

±7.33E-15

6.33E-08

±8.57E-08

8.20E-07

±7.28E-07

4.89E-07

±6.08E-07

2.20E-04±2.09E-04 1.77E+01

±5.63E-01

2.24E+01

±8.51E-01

9.23E-04

±6.82E-04

f14 3.99E-01

±2.34E-01

3.89E-02

±1.17E-02

1.30E-01

±3.10E-02

3.76E-02

±1.00E-02

1.34E-01

±3.56E-02

3.15E-02±1.44E-02 3.84E-01

±2.38E-01

1.47E-03

±6.19E-04

5.67E-03

±4.66E-03

f15 9.67E+01

±3.47E-01

1.57E+02

±5.33E+01

2.45E+02

±6.61E+01

2.60E+02

±5.90E+01

1.48E+02

±5.25E+01

1.71E+02±5.07E+01 9.84E+01

±2.42E-01

9.89E+01

±4.28E-02

9.63E+01

±2.34E-01

f16 5.88E-16

±3.07E-15

5.40E-03

±1.26E-02

1.54E-02

±2.23E-02

6.77E-03

±1.78E-02

5.06E-03

±1.38E-02

1.76E-02±2.08E-02 1.35E-03

±7.42E-03

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f17 1.12E+02

±2.09E+02

1.81E+02

±8.87E+00

9.62E+01

±1.06E+01

2.54E+02

±1.40E+01

1.28E+02

±5.62E+01

4.22E+01±5.93E+00 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f18 1.26E-08

±2.97E-08

1.93E+00

±3.09E+00

1.31E+01

±1.16E+01

8.52E-04

±1.15E-03

1.76E+00

±2.59E+00

4.11E-02±1.98E-02 2.63E-48

±1.43E-47

2.04E-26

±3.54E-26

0.00E+00

±0.00E+00

f19 0.00E+00

±0.00E+00

3.94E+00

±2.57E+00

7.30E+00

±2.94E+00

7.22E+00

±2.74E+00

5.65E+00

±3.12E+00

1.61E+01±3.92E+00 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f20 2.10E-01

±3.02E-02

6.63E-01

±9.64E-02

1.44E+00

±2.64E-01

8.93E-01

±1.11E-01

2.57E+00

±3.13E-01

1.28E+00±2.36E-01 9.99E-02

±9.01E-08

6.14E-02

±4.86E-02

0.00E+00

±0.00E+00

f21 3.74E+01

±4.06E+01

8.12E+01

±6.33E+00

5.29E+01

±5.76E+00

7.97E+01

±8.23E+00

6.39E+01

±1.38E+01

2.98E+01±9.94E+00 1.85E-02

±2.35E-02

6.05E-03

±6.47E-03

0.00E+00

±0.00E+00

f22 2.69E-09

±1.42E-08

1.66E+00

±3.23E-01

3.46E+00

±6.09E-01

1.61E+00

±2.88E-01

1.90E+00

±2.27E-01

2.32E+00±3.51E-01 0.00E+00

±0.00E+00

3.55E-15±0.00E

+00

0.00E+00

±0.00E+00

f23 5.09E-06

±2.62E-05

3.04E+00

±1.13E+00

2.28E+01

±3.69E+00

2.94E+00

±9.32E-01

1.37E+01

±2.09E+00

2.51E+00±1.41E+00 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f24 2.08E+00

±1.53E-01

1.65E-01

±1.86E-02

7.63E-02

±1.35E-02

3.03E-01

±3.02E-02

5.53E-01

±1.77E-01

1.64E-01±1.90E-02 2.10E+00

±1.76E-01

2.17E+00

±2.11E+00

0.00E+00

±0.00E+00

f25 8.62E-01

±5.26E-02

4.97E-01

±8.12E-02

5.94E-01

±8.92E-02

4.72E-01

±7.18E-02

6.18E-01

±1.04E-01

6.70E-01±7.55E-02 1.14E+00

±1.06E-01

8.72E-01

±1.24E-01

7.32E-01

±7.18E-02

f26 5.19E-01

±7.04E-02

5.83E-01

±1.76E-01

5.90E-01

±2.75E-01

5.82E-01

±2.00E-01

6.00E-01

±2.33E-01

5.63E-01±2.46E-01 5.00E-01

±6.76E-14

4.92E-01

±7.42E-03

4.80E-01

±1.52E-02

f27 0.00E+00

±0.00E+00

1.70E-16

±2.72E-16

1.98E-12

±2.55E-12

6.72E-11

±8.22E-11

2.77E-11

±3.99E-11

2.89E-16±3.69E-16 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f28 2.77E+01

±1.70E+00

8.61E+00

±5.41E-01

7.23E+00

±5.74E-01

9.49E+00

±8.67E-01

6.88E+00

±6.23E-01

5.98E+00±5.64E-01 2.76E+01

±1.06E+01

1.05E-10

±5.46E-10

0.00E+00

±0.00E+00

f29 6.54E+01

±7.53E+00

2.49E+01

±1.32E+00

2.68E+01

±3.24E+00

2.85E+01

±2.08E+00

2.83E+01

±4.85E+00

1.29E+01±2.23E

+00

4.39E+01

±4.10E-01

4.59E+01

±3.80E-02

4.56E+01

±3.82E-01

f30 3.38E+02

±1.26E+02

3.67E+01

±4.74E+00

1.77E+01

±3.83E+00

7.98E+01

±1.14E+01

2.17E+02

±8.27E+01

8.14E+01±1.40E+01 0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

0.00E+00

±0.00E+00

f31 4.51E-03

±2.07E-03

1.80E-19

±1.33E-19

1.04E-03

±5.68E-03

2.68E-11

±2.86E-11

1.04E-03

±5.68E-03

1.58E-15±1.47E-15 3.64E-01

±5.49E-02

8.34E-01

±1.26E-01

6.01E-07

±2.62E-07

f32 5.73E-01

±1.30E-01

4.51E-17

±3.96E-17

1.25E-02

±1.87E-02

5.77E-10

±6.91E-10

3.33E-03

±5.17E-03

3.70E-04±2.03E-03 4.22E+00

±8.46E-01

9.51E+00

±5.48E-01

2.19E-03

±5.88E-03

Best results are shown in bold

https://doi.org/10.1371/journal.pone.0250951.t008
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to population size NP; 2) DEGH is insensitive to F except F = 0.1; 3) For all compared DE vari-

ants, DEGH has the best overall performance.

As an extension of this research work, the following aspects are the future research direc-

tions. 1) Binary version of DEGH and its application in flight sequencing system; 2) Apply

DEGH to the optimization of neural network parameters and further apply it to flight trajec-

tory prediction. 3) Hybridize DE with other emerging meta-heuristic algorithms.

Fig 6. The results of the Friedman and Kruskal-Wallis tests for all algorithms at D = 30, 50, 100.

https://doi.org/10.1371/journal.pone.0250951.g006

Table 10. The Wilcoxon’s rank-sum test results for all algorithms at D = 30, 50, 100.

DEGH vs. D = 30 D = 50 D = 100

R+ R− p-value R+ R− p-value R+ R− p-value
IMMSADE 369 37 6.59e-05 398 37 4.44e-05 444 21 3.14e-05

CIPDE 235 143 3.63e-04 358 138 9.10e-06 449 79 3.44e-07

EBDE 359 137 1.31e-05 408 120 1.33e-06 478 50 9.01e-08

EDE 281 125 6.59e-05 419 109 1.24e-06 462 66 1.05e-07

EJADE 371 157 3.63e-06 416 112 8.15e-07 481 47 5.68e-08

LSHADE-SPACMA 282 153 8.84e-05 357 108 8.94e-06 466 62 5.68e-08

DEPSO 351 0 2.92e-04 325 0 5.43e-04 305 20 6.71e-04

ATLDE 337 14 2.10e-04 335 16 4.05e-04 310 15 9.62e-04

https://doi.org/10.1371/journal.pone.0250951.t010

Table 9. The results of Wilcoxon’s signed-rank test at the 0.05significance level between DEGH and eight DE variants.

DEGH vs D = 30 D = 50 D = 100

+/−/� +/−/� +/−/�

IMMSADE 26/2/4 27/2/3 29/1/2

CIPDE 19/8/5 24/7/1 27/5/0

EBDE 24/7/1 26/6/0 29/3/0

EDE 21/7/4 26/6/0 27/5/0

EJADE 24/8/0 26/6/0 29/3/0

LSHADE-SPACMA 21/8/3 24/6/2 27/5/0

DEPSO 26/0/6 25/0/7 24/1/7

ATLDE 25/1/6 25/1/6 24/1/7

https://doi.org/10.1371/journal.pone.0250951.t009
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Fig 7. Convergence curves of the mean function error values for f1, f17, f25 and f31 at D = 30, 50, 100. The horizontal

axis and the vertical axis are generations and the mean function error values over 30 independent runs.
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