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Abstract

To address the problem of low accuracy and poor robustness of in situ testing of the com-

pressive strength of high-performance self-compacting concrete (SCC), a genetic algorithm

(GA)-optimized backpropagation neural network (BPNN) model was established to predict

the compressive strength of SCC. Experiments based on two concrete nondestructive test-

ing methods, i.e., ultrasonic pulse velocity and Schmidt rebound hammer, were designed

and test sample data were obtained. A neural network topology with two input nodes, 19 hid-

den nodes, and one output node was constructed, and the initial weights and thresholds of

the resulting traditional BPNN model were optimized using GA. The results showed a corre-

lation coefficient of 0.967 between the values predicted by the established BPNN model and

the test values, with an RMSE of 3.703, compared to a correlation coefficient of 0.979

between the values predicted by the GA-optimized BPNN model and the test values, with

an RMSE of 2.972. The excellent agreement between the predicted and test values demon-

strates the model can accurately predict the compressive strength of SCC and hence

reduce the cost and time for SCC compressive strength testing.

Introduction

Construction of large-span and super high-rise concrete structures has become a current trend

[1], posing an increasingly stringent requirement for the compressive strength of concrete. For

this reason, self-compacting concrete (SCC) with high strength, self-compacting ability, and

excellent load-bearing performance has been gradually used in civil engineering. The existing

compressive strength testing protocol generally requires that test cubes be reserved, but they

are easily lost at the construction site [2]. During the project acceptance process, the compres-

sive strength of concrete as an important acceptance criterion is a key concern of construction

project participants [3]. Therefore, how to conduct the in situ testing of SCC compressive

strength has become an urgent problem to be solved [4–8].
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Lin et al. [9] developed a backpropagation neural network (BPNN) model to predict the

ultrasonic pulse velocity (UPV) of concrete using two parameters, i.e., the aggregate content

and water-cement ratio of concrete. Duan et al. [10] constructed a neural network (NN)

model with only one hidden layer to accurately predict the compressive strength of recycled

aggregate concrete. Asteris et al. [11] established an NN model with 11 input parameters to

predict the compressive strength of admixture-based concrete. Anderson and Seals [12] estab-

lished prediction models for the nondestructive testing (NDT) of the compressive, flexural,

and tensile strengths of six different types of concrete based on experimental results, and veri-

fied the applicability of NN models. Garzón-Roca et al. [13] combined artificial NNs (ANNs)

and fuzzy logic to estimate the compressive strength of masonry structures made of clay bricks

and cement mortar based on available test results. Zhou et al. [14] accurately predicted the

compressive strength of hollow concrete cube masonry by combining ANNs and a fuzzy logic

system. Getahun et al. [15] constructed an NN model with a single hidden layer to predict the

compressive and tensile strengths of concrete incorporated with agricultural and construction

wastes. Torre et al. [16] established a multilayer perceptron network to very accurately predict

the compressive strength of ultra-high-performance concrete.

In the practical application of BPNN for compressive strength prediction, BPNN is suscep-

tible to being trapped in the local optima and often has slow iterative convergence. To over-

come this problem, the genetic algorithm (GA) can be used to optimize the weights and

thresholds of BPNN to avoid BPNN being trapped in the local minima as well as improve the

convergence rate and accuracy of BPNN [17].

In this study, a BPNN model was proposed to predict the compressive strength of SCC, and

GA was used to optimize the initial weights and thresholds of the BPNN. A dataset consisting

of 600 data points of UPV, rebound value, and cube compressive strength was obtained experi-

mentally, and the compressive strength was predicted using UPV and the rebound value as

input parameters. The NN was trained using the experimentally obtained dataset, and the pre-

dicted results were compared with the test results to verify the performance of the constructed

NN. The model was implemented using MATLAB software. The accuracy of the model was

calculated using the actual test data to demonstrate the feasibility of the model. The results

showed that the proposed model can very reliably predict the compressive strength of SCC

and realize the NDT of the compressive strength of SCC, to facilitate the testing of the com-

pressive strength of SCC by construction personnel.

Materials and methods

This study aimed to establish an ANN-based ultrasonic-rebound method for predicting the

compressive strength of SCC. The UPV and rebound methods are two of the most reliable

methods for nondestructive evaluation (NDE) of construction materials. In this study, the two

methods were used to test SCC member specimens that were prepared using concrete grades

of C50, C60, C70, C80, C90, and C100.

Test materials

The materials used in the test included cement, river sand, limestone gravel, slag powder, fly

ash, silica fume, a water reducing agent, and admixture (Fig 1). The chemical composition of

raw materials is shown in Table 1. The Nanfang brand ordinary Portland cement with high

activity (with a grade of 52.5 MPa) was selected for the SCC in this study. Table 2 lists the gra-

dation of river sand; then, sand with a diameter larger than 5 mm and smaller than 160 μm

was removed. The particle size of the limestone gravel aggregates was controlled at 5 to 20

mm. The property indices of S95 slag powder used in the test are listed in Table 3. To improve
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the workability and alleviate the cracking of the concrete, grade I fly ash was used in the test;

its property indices are provided in Table 4. The property indices of the microsilica fume used

in the test are presented in Table 5. The water reducing agent of PCA polycarboxylic acid series

was used to achieve good water reduction and ensure concrete fluidity. The ZW self-compact-

ing nonshrinkage concrete admixture was used.

Specimen preparation

The mix proportions of SCC using concrete grades C50 to C100 were obtained by referring to

relevant literature and specifications, as shown in Table 6.

Six sets of 100 test cubes each with a size of 150 mm × 150 mm × 150 mm were prepared

with concrete grades of C50, C60, C70, C80, C90, and C100 MPa to be used in the rebound,

ultrasonic-rebound combined, and cube compressive strength tests [18, 19]. To prepare the

test cubes, first, the mixer was started, with the drum of the mixer moistened with water to pre-

vent the otherwise dry inner wall from affecting the water-cement ratio. Then, coarse and fine

aggregates (gravel and sand) were added to the mixer and mixed well, followed by addition of

the cementitious materials (fly ash, slag powder, cement, and the SCC admixture) and mixing

for ten minutes until it was evenly mixed. Finally, the water reducing agent was dissolved in

tap water, added to the mixer, and mixed for 15 minutes.

After mixing, the concrete was cast in the moulds and allowed to stand at room temperature

for 24 hours while keeping the concrete surface moist. Then, the concrete was demoulded after

its initial setting, the specimens were placed in a curing tank at a constant temperature of 60˚C

for three days, removed from the curing tank, and sprinkled with water and covered with plas-

tic film for curing at room temperature for 28 days.

Test procedure

After 28 days of curing, the specimens were subjected to the ultrasonic, rebound, and cube

compressive strength tests. The specific procedures are as follows:

Fig 1. Materials.

https://doi.org/10.1371/journal.pone.0250795.g001

Table 1. Chemical composition of the main raw materials.

Raw material Main chemical composition

Cement CaO (64–67%), SiO2 (20–23%), Al2O3 (4–8%), Fe2O3 (3–6%)

Silica fume SiO2 (90–95%)

Fly ash SiO2 (33–59%), Al2O3 (16–35%), Fe2O3 (1–19%), CaO (1–10%)

Slag powder CaO (30–42%), SiO2 (35–38%), Al2O3 (10–18%), MgO (5–14%)

https://doi.org/10.1371/journal.pone.0250795.t001
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UPV measurement by the ultrasonic method. The ultrasonic method used a nonmetallic

ultrasonic detector to measure the sound velocity. The cast surface of the specimen was used

as a test surface, and the exact measurement point on the opposite surface of the specimen was

located and coated with the coupling agent. Then, three sound velocities were measured at the

ultrasonic measurement point, and their mean value was taken as the final sound velocity of

the cube specimen [6, 20]. The schematic diagram of the ultrasonic method test is shown in

Fig 2.

Rebound measurement by the rebound method. A high-strength rebound meter with

an impact energy of 4.5 J was used for the test. After the sound velocity measurement was com-

pleted, the test cube coated with the coupling agent was wiped clean and then placed on a

press and subjected to a compression of 30 to 50 kN (with lower compression for lower grade

concrete cubes). The pair of opposite surfaces not used in the sound velocity test were each

subjected to a total of eight rebound strokes. During the rebound test, the rebound hammer

was perpendicular to the measurement area, the compression was applied slowly, and the read-

ing was reset quickly. The three maximum and three minimum values were eliminated, and

the mean value of the remaining ten values was used as the representative rebound value R

(accurate to 0.1) of the specimen. The rebound test is schematically shown in Fig 3. Fig 4 illus-

trates the distribution of the ultrasonic-rebound measurement points, with the ultrasonic mea-

surement points labelled as “1” and the rebound measurement points labelled as “2”.

Cube compressive strength test. After the ultrasonic and rebound tests, each test cube

was directly compressed to failure (Fig 5) at a compression rate of 8–10 kN/s to obtain the

compressive strength f ccu of the test cube (accurate to 0.1 MPa [21]).

The detailed laboratory protocols has been deposited in protocols. io(dx.doi.org/10.17504/

protocols.io.btjnnkme [PROTOCOL DOI]).

Test results

Each cubic specimen was tested successively using the UPV method, the rebound method, and

the cube compressive strength test. The test data were recorded and compiled into datasets for

the rebound value, UPV, and cube compressive strength. The rebound values and UPVs

increased with the compressive strength grade of the test cubes. These data were divided into

three groups according to R, VP and fc, and used to produce the three different boxplots

shown in Figs 6–8 below.

Comparative analysis

The rebound and ultrasonic methods are the two most commonly used methods for NDT of

the compressive strength of concrete. The rebound value is affected by factors such as the test

specimen’s surface smoothness, size, shape, hardness, surface and internal concrete moisture,

and cement type. The rebound method is convenient and quick and can be used on a single

Table 2. Gradation of the river sand.

Sieve size 5.0 mm 2.5 mm 1.25 mm 630 μm 315 μm 160 μm

Cumulative percentage retained (%) 4 26 34 44 56 67

https://doi.org/10.1371/journal.pone.0250795.t002

Table 3. Property indices of the slag powder.

Material Strength Density (g/cm3) Specific surface area (m2/kg) Loss on ignition (%) Chloride ion (%) Fluidity ratio (%) Water content (%)

Slag powder S95 2.89 425 0.60 0.036 102 0.28

https://doi.org/10.1371/journal.pone.0250795.t003
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concrete surface. The ultrasonic test method requires measurement on both sides of a concrete

element, and it is the most popular technique for testing the compressive strength of concrete.

The ultrasonic method is suitable for evaluating the uniformity of concrete. There are many

factors that affect the UPV, but they do not necessarily affect the compressive strength of con-

crete, thus making it very difficult to directly evaluate the concrete compressive strength using

this method. To date, the theoretical relationship between the rebound value, the UPV, and

the concrete compressive strength has been proposed by many researchers. Table 7 lists the

relational expressions for the two internationally recognized NDT methods, i.e., the UPV mea-

surement, the rebound measurement, and their combination. Fig 9 compares the equations

for UPV measurement and Fig 10 compares the equations used to measure the rebound value.

Fig 11 compares the equations for measurement made by combining the two methods; the

images show that the concrete compressive strengths calculated using these relational expres-

sions differ considerably and therefore need further improvement. In this study, ANN was

used to predict the concrete compressive strength.

Strength prediction model

ANN model development

An ANN is a computational model that simulates the biological neural structure. It is com-

posed of many interconnected neurons, with each node representing an output function (exci-

tation function) [31]. The weights that connect each neuron represent the effects of input

parameters on the output of the neuron and can be adjusted to produce a desired output.

ANN is designed to learn from the existing data, which are transferred from the input layer to

the output layer while the deviation between the actual value and the output value is mini-

mized, thereby achieving the mapping of input parameters to a given output [11, 32, 33]. The

NN architecture is shown in Fig 12. Each neuron receives the weighted input from the neuron

in the previous layer as the input, which is then transferred to other neurons through the acti-

vation function, so the information is represented by many cross-connected weights [34]. The

ultimate goal is to minimize the error between the actual output and the expected output.

The backpropagation (BP) algorithm is commonly employed to optimize parameters in

NN algorithms and BPNN has been widely adopted in civil engineering applications [35, 36].

Using the BP algorithm, the signal experiences both forward propagation and backward error

propagation. In forward propagation, the signal is transmitted from the input layer through

the hidden neurons to the output layer. In BP, the output error is calculated backwards accord-

ing to the original path through the hidden layer from the output layer. In this process, the

weights and thresholds are continuously updated until the output error of the network reaches

an acceptable level [37–40]. Traditionally, the BP algorithm determines the weights in the net-

work by the gradient descent method, which has a low computational speed due to its linear

Table 4. Property indices of the fly ash.

Material Grade Fineness (%) Water demand ratio (%) Loss on ignition (%) Water content (%)

Fly ash I 12 92 3.8 0.1

https://doi.org/10.1371/journal.pone.0250795.t004

Table 5. Property indices of the silica fume.

Material Loss on ignition (%) Chloride ion (%) Silica (%) Specific surface area (m2/kg) Water content (%) Water demand ratio (%) Activity index

Silica fume 2.5 0.014 94.05 2.51×104 1.1 113 112

https://doi.org/10.1371/journal.pone.0250795.t005
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convergence. The Levenberg-Marquardt algorithm has been adopted to increase the speed due

to its use of approximate second derivatives.

Information transfer of BPNN

BPNN is a feedforward multilayer ANN. The process of information transfer through a single

neuron in the hidden layer of the BPNN is shown in Fig 13. The BPNN can be described as fol-

lows:

I� H1� H2� H3� . . .Hn� O ð1Þ

where I is the number of input neurons, Hn is the number of hidden neurons in the nth layer,

n is the number of layers of hidden-layer neurons, and O is the number of output neurons.

The choice of the activation function f has a considerable influence on the performance of

an NN model. The sigmoid function is the most commonly used activation function, but it is

important to choose the most appropriate activation function for different research objects.

Reference [41] presents a thorough description of a large number of transfer functions. In the

present study, the default transfer functions of BPNN (i.e., the tansig function for the hidden

layer and the Purelin function for the output layer) are adopted.

Test data

An appropriate dataset is necessary to train a reliable NN model. The dataset must be obtained

through actual experiments and cover all possible data ranges. Because the NN model is devel-

oped through training with an existing dataset, the NN would not produce accurate prediction

Table 6. Mix proportions of SCC.

Test

ID

Cementitious materials Water (kg) Sand (kg) Gravel (kg) Water reducing agent

(kg)Total (kg) Cement (kg) Silica fume

(kg)

Fly ash

(kg)

Slag powder

(kg)

Admixture (kg)

A 331.21 226.86 0.00 13.61 56.71 34.03 104.06 446.70 550.00 0.95

B 353.10 254.38 15.10 15.26 30.20 38.16 97.24 440.81 550.00 1.01

C 375.32 251.32 33.74 18.82 33.74 37.70 93.01 402.58 550.00 2.15

D 376.94 253.07 33.51 18.89 33.51 37.96 86.21 411.38 550.00 2.51

E 359.91 226.87 44.11 21.10 33.80 34.03 79.12 417.07 550.00 2.75

F 347.82 224.00 44.66 11.27 34.30 33.60 74.73 420.00 550.00 2.99

https://doi.org/10.1371/journal.pone.0250795.t006

Fig 2. Schematic diagram of the ultrasonic test.

https://doi.org/10.1371/journal.pone.0250795.g002
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results if the data in the dataset are inaccurate. In this study, the dataset was obtained through

rigorous testing, where the rebound value, UPV, and cube compressive strength of each con-

crete specimen were measured successively. Fig 14 shows the frequency histograms of the data.

Table 8 presents the mean, maximum, and minimum values of the test data, as well as the stan-

dard deviations of R, VP, and FC for each group of test cubes.

The database has the following advantages:

1. The database provides a sufficient number of test data, that is, the experimentally measured

rebound values, UPVs, and cube compressive strengths of 600 specimens.

2. The test data were measured under the same test conditions, by the same person and with

the same equipment to eliminate measurement errors from equipment differences.

3. The data cover most possible cases. In Table 8, the rebound values range from 46.94 to

75.10, and the UPV values vary between 3.86 and 4.60 km/s, which are suitable for SCC

with a compressive strength in the 41.52 to 102.1 MPa range.

Fig 3. Schematic diagram of the rebound test.

https://doi.org/10.1371/journal.pone.0250795.g003

Fig 4. Distribution of ultrasonic and rebound measurement points.

https://doi.org/10.1371/journal.pone.0250795.g004
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Fig 5. Cube compressive strength test.

https://doi.org/10.1371/journal.pone.0250795.g005

Fig 6. Boxplot of experimental data (R).

https://doi.org/10.1371/journal.pone.0250795.g006
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Fig 8. Boxplot of experimental data (fc).

https://doi.org/10.1371/journal.pone.0250795.g008

Fig 7. Boxplot of experimental data (VP).

https://doi.org/10.1371/journal.pone.0250795.g007
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Data standardization

Data standardization is a critical step in the NN technology. To avoid the problem of a low

learning rate in NN models, the values of the corresponding parameters of data standardiza-

tion should be within the corresponding ranges. In this study, the input and output parameters

Table 7. Empirical relational expressions for estimating the compressive strength of concrete.

Equation ID Reference

f cðVpÞ ¼ 1:146e0:77Vp E1 Turgut [22]

f cðVpÞ ¼ 176:9� 96:467Vp þ 13:906ðVpÞ
2 E2 Logothetis [23]

f cðVpÞ ¼ 0:085e1:288Vp E3 Trtnik et al.

[24]

f cðVpÞ ¼ 1:19e0:715Vp E4 Nash’t et al.

[25]

f cðVpÞ ¼ 8:4�10� 9�ðVp � 103Þ
2:5921 E5 Kheder [26]

f cðVpÞ ¼ 1:2�10� 5�ðVp � 103Þ1:7447 E6 Kheder [26]

f cðRÞ ¼ � 9:40þ 0:52Rþ 0:02R2 E7 Logothetis [23]

f cðRÞ ¼ 0:4030R1:2083 E8 Kheder [26]

f cðRÞ ¼ 1:353R � 17:393 E9 Qasrawi [27]

f cðVp;RÞ ¼ e1:78lnðVpÞþ0:85lnðRÞ� 0:02 � 0:0981 E10 Logothetis [23]

f cðVp;RÞ ¼ 18:6 � e0:515Vpþ0:019R � 0:0981 E11 Arioglu and

Manzak [28]

f cðVp;RÞ ¼ ð0:10983þ 0:00157R � 0:79315ðVp=10Þ� 0:00002R2 þ 1:29261ðVp=10Þ
2
Þ � 103 E12 Amini et al.

[29]

f cðVp;RÞ ¼ 0:42Rþ 13:166Vp � 40:255 E13 Erdal [30]

f cðVp;RÞ ¼ 0:0158ð1000VpÞ
0:4254
� R1:1171 E14 Kheder [26]

https://doi.org/10.1371/journal.pone.0250795.t007

Fig 9. Calculation equations of UPV and compressive strength.

https://doi.org/10.1371/journal.pone.0250795.g009
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are normalized in the range of [–1, 1]. The data normalization equation is as follows:

yi ¼ 2�
y � ymin

ymax � ymin
� 1 ð2Þ

where yi is the normalized data, y is the raw data, and ymax and ymin are the maximum and

minimum values of the original data, respectively.

Performance of the model

The parameters need to be properly selected to construct the best prediction model. Therefore, it is

necessary to measure the goodness of fit of the prediction model using indices such as the Pearson

correlation coefficient (P), mean square error (MSE), mean absolute error (MAE), and absolute

percentage error (APE), etc. In this study, P and RMSE are used to evaluate the model perfor-

mance. The higher P is, the better the fit between the experimental and predicted values is. The

lower the RMSE is, the more accurate the prediction result is. The calculation equations follow.

The Pearson correlation coefficient, also known as the simple correlation coefficient,

describes the linear correlation between two variables. The Pearson coefficient is commonly

represented by P, which is given in Eq (3).

P ¼ 1�

XN

i¼1

ðXi� YiÞ
2

XN

1

ðXi�
�XÞ2

ð3Þ

The MSE reflects the degree of difference between the predicted and expected values. It is

calculated according to Eq (4).

MSE ¼

XN

i¼1

ðXi� YiÞ
2

N
ð4Þ

Fig 10. Calculation equations of rebound value and compressive strength.

https://doi.org/10.1371/journal.pone.0250795.g010
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The root mean square error (RMSE) is calculated by Eq (5).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

ð5Þ

where Xi is the expected output of the ith sample, �X is the sample mean, Yi is the predicted out-

put of the model, and N is the number of samples.

GA-optimized NN

A GA is a parallel stochastic search optimization method that simulates the theory of genetic

and biological evolution in nature. Similar to the biological evolution principle of “survival of

Fig 11. Images of empirical relationship functions for compressive strength using combined measurements.

https://doi.org/10.1371/journal.pone.0250795.g011
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the fittest” in nature, a GA creates an encoded tandem population by introducing optimization

parameters and ranks individuals in the population according to the chosen fitness function

through genetic operations (i.e., selection, crossover, and mutation); thus, individuals with

higher fitness values are retained while those with low fitness values are eliminated. The new

offspring population not only inherits the information from its parent generation but also out-

performs its parent generation. The generational iteration continues until the stopping crite-

rion is met. The flowchart of the GA-optimized BPNN algorithm is shown in Fig 15.

Results and discussion

Development of ANN model

A total of 57 different BPNN models were developed in this study. For each model, the 600

experimentally obtained data points were randomly divided into three parts: 420 data points

(70%) for training, 90 data points (15%) for verification, and 90 data points (15%) for testing.

A neural network model with only one hidden layer can reliably perform any prediction task

[42]. The number of neurons is usually determined using an empirical formula or by trial and

error. Therefore, the neural network is set to have one hidden layer containing 2 to 20 neurons

Fig 12. Diagram of the NN architecture.

https://doi.org/10.1371/journal.pone.0250795.g012
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[43–47]. The transfer functions consist of a hyperbolic tangent sigmoid transfer function in

the hidden layer and a linear purelin transfer function in the output layer. The MSE is used as

a criterion for terminating the neural network training. A lower MSE reflects more ideal

Fig 13. Information transfer through a single neuron in BPNN.

https://doi.org/10.1371/journal.pone.0250795.g013

Fig 14. Frequency histograms of the data.

https://doi.org/10.1371/journal.pone.0250795.g014
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network performance. The correlation coefficient P is used to measure the correlation between

the output and the target in the network, and the RMSE is used to evaluate the performance of

the generated network. The BPNN parameter settings are shown in Table 9.

Table 8. Statistics of the test datasets.

Test data Unit Data type Minimum Mean Maximum Standard deviation

C50 C60 C70 C80 C90 C100

Rebound value (R) - Input 46.94 61.90 75.10 1.87 0.17 3.17 1.87 0.17 3.17

UPV (Vp) km/s Input 3.86 4.60 5.05 1.65 0.22 3.79 1.65 0.22 3.79

Compressive strength (fc) Mpa Output 41.52 72.30 102.1 2.25 0.13 3.74 2.25 0.13 3.74

https://doi.org/10.1371/journal.pone.0250795.t008

Fig 15. Flowchart of the GA-optimized BPNN algorithm.

https://doi.org/10.1371/journal.pone.0250795.g015

Table 9. BPNN parameters.

Parameters Set value

Training algorithm Levenberg-Marquardt algorithm

Number of hidden layers 1

Number of neurons in a single hidden layer 2–20

Standardization [–1,1]

Network performance RMSE, P

Activation function Sigmoid, Purelin

https://doi.org/10.1371/journal.pone.0250795.t009
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Determination of the ANN architecture

To determine the optimal NN model for SCC compressive strength prediction, 57 different

BPNN models and three NN structures with different input parameters were developed, as

shown in Table 10.

The developed NN model was selected based on the RMSE values, and the results of the

three optimal structures are shown in Table 11. Fig 16 shows how the number of hidden-layer

neurons affects the performances of the three different BPNN architectures.

Table 10. BPNN structure based on different input parameters.

Case Input parameters Number of input parameters

1 VP 1

2 R 1

3 VP, R 2

https://doi.org/10.1371/journal.pone.0250795.t010

Table 11. Statistical index of different optimal BPNN structures.

Case Optimum BPNN model R RMSE

1 1-13-1 0.935 3.995

2 1-12-1 0.912 4.262

3 2-19-1 0.967 3.703

https://doi.org/10.1371/journal.pone.0250795.t011

Fig 16. Variation in the RMSE with the number of hidden neurons.

https://doi.org/10.1371/journal.pone.0250795.g016
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An examination of the data presented in Table 11 shows that 2-19-1 is the optimal BPNN.

The structures of the three BPNN models are shown in Figs 17–19. It is useful to develop three

optimal BPNN models because only VP or R can sometimes be measured in practice.

Optimization by GA

The optimal structure (2-19-1) of the BPNN model was determined experimentally. The

BPNN output results before optimization by GA are shown in Fig 20.

Fig 21 shows the performance of the best BPNN in terms of the MSE of the network, depict-

ing the gradual decrease in errors as the NN was trained on the specified training set to per-

form learning. The figure consists of three lines. The blue line represents the gradually

Fig 17. Optimal BPNN structure with two input parameters.

https://doi.org/10.1371/journal.pone.0250795.g017

Fig 18. Optimal BPNN structure with one input parameter (VP).

https://doi.org/10.1371/journal.pone.0250795.g018
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decreasing error on the training data and the green line shows the validation error. The train-

ing stopped when the validation error no longer decreased, which essentially avoided the prob-

lem of overfitting. The prediction error on the training set demonstrated the fit of our model,

while the error based on the validation set measured the performance of the model in predict-

ing new data. The red line exhibits the error on the test data, showing the generalization of the

data by the model. Fig 22 presents the training state of the network.

Fig 19. Optimal BPNN structure with one input parameter (R).

https://doi.org/10.1371/journal.pone.0250795.g019

Fig 20. BPNN output results before optimization.

https://doi.org/10.1371/journal.pone.0250795.g020
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The GA transforms the decision parameters of an optimization problem into chromosomes

using encoding methods and converts the optimization objective function into a fitness func-

tion that serves as the basis for evaluating the merits of the chromosomes and genetic opera-

tions [48–50]. In the present study, BPNN was organically combined with GA to improve the

accuracy of the NN model. The optimization of BPNN by GA was divided into the three parts

of determination of BPNN architecture, optimization by GA, and prediction by BPNN. The

parameters optimized by GA were the initial weights and thresholds of the BPNN. The indi-

vidual fitness values were calculated using the fitness function, and GA searched for the indi-

vidual corresponding to the optimal fitness value via selection, crossover, and mutation

operations. The initial weights and thresholds of the NN are generally random numbers initial-

ized to the interval [-0.5, 0.5], and they significantly influence the NN performance. For this

reason, GA was introduced to find the optimal initial weights and thresholds.

The output result of BPNN optimized by GA is shown in Fig 23. The results show that the

accuracy of the BPNN optimized by GA is much better than that before. Only one test data’s

prediction deviation is more than 10%, and the other data’s deviation is within 10% (the points

between the two dashed lines in Fig 23), The correlation coefficient between the test value and

the predicted value is 0.979. Fig 24 shows excellent agreement between the test results of 90

test samples and the prediction results of the best model.

Comparisons

All the experimental data are predicted using the proposed 2-19-1 BPNN model and the 14

empirical formulas presenting in Table 7. Table 12 ranks the methods according to the RMSEs

Fig 21. Performance of the model.

https://doi.org/10.1371/journal.pone.0250795.g021
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Fig 22. Training state of the network.

https://doi.org/10.1371/journal.pone.0250795.g022

Fig 23. GA-BPNN output results.

https://doi.org/10.1371/journal.pone.0250795.g023
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of the predicted results. Fig 25 shows the predictions of the first six models, the prediction

results of other models are shown in S1 Fig. The predictions of the proposed GA-BPNN model

are closest to the experimental results and hence more reliable. The previously developed

empirical formulas fail to eliminate the influences of the differences in the concrete materials

and mix proportions on the compressive strength and thereby produce large prediction errors.

Fig 24. Comparison of test data and predictions by the best model.

https://doi.org/10.1371/journal.pone.0250795.g024

Table 12. Models for concrete compressive strength prediction ranked according to RMSEs.

Rank Mathematical model Parameters References P RMSE

1 2-19-1 VP, R - 0.9761 3.360

2 E9 R Qasrawi 2000 [29] 0.9490 9.1322

3 E11 VP, R Arioglu et al. [31] 0.9157 10.6093

4 E8 R Kheder [28] 0.9491 15.5343

5 E14 VP, R Kheder [34] 0.9485 16.9512

6 E10 VP, R Logothetis [30] 0.9139 25.5159

7 E13 VP, R Erdal 2009 [33] 0.9063 28.4509

8 E7 R Logothetis [30] 0.9489 29.3858

9 E1 VP Turgut 2004 [25] 0.7874 34.9199

10 E12 VP, R Amini et al. [32] 0.2628 38.1740

11 E3 VP Trtnik et al. [26] 0.7819 41.7633

12 E4 VP I.H.Nash’t [27] 0.7877 42.4471

13 E6 VP G.F.Kheder [28] 0.7879 45.2446

14 E2 VP Logothetis [30] 0.7870 46.4956

15 E5 VP G.F.Kheder [28] 0.7885 48.2633

https://doi.org/10.1371/journal.pone.0250795.t012
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Conclusion

1. In this study, a BPNN topology consisting of a two-node input layer, a 19-node hidden

layer, and a one-node output layer was designed for the NDT of SCC compressive strength.

The rebound values and UPVs were experimentally obtained as the dataset and used as

input data, which well reflected the SCC strength.

2. To address the problem that the number of neurons in the hidden layer of the BPNN is dif-

ficult to determine, the best number of hidden-layer neurons was obtained by using the

RMSE as the evaluation index based on 57 tests.

3. In the SCC compressive strength prediction model proposed in this study, the initial

weights and thresholds of the traditional BPNN were optimized by GA, which reduced the

Fig 25. Comparison of the first six concrete compressive strength prediction models.

https://doi.org/10.1371/journal.pone.0250795.g025
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proneness of BPNN to be trapped in local extremes. This resulted in higher prediction accu-

racy than traditional BPNN and increased the correlation coefficient between the test data

and prediction results from 0.967 to 0.979, RMSE decreased from 3.703 to 2.972. Therefore,

the proposed method can be satisfactorily used for in situ testing of SCC compressive

strength. Compared with the traditional method of concrete compressive strength estima-

tion using linear regression equations, the proposed model has relatively high accuracy and

produces good results, thereby assisting engineers and researchers in estimating SCC com-

pressive strength.
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