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Abstract

Porous materials have been widely used in the field of noise control. The non-acoustical

parameters involved in the sound absorption model have an important effect on the sound

absorption performance of porous materials. How to identify these non-acoustical parame-

ters efficiently and accurately is an active research area and many researchers have

devoted contributions on it. In this study, a modified particle swarm optimization algorithm is

adopted to identify the non-acoustical parameters of the jute fiber felt. Firstly, the sound

absorption model used to predict the sound absorption coefficient of the porous materials is

introduced. Secondly, the model of non-acoustical parameter identification of porous materi-

als is established. Then the modified particle swarm optimization algorithm is introduced

and the feasibility of the algorithm applied to the parameter identification of porous materials

is investigated. Finally, based on the sound absorption coefficient measured by the imped-

ance tube the modified particle swarm optimization algorithm is adopted to identify the non-

acoustical parameters involved in the sound absorption model of the jute fiber felt, and the

identification performance and the computational performance of the algorithm are dis-

cussed. Research results show that compared with other identification methods the modi-

fied particle swarm optimization algorithm has higher identification accuracy and is more

suitable for the identification of non-acoustical parameters of the porous materials. The

sound absorption coefficient curve predicted by the modified particle swarm optimization

algorithm has good consistency with the experimental curve. In the aspect of computer run-

ning time, compared with the standard particle swarm optimization algorithm, the modified

particle swarm optimization algorithm takes shorter running time. When the population size

is larger, modified particle swarm optimization algorithm has more advantages in the run-

ning speed. In addition, this study demonstrates that the jute fiber felt is a good acoustical

green fibrous material which has excellent sound absorbing performance in a wide fre-

quency range and the peak value of its sound absorption coefficient can reach 0.8.
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1 Introduction

Nowadays porous materials have been widely used in the field of noise control. Many research-

ers have devoted contributions on the sound absorption performance of these materials. The

sound absorption performance of materials is commonly characterized by the sound absorp-

tion coefficient (SAC). The SAC of materials can be experimentally evaluated using the imped-

ance tube [1] or be predicted using acoustic transfer analysis method along with experimental

measurements [2]. Allard and Attala demonstrated the prediction of the SAC of porous mate-

rials by using the transfer matrix method [3].

There are two main models for porous materials to predict their SAC in previous studies

[4]: the empirical model represented by Delany-Bazley (DB) model [5] and the phenomeno-

logical model represented by Johnson-Champoux-Allard (JCA) model [6]. The empirical

model only needs to measure the air flow resistivity and then establish respectively the power-

law relations between the characteristic impedance and the air flow resistivity, and the rela-

tions between the propagation constant and the air flow resistivity by fitting a large number of

measurements. It is obvious that the empirical models are easy to implement. However, the

empirical model does not consider the microstructure of the pores, and moreover, each empir-

ical model is usually best suitable for certain type of materials and certain frequency ranges.

The phenomenological model takes the influence of micro-factors on the acoustical properties

of the materials into account. They consider the frame of a porous material as rigid and involve

five non-acoustical parameters for the surface impedance calculation, namely porosity, tortu-

osity, air flow resistivity, viscous and thermal characteristic lengths [7]. The phenomenological

model establishes a relationship between the microstructure and the acoustic performance

through characterizing porous materials with equivalent fluid, which makes them have higher

prediction accuracy.

As a representative of the phenomenon model, the JCA model is now the most widely used

model in predicting the SAC of porous materials [8]. The prediction accuracy of the SAC con-

siderably depends on the measurement precision or identification precision of the material

non-acoustical parameters [9]. Measurement of the non-acoustical parameters is not a simple

task, as it involves dedicated measurement facilities that are not very common to all acoustic

characterization laboratories [10]. In that case the inverse acoustic characterization method is

adopted by many researchers to identify the non-acoustical parameters. The main focus of the

method is on the reduction of error between the experimental data and the theoretically pre-

dicted data.

Many optimization techniques have been adopted to perform the inverse acoustic charac-

terization method in recent years. Some researchers used traditional optimization techniques

like least squares technique [11]. Atalla and Panneton solved the inverse characterization prob-

lem of three parameters in the JCA model based on differential evolution algorithm [12]. Pele-

grinis et al. used the Nelder-Mead simplex optimization method to solve the error

minimization problem [13]. Cobo et al. combined four models and simulated the annealing

algorithm to retrieve non-acoustical parameters of the granular acoustic absorbing materials

[14]. Bonfiglio and Pompoli compared the effect of different methods applied to determine the

physical parameters of porous materials [15]. The research results of literature [15] show that

the analytical method and the iterative method are difficult to deal with the non-linear con-

strains and the optimization solution time of the iterative method is relatively long, the quality

of the optimal results for the Nelder-Mead simplex optimization depends considerably on the

setting of initial parameters, and the local searching ability of the genetic algorithm is relatively

poor and it involves complicated encoding and decoding process.
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The particle swarm optimization (PSO) algorithm is also one of the methods used for the

inverse characterization problems [16]. The PSO algorithm presents many advantages over

other algorithms as it is robust and suitable for the nonlinear design space and it can easily

handle continuous, discrete and integer variable types. As a population-based optimization

algorithm the PSO algorithm requires lower computational effort [17]. Bansod and Mohanty

performed the inverse estimation for the non-acoustical parameters of the jute material with

the PSO algorithm and obtained good results of the inverse estimation [17]. However, it is

worth noting that for some large-scale nonlinear optimization problems, PSO algorithm is

easy to encounter a local optimum solution. In order to avoid this issue, some improvements

and modifications have been proposed. The modification approach of PSO algorithm could be

grouped as initial solution settings, solution space deduction, evolution process improvement,

and heuristic rule, etc. [18].

In this study, a modified particle swarm optimization (MPSO) algorithm is adopted to

identify the non-acoustical parameters of the jute fiber felt. The main contributions of this

paper are twofold: (1) The identification performance and computation performance of the

MPSO algorithm applied to identifying the non-acoustical parameters of the natural porous

materials are explored; (2) The sound absorption performance of the natural jute fiber felt in a

wide frequency range is revealed.

The remainder of this article is organized as follows. A sound absorption model of porous

materials is introduced in Section 2. In Section 3, a non-acoustical parameter identification

model is established. In Section 4, a modified particle swarm optimization algorithm is illus-

trated. And in Section 5, application of the modified particle swarm optimization algorithm in

the non-acoustical parameters identification of the jute fiber felt is investigated and discussed. In

the last section, concluding remarks are provided and directions for future work are highlighted.

2 Sound absorption model

As the semi-empirical model, JCA model is the most widely used sound absorption model. It

contains five physical parameters, namely that, porosity ϕ, air flow resistivity σ, tortuosity α1,

viscous characteristic length Λ and thermal characteristic length Λ’. Porosity is the percentage

of pore volume occupied by saturated medium (generally air) compared to the total volume of

the material in the natural state. Air flow resistivity has important influence on the sound

absorption performance of porous materials. It is usually defined as the resistance of air flow-

ing through the porous material with certain thickness. Tortuosity of porous materials is the

deviation between the actual path and the straight path of the sound waves in materials, which

represents the complexity of the material pores. Both the porosity and the tortuosity are

dimensionless quantities. The viscous characteristic length represents the magnitude of the vis-

cous force and the thermal characteristic length describes the degree of thermal exchange

between the saturated medium in the pore and the solid frame at high frequencies.

According to the JCA model, the effective density ρe(ω) and bulk modulus Ke(ω) of the

porous materials can be calculated using the following expressions.

reðoÞ ¼ a1r0 1 � j
s�

a1r0o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where ω is the angular frequency of the incident wave, j is the imaginary unit, ρ0 is the air den-

sity, Npr is the Prandtl number of air, η is the dynamic viscosity of air, γ is the specific heat

ratio related to the air state, and P0 is the ambient atmospheric pressure. It needs to be noted

that Λ and Λ’ are associated with some other physical parameters of the materials and they can

be written as

L ¼
1

c
8a1Z

s�

� �1=2

L0 ¼
1

c0
8a1Z

s�

� �1=2

ð3Þ

where c and c´ are shape factor and scale factor of the pore cross section, respectively.

The characteristic impedance Zc (ω) and complex propagation constant ke (ω) of porous

materials can be deduced by Eqs (1) and (2), and they can be expressed as Eqs (4) and (5).

ZcðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KeðoÞreðoÞ

p
ð4Þ

keðoÞ ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffi
reðoÞ

KeðoÞ

s

ð5Þ

Considering that the porous material with thickness d is backed by the rigid boundary, the

sound absorption coefficient (SAC) α of the porous material can be denoted by the following

equations.

ZsðoÞ ¼ � j
ZcðoÞ

�
cot keðoÞdð Þ ð6Þ

R ¼
ZsðoÞ � Z0

ZsðoÞ þ Z0

ð7Þ

a ¼ 1 � R2 ð8Þ

where Zs (ω) is the surface characteristic impedance, Z0 is the air characteristic impedance and

is equal to ρ0c0, in which c0 is the sound speed, and R is the sound reflection coefficient.

3 Non-acoustical parameter identification model

In the JCA model there are five non-acoustical parameters that need to be identified: porosity,

air flow resistivity, tortuosity, viscous characteristic length and thermal characteristic length.

In this study, the main task is to identify four parameters except the porosity by means of the

optimization techniques as the porosity can be calculated out based on the measured density.

It can be seen from Eq (3) that the viscous characteristic length Λ and thermal characteristic

length Λ´ are functions of the shape factor c and scale factor c´ of the pore cross section,

respectively. The range of the characteristic length value is commonly from 1 to 3000, whereas

the value of shape factor c or scale factor c´ generally ranges from 0.3 to 3.3. The shape factor c
and scale factor c´ are selected as the design variables instead of the viscous characteristic

length and thermal characteristic length because narrowing the solution space helps to con-

verge to a reasonable solution. Set the dimension of the particle D to 4, thus the four compo-

nents in the particle’s position vector represent four unknown parameters in the JCA model,

namely x = [σ, α1, c, c´].

It is obvious that the non-acoustical parameter identification is essentially a constrained

multi-dimensional parameter optimization problem. The objective is to find the global optimal

parameters to make the predicted SAC most consistent with the experimental SAC. According
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to the principle of the least square method, the fitness function and the constraints can be

given in Eq (9).

min fobj ðfi; xÞ ¼
XT

i¼1

½aEXPðfiÞ � aJCAðfi; xÞ�
2

s:t:

1000 � s � 200000

1 � a1 � 4

0:3 � ðc; c0Þ � 3:3

c � c0

8
>>>>>>><

>>>>>>>:

ð9Þ

where T is the number of sampling frequency points in the testing frequency range, fi is the ith
frequency point sampled in the experiment, αEXP denotes the SAC measured at the frequency

fi, and αJCA denotes the SAC predicted by the JCA model at the same frequency.

4 Optimization algorithm

In this section the optimization algorithm adopted to solve the non-acoustical parameter iden-

tification model of the porous materials is presented.

4.1 Standard particle swarm optimization algorithm

Particle swarm optimization (PSO) algorithm was first proposed by Kennedy and Eberhart in

1995 [19], which is an efficient population-based stochastic search technique. The PSO algo-

rithm regards an individual as a particle without weight or volume in the search space. Each

particle in the swarm represents a candidate solution to the optimization problem and flies at a

certain speed in the multi-dimensional search space. The flight state can be described by the

velocity vector and the position vector. Suppose that in the D-dimensional space the current

position of ith particle (i = 1, 2,. . ., N) is xi = [xi1, xi2,. . ., xiD] and the current velocity is vi =

[vi1, vi2, . . ., viD], where N denotes the swarm size. The best position encountered by the ith
particle itself is pbest and the best position in the whole swarm is gbest. The position vector of the

particle is dynamically adjusted according to its momentum and both the individual and the

global memories. The particle therefore takes advantage of the best position to make itself fly

towards the optimal solution. Update of the particle velocity and position is written as

vkþ1

id ¼ wvk
id þ c1r1ðp

k
id � xk

idÞ þ c2r2ðg
k
id � xk

idÞ ð10Þ

xkþ1

id ¼ xk
id þ vkþ1

id ð11Þ

where vk
id and xk

id denote the current velocity and the current position of the ith particle at dth

dimension in the kth iteration, pk
id and gk

id denote pbest and gbest respectively, w is the inertia

weight which is used to realize the effective control of the particle’s flight velocity, c1 and c2 are

two acceleration coefficients reflecting the level of self-cognition and social cognition among

the particles, r1 and r2 are two random numbers uniformly distributed in the interval [0, 1].

Note that, the solution space is bounded by [xmin, xmax] and the velocity is bounded by [vmin,

vmax].
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4.2 Modified particle swarm optimization algorithm

In this subsection, inspired by the previous research work the improvements of the PSO algo-

rithm are made from the following three aspects.

4.2.1 Chaotic initialization. Standard PSO mostly adopts the random distribution strat-

egy to generate the initial population. In the case of a large search space it is difficult for the ini-

tial population to give a high ergodic degree, which affects the solving efficiency of the PSO

algorithm. To improve the quality of particles, the initial position and velocity are initialized

with a pseudo-random chaotic sequence. The chaotic sequences are constructed by the chaotic

logistic map, and the map relationship can be expressed as [20]

ziþ1 ¼ m� zi � ð1 � ziÞ i ¼ 0; 1; 2; � � � ð12Þ

where zi denotes the ith chaotic variable which is distributed in the interval (0, 1) and μ is a

predetermined constant called bifurcation coefficient. When μ2[3.57, 4] and zi =2{0, 0.25, 0.5,

0.75, 1}, the dynamic system behaves a completely chaotic state [21]. At this time, the track of

chaotic variables can be guaranteed to traverse the entire search space. The detailed procedure

of the chaotic initialization algorithm in this study is outlined as follows.

Step 1. Set iteration number and bifurcation coefficient. Randomly construct a D dimensional

initial chaotic variable z1 = [z11, z12, . . ., z1D]; each dimension component is a random num-

ber that distributes between 0 and 1.

Step 2. If component values of the chaotic variable zi are 0, 0.25, 0.5, 0.75 and 1, give the com-

ponent a small perturbation by Eq (13) and then update zi using Eq (12); otherwise update

zi directly using Eq (12) without any changes.

zi ¼ zi þ 0:1 � r ð13Þ

where r is a random number.

Step 3. Suppose N is the preset largest iteration times which is equal to the swarm size. If the

iteration number i = N, then stop the iteration; otherwise set i = i+1, and then go back to

step 2.

Step 4. After the iteration is completed, the chaotic matrix [z1; z2; . . .; zN] is formed by N cha-

otic vectors. Then remap each element in the matrix from the chaotic region (0, 1) into the

initial solution space according to Eq (14).

xid ¼ xd
min þ zidðx

d
max � xd

minÞ; d ¼ 1; 2; . . . ;D ð14Þ

4.2.2 Sigmoid-based acceleration coefficients. In order to obtain the balance between

the global search competence early in the algorithmic process and the global convergence late

in the algorithmic process, literature [22] proposed the adjusting strategy of the acceleration

coefficients based on the sigmoid function. The sigmoid-based acceleration coefficients can be

written as

ck
1
¼

1

1þ expð� ltÞ
þ 2 c1f � c1i

� �
ðt � 1Þ

2
ð15Þ

ck
2
¼

1

1þ expð� ltÞ
þ c1f � c1i

� �
ðtÞ

2
ð16Þ
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where λ is the control parameter used to adjust the values of the sigmoid-based acceleration

coefficients (λ = 0.0001), c1f and c1i are constants and the values are 2.5 and 0.5, respectively

[22]. τ is defined as the ratio of the current iteration times k to the maximum iteration times

M. In the early solution process, when τ = 0 the value of c1 begins to decrease nonlinearly from

2.5 and the value of c2 begins to increase nonlinearly from 0.5, which makes the initial particles

disperse into the solution space. When τ = 1, the value of c1 drops to 0.5 and the value of c2

rises to 2.5. Under such conditions the tendency for the particles approaching to the optimal

position of the group is strengthened.

4.2.3 Adaptive inertia weight. In order to balance the global exploration capacity and the

local search optimum capacity, the adaptive inertial weight factor strategy is adopted to

dynamically change the inertia weight according to the fitness values. The adaptive inertial

weight factor is often used in conjunction with the chaotic sequence to improve the perfor-

mance of searching optimum [23]. The inertia weight can be expressed as

wk
i ¼

wmin þ
ðwmax � wminÞðf ki � f kminÞ

f kavg � f kmin

; f ki � f kavg

wmax ; f ki > f kavg

8
><

>:
ð17Þ

where wk
i and f ki .represent the inertial weight and fitness value of the ith particle in the kth iter-

ation, wmax and wmin are the maximal and the minimal values of the inertial weight, f kavg and

f kmin denote the average fitness value and the minimum fitness value of current total particles,

respectively. If the fitness value is smaller than its average value, a relatively small w is given to

slow down the velocity of the particles in local space to find the global optimal solution. If the

fitness value is larger than its average value, the step length of searching optimum needs to be

increased to improve the capacity of global searching optimum by setting the inertial weight

value as the maximum wmax.

4.3 Implementation of the modified particle swarm optimization algorithm

The flow chart of the MPSO algorithm is shown in Fig 1 and the detailed steps of the algorithm

are summarized as follows.

Step 1. Input parameter values to the algorithm, including D, N, M, wmax, wmin, xmin, xmax, vmin

and vmax.

Step 2. Initialize velocity and position of the particles based on the chaotic initialization algo-

rithm mentioned above, then calculate the fitness for all particles in current population

according to Eq (9). At the same time record the current optimal position of the individual

particle pbest and the global optimal position gbest.

Step 3. Set k = 1.

Step 4. Determine ck
1

and ck
2

by Eqs (15) and (16).

Step 5. Set i = 1.

Step 6. Calculate f kavg and f kmin of current particle population.

Step 7. Determine ok
i by Eq (17).

Step 8. Update the velocity vk
i and position xk

i of the particles based on Eqs (10) and (11).

PLOS ONE Parameter identification of sound absorption model of porous materials

PLOS ONE | https://doi.org/10.1371/journal.pone.0250950 May 4, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0250950


Fig 1. Flow chart of the MPSO algorithm.

https://doi.org/10.1371/journal.pone.0250950.g001
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Step 9. If the position and velocity are out of the range, adjust them by using Eqs (18) and (19).

xk
id ¼

xd
min; xk

id < xd
min

xk
id; xd

min � xk
id � xd

max

xd
max; xk

id > xd
max

8
><

>:
ð18Þ

vk
id ¼

vd
min; vk

id < vd
min

vk
id; vd

min � vk
id � vd

max

vd
max; vk

id > vd
max

8
><

>:
ð19Þ

Step 10. Calculate the fitness f ki of the current particle by Eq (9).

Step 11. Update pbest and gbest.

Step 12. If i< N, set i = i+1 and go back to step 7, otherwise go to the next step.

Step 13. If k<M, set k = k+1 and go back to step 4, otherwise terminate the algorithm and out-

put the final optimal solution gbest according to the minimum fitness value.

Run the MPSO algorithm many times and then determine the final optimal results accord-

ing to the smallest fitness value. The optimal viscous characteristic length and thermal charac-

teristic length can be calculated through the shape factor c and the scale factor c´ according to

Eq (3). Thus the JCA prediction model with identified parameters is determined.

4.4 Verification of the modified particle swarm optimization algorithm

Verification of the feasibility for the MPSO algorithm applied to parameter identification of

porous materials is carried out based on the relevant data offered by literature [24]. In litera-

ture [24], analytical method, indirect method, genetic algorithm and iterative method were all

used to predict the five non-acoustical parameters of a polyurethane foam, respectively. The

measured values of the air flow resistivity, porosity and tortuosity of this material were listed

in Table 1. Literature [25] used the method of multi-levels inverse estimation to obtain the five

non-acoustical parameter values for the same material. In this study the MPSO algorithm is

also utilized to estimate the five parameters of the same material. Set the maximum iteration

number M as 150 and the population size N as 50. The wmin and wmax of the inertial weight are

Table 1. Parameter values measured and identified by the above mentioned methods.

Parameters Air flow resistivity σ (N�s/

m4)

Porosity ϕ Tortuosity α1 Viscous characteristic length Λ
(μm)

Thermal characteristic length Λ’

(μm)Methods

Measured-[24] 5359 1 1.08 - -

Analytical method-[24] 6641 0.9 1.03 83 267

Indirect method-[24] 6414 0.99 1.15 135 250

Genetic algorithm-[24] 6252 0.99 1.14 132 251

Iterative method-[24] 6200 0.99 1.10 130 250

Multi-levels inverse estimation-

[25]

5658 0.98 1 100 250

MPSO algorithm 5340 0.99 1.12 121 271

https://doi.org/10.1371/journal.pone.0250950.t001

PLOS ONE Parameter identification of sound absorption model of porous materials

PLOS ONE | https://doi.org/10.1371/journal.pone.0250950 May 4, 2021 9 / 16

https://doi.org/10.1371/journal.pone.0250950.t001
https://doi.org/10.1371/journal.pone.0250950


set as 0.4 and 0.9, respectively. The parameter values identified by the above mentioned meth-

ods are listed in Table 1.

In Table 1, the relative errors of the air flow resistivity identified by the methods addressed

in literature [24] are all more than 15%. The relative error of air flow resistivity identified by

the method of multi-levels inverse estimation is reduced to 5.2%, while the relative errors of

the porosity and the tortuosity are increased obviously [25]. However, for the MPSO algo-

rithm, the relative error of the air flow resistivity is reduced to 0.35%, and the relative errors of

the porosity and the tortuosity are 1% and 3.70%, respectively. It is obvious that among the

above methods the MPSO algorithm has the most advantages in identifying the non-acoustical

parameters involved in the JCA model of the porous materials.

5 Application of modified particle swarm optimization algorithm

In this section the MPSO algorithm is adopted to identify the non-acoustical parameters

involved in the JCA model of the jute fiber felt based on the SAC measured by the impedance

tube. The SAC predicted by the JCA model is compared with the experimental SAC. And the

identification performance and computation performance of the MPSO algorithm are

discussed.

5.1 Jute fiber felt sample

Natural fibers have better sound absorption performance due to their naturally formed porous

structure [8]. Jute fiber is a kind of natural fiber with excellent performance and it is com-

monly used as vehicle ceiling, door interior frame, seat back, and other interior trim substrates

and acoustic packaging materials [26]. The jute fiber is stacked, heated and bonded into a felt-

like form after the mixing, carding and net-paving process. The microscopic structure under

environmental scanning electron microscopy of the jute fiber felt is shown in Fig 2, and the

statistical average of the fiber diameter is 23.67 μm.

Fig 2. SEM photograph of the jute fiber felt.

https://doi.org/10.1371/journal.pone.0250950.g002
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The porosity of the jute fiber felt can be estimated according to Eq (20).

� ¼ ð1 � rm=rf Þ � 100% ð20Þ

in which, ρm is the density of the jute fiber felt sample, ρf is the density of the raw material and

the porosity of the jute fiber felt comes out to be 0.96.

The jute fiber felt is made into two circular samples with different diameters. Their diame-

ters match with the inner diameters of the large and small impedance tubes, respectively. The

geometric and physical parameters of the two samples are listed in Table 2, where L and S indi-

cate the large-diameter and the small-diameter samples, respectively.

5.2 Testing of the sound absorption coefficient for the jute fiber felt

In order to obtain the SAC curve of the jute fiber felt the SAC testing system shown in Fig 3 is

established, which consists of two sets of B&K 4206 impedance tubes, the power amplifier, the

sound calibration instrument and the PULSE analysis software, etc. Two jute fiber felt samples

and the impedance tube installed with a sample are displayed in Fig 4.

The acoustic impedance tube test system is used to measure the SAC of the samples accord-

ing to the ISO 10534–2: 1998 [27]. The large diameter impedance tube is used to measure the

SAC of the sample at the frequency ranging from 250 Hz to 1600 Hz, and the small diameter

impedance tube is applied to the frequency ranging from 500 Hz to 6000 Hz. It is obvious that

Table 2. Geometric and physical parameters of the samples.

Parameters Sample L Sample S Average

Diameter (mm) 100.92 31.5 -

Thickness (mm) 18.93 18.65 18.79

Density (kg/m3) 43.14 40.72 41.93

Porosity 0.96 0.96 0.96

https://doi.org/10.1371/journal.pone.0250950.t002

Fig 3. SAC testing system of the jute fiber felt.

https://doi.org/10.1371/journal.pone.0250950.g003

Fig 4. Jute fiber felt samples and the impedance tube installed with a sample.

https://doi.org/10.1371/journal.pone.0250950.g004
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there is an overlap of the SAC values at the frequency ranging from 500 Hz to 1600 Hz. The

SAC values in the overlap frequency range can be calculated according to Eq (21) [28].

atotal ¼ 1 �
f � 500

1100

� �

aS þ
f � 500

1100
aL ð21Þ

where αS and αL represent the SAC measured by the small tube and the large tube,

respectively.

5.3 Results and discussion

In this subsection the identification performance and the computational performance of the

MPSO algorithm are discussed.

5.3.1 Comparison of the identification performance. Based on the experimental SAC

and the porosity of the jute fiber felt, the standard PSO algorithm and the MPSO algorithm are

adopted to identify the non-acoustical parameters involved in the JCA model of the jute fiber

felt. Set the maximum iterative number M as 150 and the population size N as 50. The wmin

and wmax of the inertial weight are set as 0.4 and 0.9, respectively. In the standard PSO algo-

rithm, c1 and c2 are both set as 2 and the inertial weight reduces linearly [29]. The rest parame-

ters of the PSO algorithm are set the same as those of the MPSO algorithm. The optimization

process runs ten times independently. The optimal parameter values and the fitness values are

listed in Table 3.

It can be seen from Table 3 that the average fitness value of MPSO algorithm is much lower

than that of the PSO algorithm. For the MPSO algorithm the difference between the maximum

and the minimum fitness values is not significant, which demonstrates the optimization pro-

cess is stable. The excellent performance of the MPSO algorithm is mainly attributed to the

improvements of the PSO algorithm in three aspects. The chaotic initialization mechanism

enables the MPSO algorithm to generate a diverse initial population before entering iteration.

Both the sigmoid-based acceleration coefficient and the adaptive inertia weight factor are con-

ducive to the emergence of the optimal solution and the stability of the MPSO algorithm.

Substitute the values of the non-acoustical parameters shown in Table 3 into the JCA model

to predict the SAC of the jute fiber felt. The predicted SAC curve and the experimental curve

are shown in Fig 5. As can be observed from Fig 5, the jute fiber felt has excellent sound

absorbing performance in a wide frequency range and the peak value of SAC can reach 0.8.

Compared with the SAC curve predicted by the PSO algorithm, the SAC curve predicted by

the MPSO algorithm has better consistency with the experimental curve. Therefore, it demon-

strates that the MPSO algorithm has more advantages in predicting the non-acoustical param-

eters of the JCA model for the porous materials.

5.3.2 Comparison of the computational performance. In order to verify the efficiency of

the MPSO algorithm and analyze the influence of population size on the algorithm perfor-

mance, two cases are tested with different population size (N = 50, 100, 150). Results of the

comparison are shown in Figs 6 and 7.

Table 3. Comparison of the identification results by the PSO and MPSO algorithms.

Algorithms Fitness values Optimal non-acoustical parameter values (Min.)

Min. Max. Avg. Std. Air flow resistivity σ (N�s/

m4)

Tortuosity

α1
Viscous characteristic length Λ

(μm)

Thermal characteristic length Λ´

(μm)

PSO 0.8411 89.1185 46.6094 38.6162 13629 1 353 353

MPSO 0.2497 2.4874 1.1448 1.1555 12742 1 267 267

https://doi.org/10.1371/journal.pone.0250950.t003
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It can be seen from Fig 6(a) that the CPU time costed by the two algorithms increases with

the population size, which is caused by the increase of computational effort. With the same

population size the MPSO algorithm takes the shorter CPU running time which is 4.2% aver-

age less than the running time taken by the PSO algorithm. With the increase of population

size, the MPSO algorithm has more advantages in terms of running speed. As shown in Fig 6

(b), the optimal average fitness values of the MPSO and PSO algorithms decrease with the

Fig 5. Comparison of the three SAC curves of the jute fiber felt.

https://doi.org/10.1371/journal.pone.0250950.g005

Fig 6. CPU time and average fitness value for two algorithms at the case of N = 50, 150 and 250. (a) CPU time. (b) Average

fitness value.

https://doi.org/10.1371/journal.pone.0250950.g006
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increasing of the population size. Moreover, for three different population size the average fit-

ness values of the MPSO algorithm are very small, which indicates that the MPSO algorithm

has more advantages in searching the global optimal solution.

As can be seen from Fig 7, the average fitness value of the PSO algorithm decreases quickly

at the beginning of iteration and the activity of the population particles reduces after a few

times of iteration, which leads the algorithm to converge quickly and the optimal solution

tends to fall into the local optimum. And the smaller the population size is, the more likely it is

to fall into local optimum. It means that for the case of standard PSO algorithm in order to

obtain better identification performance for the non-acoustical parameters it needs larger pop-

ulation size, while larger population size means higher computing time cost. Compared with

the PSO algorithm the average fitness value of the MPSO algorithm decreases slowly at the

beginning of iteration and the curves maintain downward trend even in the later period of

iteration, which demonstrates the strong global search capability and avoids the problem of

premature convergence. Moreover, the average fitness value of MPSO algorithm is not easily

affected by the population size. Even if the population size is smaller the MPSO algorithm can

still obtain the better solution. In other words, the MPSO algorithm can achieve the global

minimum with high tolerance for the variations of the population size and the control parame-

ters. The MPSO algorithm presents good performance in the identification of the non-acousti-

cal parameters for the natural porous materials.

6 Conclusions

In this study, a MPSO algorithm is adopted to identify the non-acoustical parameters involved

in the sound absorption model of the porous materials. The feasibility of the MPSO algorithm

applied to the non-acoustical parameter identification of porous materials is investigated. The

identification performance and the computational performance of the MPSO algorithm in

identifying the non-acoustical parameters of the jute fiber felt are discussed. Research results

show that the MPSO algorithm can accurately and effectively identify the non-acoustical

parameters involved in the JCA model of the porous materials. Compared with the standard

PSO algorithm the SAC curve predicted by the MPSO algorithm has better consistency with

Fig 7. Iterative results of PSO and MPSO algorithms.

https://doi.org/10.1371/journal.pone.0250950.g007
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the experimental SAC curve, and in terms of the computer running time the MPSO algorithm

costs shorter time, especially when the population size increases the MPSO algorithm presents

more obvious advantages. In addition, this study demonstrates that the jute fiber felt is a good

acoustical green fibrous material which has excellent sound absorbing performance in a wide

frequency range and the peak value of its SAC can reach 0.8.

This study is limited in a specific condition, i.e., variability is not considered properly.

Future research could analyze the effect of different algorithm parameters on the solution qual-

ity and convergence speed, which is conducive to demonstrating the algorithm robustness and

obtaining more effective parameter design. Future possible work is to propose more efficient

evolutionary algorithms to solve parameter identification problems with more practical

constraints.
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