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Abstract

Alzheimer’s disease (AD) is the commonest progressive neurodegenerative condition in

humans, and is currently incurable. A wide spectrum of comorbidities, including other neuro-

degenerative diseases, are frequently associated with AD. How AD interacts with those

comorbidities can be examined by analysing gene expression patterns in affected tissues

using bioinformatics tools. We surveyed public data repositories for available gene expres-

sion data on tissue from AD subjects and from people affected by neurodegenerative dis-

eases that are often found as comorbidities with AD. We then utilized large set of gene

expression data, cell-related data and other public resources through an analytical process

to identify functional disease links. This process incorporated gene set enrichment analysis

and utilized semantic similarity to give proximity measures. We identified genes with abnor-

mal expressions that were common to AD and its comorbidities, as well as shared gene

ontology terms and molecular pathways. Our methodological pipeline was implemented in

the R platform as an open-source package and available at the following link: https://github.

com/unchowdhury/AD_comorbidity. The pipeline was thus able to identify factors and path-

ways that may constitute functional links between AD and these common comorbidities by

which they affect each others development and progression. This pipeline can also be use-

ful to identify key pathological factors and therapeutic targets for other diseases and disease

interactions.

Introduction

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease (NDD) which is con-

sidered to be the current primary cause of dementia, causing most of all dementia cases (60%
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to 80%). 5,700,000 Americans are estimated to have AD in 2018, and this number is projected

to reach 13.8 million by 2050 [1]. It was a major cause of mortality in 2015, 110,561 deaths

from AD were officially recorded in that year in the United States [1]. The main features of

AD include cognitive deficiency including memory loss and diminished abilities to carry out

simple everyday activities [2], in addition to depression, apathy, hallucinations, delusions and

aggression [3]. Significant AD-related features seen in the central nervous system include

localized accumulations of beta-amyloid (Aβ) protein in plaques in the extracellular space and

tau protein tangles inside neurons. Whether these are primary causes or pathophysiological

responses to AD are unclear, but these features (and by implication the AD pathogenic pro-

cesses) can be present over 20 years before AD cognitive symptoms become clearly evident.

The pathogenic mechanisms that underlie AD initiation and development are very poorly

understood, although a number of genetic and environmental risk factors have been associated

with AD [4, 5]. The apolipoprotein E (APOE4) is evidenced to be related to AD throughout

the world population [6–8]. Genetic studies suggest that less than one percent of AD cases

arise due to genetic mutations involving the amyloid precursor protein (APP) and the preseni-

lin 1 and presenilin 2 protein-related genes that give rise to plaques [9]. Nevertheless, the

inheritance of APP or presenilin 1 gene mutants is associated with a high probability for AD

development, consistent with an important role for their corresponding proteins [10]. To this

day, no disease modifying drugs for AD are available, all the FDA approved drugs only allevi-

ate the symptoms. Most of the clinical trials for AD-therapeutics are Aβ-based and they have

failed [11].

Symptoms of other NDDs become evident at any point during the course of AD develop-

ment. Moreover, AD and some other NDDs share similar genetic and environmental risk fac-

tors indicating their possible coexistence. Parkinson’s disease (PD) is the second-most

common NDDs after AD, characterized by the deficiency of striatal dopamine due to the neu-

ronal loss in the substantia nigra, along with deposition of α-synuclein in neurons [12–14].

Neuronal death and neural dysfunction caused by oxidative stress and mitochondrial DNA

(mtDNA) variants are reported to be associated with both AD and PD [15, 16]. Huntington’s

disease (HD) is usually an inherited and autosomal dominant disorder that causes brain cell

damage [17]. Neuropathologic characteristics of PD, HD and AD are evidenced to be consis-

tent that involves neurotoxins in their pathogenesis [18]. Amyotrophic lateral sclerosis (ALS)

is a lethal NDD that triggers decay of motor neurons and eventually control of the motor sys-

tem is lost [19]. ALS and dementia share genetic sensitivity resulting in their co-occurrences

[20]. The TNFα-signaling axis and neuroinflammation, both play a significant role in the path-

ogenesis of ALS and AD [21]. Spinal Muscular Atrophy (SMA) is mostly an inherited NDD

with autosomal recessive nature. Both HD and SMA are entirely monogenic conditions caused

by a mutation in the huntingtin gene (HTT) [22] and the SMN1 gene [23] respectively. Lewy

Body Disease (LBD) is the primary cause of dementia after AD, particularly in aged people

[24]. The cognitive impairments resulted in both LBD and AD are directly associated with the

synaptic loss [25, 26]. α-synuclein is found to have a notable influence in the pathogenesis of

LBD and AD [27]. Frontotemporal dementia (FTD) is a focal variety of dementia associated

with the continuous deterioration surrounding the prefrontal and anterior temporal cortex

[28]. FTD and AD patients show identical executive functions which indicate similar abnor-

malities in the frontal lobes [29]. Multiple sclerosis (MS) is an inflammatory disease that affects

the brain and spinal cord, and results in intellectual trouble [30]. The central nervous system

of MS and AD patients exhibit a key contribution of the microglia activation [31]. Therefore,

the cognition impairment in AD highly influences the progression and presentation of other

NDDs.
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However, inadequate understanding of AD and its consequences, that means how these

NDDs and AD influence each other is unknown [32]. Such co-occurrences can be investigated

at a molecular level, for example by identifying genes with altered expression or molecular

pathways that are shared by the NDDs and AD [33]. Previously developed data analysis meth-

ods for disease comorbidity studies include comoR [34], POGO [35], CytoCom [36], comoR-

bidity [37] and Comorbidity4j packages [38]. comoR, POGO and comoRbidity are R packages

where the first one maps disease comorbidity leveraging patient diagnosis, gene expression

and clinical data. POGO predicts comorbidity risk using multiple omics analysis approaches

with, ontology and phenotype data. comoRbidity, on the other hand, integrates clinical data

along with genotype-phenotype information for comprehensive comorbidity analysis. Cyto-

Com is a Cytoscape App for disease comorbidity network visualization. Finally, Comorbidity4j

is an open-source Java-based web-platform that uses clinical information to identify a group of

comorbidity indices and thus provides significant disease comorbidity. However, the use of

gene expression analyses in the study of comorbidity may offer improved insights into AD dis-

ease mechanisms [39]. The availability of huge public transcriptomics resources such as micro-

array data and bioinformatics tools has enabled us to perform comorbidity analyses, i.e.,

identify gene pathways that enable two diseases to influence each other [40, 41]. This study

aims to take advantage of the transcriptomics data to demonstrate how AD and other NDDs

impact each other at the molecular level through a series of bioinformatics and computational

approaches.

Materials and methods

Data

We obtained gene expression datasets from the National Center for Biotechnology

Information (NCBI) Gene Expression Omnibus (GEO) and European Bioinformatics

Institute Array Express database. We queried for AD and found 531 datasets, most of them

were disqualified at the start by being very low sample size compared to our selected cut off

sample size 10, duplicate datasets, having inappropriate format or undesirable experimental

set-up, RNAseq datasets, and from organisms other than human. Thus we selected 8 datasets

to be highly relevant to AD and appropriate for our study. The finally selected gene expression

datasets for AD have the accession numbers: GSE1297, GSE110226, GSE33000, GSE48350,

GSE12685, GSE5281, GSE4229 and GSE4226. All datasets were generated using central ner-

vous system tissues and Affymetrix array platforms except GSE4226 and GSE4229 which were

MGC arrays of peripheral blood analyses. GSE1297 is a correlation analysis of hippocampal

tissues from nine control subjects and 22 AD patients with varying severity [42]. GSE110226

compared transcripts of choroid plexus from postmortem tissues of 6 healthy samples and 7

AD patients, 4 FTD patients and 3 HD patients [43]. GSE33000 analysed post mortem prefron-

tal cortex tissues of 310 AD patients, 157 HD patients and 157 non-demented samples [44].

GSE48350 is the profiling of hippocampus, entorhinal cortex, superior frontal cortex and post-

central gyrus regions in 170 healthy individuals and 80 AD cases [45]. GSE12685 is a compara-

tive study of gene expression for frontal cortex synaptoneurosomes between 6 normal controls

and 8 AD patients [46]. GSE5281 is obtained by analyzing 16 unaffected and 19 AD affected

tissues, specifically 6 central nervous system tissues: entorhinal cortex, hippocampus, medial

temporal gyrus, posterior cingulate, superior frontal gyrus and primary visual cortex cells [47].

GSE4229 is a study of genetic variations of peripheral blood mononuclear cells from 22 healthy

old people and 18 AD cases using the NIA Human MGC cDNA microarray [48]. GSE4226

compares peripheral blood mononuclear cells obtained from 14 normal elderly control (NEC)

and 14 AD affected subjects [49]. For the study of neurodegenerative comorbidity analysis of
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AD we selected GSE7621, GSE6613, GSE49036 and GSE54536 for PD; GSE93767, GSE110226

and GSE33000 for HD; GSE833 and GSE107375 for ALS; GSE27206 for SMA; GSE49036 for

LBD; GSE110226, GSE13162 and GSE40378 for FTD; GSE21942 for MS. GSE7621 is generated

by extracting RNA from substantia nigra tissue of postmortem brain of 9 controls and 16 PD

patients and hybridizing on Affymetrix microarrays [50]. GSE6613 is whole blood expression

data analysis from PD patients and controls [51]. GSE49036 is an overall study of gene expres-

sion of subtantia niagra tissue from PD patients, LBD cases and normal individuals [52].

GSE54536 is obtained through a whole-transcriptome comparison of the peripheral blood

from PD patients with healthy subjects [53]. GSE93767 is a transcriptional analysis of human-

induced pluripotent stem cells (hiPSC) using a CRISPR-Cas9 from HD cases compared with

controls [54]. GSE833 is a gene expression profiling of grey matter from post mortem spinal

cord of ALS patients and controls [55]. GSE107375 is a whole transcriptome expression analy-

sis of the motor cortex from 10 controls and 30 ALS cases [56]. GSE27206 is the gene expres-

sion data evaluation of induced pluripotent stem cells (iPS cells) for SMA [57]. GSE13162 is

obtained through global expression profiling using a microarray of postmortem brain cells

from the frontal cortex, hippocampus, and cerebellum [58]. GSE40378 is a gene expression

analysis by an array of induced pluripotent stem cell models [59]. GSE21942 is a comparison

of the expression level of genes for peripheral blood mononuclear cells between MS patients

and controls [60].

Gene ontologies

The gene ontology (GO) is a uniform illustration of gene and gene product attributes for all

organisms. This project aims to model a biological system starting from the molecular level

and expanding towards pathway, cellular and organism-level systems [61]. Among the three

categories of GO, we incorporated the biological process (BP) for annotation in this study. The

disease ontology (DO) project, on the other hand, represents comprehensive information

about inherited, developmental and acquired human diseases using open-source ontology

[62]. The DO terms used in this study for the corresponding diseases are AD DOID: 10652,

PD DOID: 14330, HD DOID: 12858, ALS DOID: 332, SMA DOID: 12377, LBD DOID: 12217,

FTD DOID: 9255 and MS DOID: 2377.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is the procedure of identifying differentially expressed

genes (DEGs) in a large set of genes, that may be correlated with disease phenotypes [63]. It

uses a set of statistical methods to group genes considering the commonality in their expres-

sion level, biological process or chromosomal position. This is done by comparing the expres-

sion pattern in disease condition and healthy state. These genes may be acquired using DNA

microarray or next-generation sequencing (NGS). The genes having a decisive level of expres-

sion are picked up as DEGs (both over and under-expressed).

Semantic similarity

Semantic similarity is a measure of similarity between terms (DEGs, GO, DO) using ontologies

by estimating a topological closeness [64]. This method uses directed acyclic graphs (DAGs) to

compute the information contented by each terms considering statistical annotations. The

exact position of these terms in the DAG and the connection with their predecessor terms

determines the semantic measure. An ontology term T can be denoted by the DAGs DAGT =

(T, AT, ET), where AT is a set of ancestor terms of T and ET is a set of edges connecting the

terms in DAGT that represent the semantic relation. At first, the semantic measure of each
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term is represented numerically as,

STðTÞ ¼ 1 t ¼ T

STðtÞ ¼ maxfwe � STðt0Þjt0 2 decendants of ðtÞg t 6¼ T

(

ð1Þ

Here t is a general term, t0 a descendant term and we the semantic participation of t with t0.
The inclusive semantic measure for T is

SMðTÞ ¼
X

t2AT

STðtÞ ð2Þ

Now, if DAGX = (X, AX, EX) and DAGY = (Y, AY, EY) are two terms X and Y respectively,

then their semantic similarity is

sem simðX;YÞ ¼
P

t2TX\TY
½SXðtÞ þ SYðtÞ�

SMðXÞ þ SMðYÞ
ð3Þ

Given two sets of terms T1 = {t11, t12, . . ..t1l} and T2 = {t21, t22, . . ..t2m} having lengths l and

m respectively, the semantic similarity the term sets T1 and T2 is

sem simBMAðT1;T2Þ ¼

Pl
i¼1

max1�j�msem simðt1i; t2jÞ þ
Pm

j¼1
max1�i�lsem simðt1i; t2jÞ

lþm
ð4Þ

with i, j indices on T1, T2 terms.

Overview of the analytical process

At first, the chosen gene expression datasets and their matrix information were downloaded

and converted to Expression Set class for differential gene expression analysis. We reviewed

the sample records (GSM) manually for sample classification and constructed design models

(patients, controls). The created design model for AD cases is AD patient vs healthy individual

and patient of neurodegenerative diseases vs healthy control for other cases. These design

models are then filtered using a linear and a Bayesian method. Using a threshold for p-value

and absolute log Fold Change (logFC) values to be at most 0.05 and at least 1.0 respectively,

DEGs are identified.

We constructed the topGOdata class using the selected genes by specifying the GO domain

and stipulating the annotation to perform the mapping. We then obtained the filter for GO

terms and their associations with the DEGs by employing the Fisher’s exact test. After that, we

performed the semantic similarity comparison among all the selected diseases considering

DEGs, GO terms and DO terms to measure the proximity for all the chosen datasets. We then

performed the KEGG pathway [65] analysis for the DEGs to find out significant molecular

pathways or diseases for AD and its comorbidity datasets. Finally, the statistical information,

genes-GO term associations, DAGs, semantic similarity measures along with dendrograms for

DEGs, GO terms and DO terms are generated as final output. Furthermore, we generated a

gene network using the common DEGs between AD and its comorbidities, with enlighten-

ment on the pathways/diseases. Fig 1 pictures the block diagram of the analytical process.

The implementation of the analytical approach is divided into two main R scripts, that are

available at: https://github.com/unchowdhury/AD_comorbidity. Various BioConductor 3.4 R

packages [66] were used to develop the analytical approach. We downloaded the selected data-

sets from the NCBI GEO and converted the data into form Expression Set class using GEOqu-

ery 2.40.0. GEOquery offers corresponding methods to access various types of GEO data [67].

Linear Models for Microarray Data (limma) 3.30.8 was used for differential gene expression
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Fig 1. Pipeline of the analytical approach.

https://doi.org/10.1371/journal.pone.0250660.g001

PLOS ONE Pipeline to identify comorbidities risk association: neurodegenerative disorder case study

PLOS ONE | https://doi.org/10.1371/journal.pone.0250660 May 6, 2021 6 / 20

https://doi.org/10.1371/journal.pone.0250660.g001
https://doi.org/10.1371/journal.pone.0250660


analysis by comparing the transcriptomic profiles of healthy subjects with that of the patients.

Limma provides compact collection of tools to analyze gene expression microarray data [68].

We filtered the genes using genefilter 1.56 for the threshold values p-value less than 0.05 and

absolute logFC greater than 1. Genefilter offers necessary methods to curate genes obtained in

high throughput experiments [69]. We incorporated the topGO 2.26 for the enrichment analy-

sis for GO and performed the Fisher’s exact test to obtain the topology of the DAG [70]. The

semantic similarity between the selected pathologies were determined for GO terms and DEGs

using GOSemSim 2.0.4 that serves as a quantitative tool for the semantic comparisons [71].

The semantic similarity for DO terms was evaluated by Disease Ontology Semantic and

Enrichment analysis (DOSE) 3.0.10 [72]. Finally, the KEGG pathway enrichment analysis was

performed using clusterProfiler 3.2.14, which offers statistical analysis and visualization meth-

ods for functional profiles of genes [73]. We used the GEO file transfer protocol (ftp) call to

download GEO datasets instead of using GEOquery package due to some interaction issues

with other used packages.

Results

Statistical summary and GO term trees

The statistics about all the chosen AD studies are mentioned in Table 1. The threshold for p-

values is 0.05 and for absolute logFC is 1.0 to obtain the number of genes shown in 4th, 5th

and 6th columns from left. The numbers shown in brackets for 6th column are obtained using

2.0 as threshold values of logFC. Similarly, Table 2 summarizes the statistics for the selected

neurodegenerative comorbid pathologies of AD. Table 3 shows the synopsis of the selected

datasets along with the number of analyzed DEG.

DAG of GO terms is constructed for each selected pathologies. The graphs manifest that all

the GO terms are not trivial and hence are hidden. Fig 2 shows such a DAG for the dataset

GSE12685 of AD study.

Table 1. Statistical summary for AD studies.

Dataset Tissue source Genes P-Value Adj.

P-Value

LogFC GO

Terms

Fisher

test

GSE110226 Choroid plexus 21003 6002 475 442 (24) 200 11

GSE12685 Frontal cortex synaptoneurosomes 13907 2986 1 180 (0) 211 26

GSE1297 Hippocampal CA1 Tissue 13907 2830 0 565 (10) 156 9

GSE33000 Prefrontal cortex 19518 16105 15858 0 (0) 201 26

GSE4226 Peripheral blood mononuclear 6571 457 0 581

(299)

84 21

GSE4229 Peripheral blood mononuclear 6571 332 0 432

(219)

135 6

GSE48350a Hippocampus 22832 10222 3515 322 (9) 147 14

GSE48350b Entorhinal cortex 22832 7002 645 114 (6) 197 7

GSE48350c Superior frontal cortex 22832 8419 2537 78 (6) 125 6

GSE48350d Post-central gyrus 22832 5416 435 21 (5) 84 4

GSE5281 Entorhinal cortex, hippocampus, medial temporal gyrus, posterior cingulate, superior

frontal gyrus and primary visual cortex

22832 12726 10699 2306

(35)

113 18

The 3rd, 4th, 5th and 6th columns represent the number of unfiltered genes, the number of significant DEGs with threshold for p-value, adjusted p-value and logFC

(numbers in brackets are for logFC with threshold 2) respectively. 7th and 8th columns show the number of unfiltered GO terms and significant GO terms considering

Fisher exact test.

https://doi.org/10.1371/journal.pone.0250660.t001
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Pathways

The five most significant BP GO terms involved in each AD study are as follows:

i. GSE110226: immune system process, regulation of immune system process, positive reg-

ulation of immune system process, nitrogen compound metabolic process, and

transport.

ii. GSE12685: adaptive immune response, antimicrobial humoral immune response, innate

immune response, epithelial cell differentiation and extracellular matrix organisation.

iii. GSE1297: immune system process, nitrogen compound metabolic process, cell commu-

nication, system process, and transport.

iv. GSE33000: biological process, nitrogen compound metabolic process, signal transduc-

tion, cell communication, and transport.

Table 2. Statistical summary for studies of neurodegenerative comorbid diseases of AD.

Dataset Dis. Tissue source Genes P-Value Adj. P-Value LogFC GO Terms Fisher test

GSE49036 PD Substantia nigra 22832 6454 67 228 (3) 249 25

GSE6613 PD Whole blood 13907 1991 0 4 (0) 106 6

GSE7621 PD Substantia nigra 22787 4389 1 1672 (55) 102 19

GSE54536 PD Peripheral blood 20760 8466 5855 4009 (1631) 64 22

GSE110226 HD Choroid plexus 21003 3542 1 313 (12) 76 30

GSE33000 HD Prefrontal cortex 19518 16328 16144 0 (0) 112 14

GSE93767 HD Induced pluripotent stem 20053 1245 2 1632 (92) 61 11

GSE49036 LBD Substantia nigra 22832 3651 0 184 (3) 100 19

GSE68605 ALS Motor neurons 22832 2596 7 5768 (343) 404 49

GSE833 ALS Spinal cord 6068 765 19 2555 (931) 343 56

GSE110226 FTD Choroid plexus 21003 5164 0 629 (29) 77 25

GSE13162 FTD Frontal cortex, hippocampus, and cerebellum 13907 4771 2099 139 (1) 43 15

GSE40378 FTD Induced pluripotent stem 20760 3752 565 21 (2) 43 15

GSE21942 MS Peripheral blood 22832 9379 5876 524 (62) 84 25

GSE27206 SMA Induced pluripotent stem 22832 2117 0 1225 (232) 99 43

The 4th, 5th, 6th and 7th columns represent the number of unfiltered genes, the number of significant DEGs with threshold for p-value, adjusted p-value and logFC

(numbers in brackets are for logFC with threshold 2) respectively. The 8th and 9th columns show the number of unfiltered GO terms and significant GO terms

considering Fisher exact test.

https://doi.org/10.1371/journal.pone.0250660.t002

Table 3. Summary of findings in the steps of the pipeline for the datasets of the selected pathologies.

Disease Tissue source Available dataset Selected dataset Up DEGs Down DEGs

Alzheimer’s Disease Brain, blood 531 8 2037 1598

Parkinson’s Disease Brain, blood 196 4 961 1345

Huntington’s Disease Brain 64 3 315 418

Lewy Body Disease Brain 11 1 57 93

Amyotrophic Lateral Sclerosis Brain, spinal cord 104 2 1563 1666

Frontotemporal Dementia Brain 28 3 447 278

Multiple Sclerosis Blood 124 1 213 317

Spinal Muscular Atrophy Brain 20 1 250 211

https://doi.org/10.1371/journal.pone.0250660.t003

PLOS ONE Pipeline to identify comorbidities risk association: neurodegenerative disorder case study

PLOS ONE | https://doi.org/10.1371/journal.pone.0250660 May 6, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0250660.t002
https://doi.org/10.1371/journal.pone.0250660.t003
https://doi.org/10.1371/journal.pone.0250660


v. GSE4226: reproduction, cell activation, regulation of cell growth, response to active oxy-

gen species and response to the acid chemical.

vi. GSE4229: biological process, metabolic process, nitrogen compound metabolic process,

cell communication and signal transduction.

vii. GSE48350a: biological process, cellular process, nitrogen compound metabolic process,

metabolic process and transport.

viii. GSE48350b: nitrogen compound metabolic process, cell communication, system pro-

cess, response to stress and transport.

ix. GSE48350c: biological process, cellular process, metabolic process, regulation of biologi-

cal process and regulation of the cellular process.

x. GSE48350d: cell activation, myeloid leukocyte activation, myeloid cell activation

involved in immune response, endothelial cell activation involved in immune response,

cell activation involved in immune response and immune effector process.

xi. GSE5281: nitrogen compound metabolic process, response to stress, cellular aromatic

compound metabolic process, nucleobase-containing compound metabolic process and

transport.

The DEGs comparison between the AD datasets and its neurodegenerative comorbidities

reveals the following overlapping genes: ACTB, CEACAM8, COX2, DEFA4, GFAP, MALAT1,

RGS1, RPE65, SYT1, S100A8, S100A9, SERPINA3, TNFRSF11B and TUBB2A. We built a

Fig 2. Example DAG of GO terms with GSEA on GSE12685 dataset of AD. The original graph (on the top) and a zoom (on

the bottom) are presented. The 5 most significantly enriched GO terms are indicated by the rectangles and the oval shaped

nodes represent significant GO terms. The red and orange colors indicate the most significant GO terms. The last two lines

inside each node show raw p-value followed by the number of significant genes and the total number of genes annotated to the

corresponding GO term for the dataset.

https://doi.org/10.1371/journal.pone.0250660.g002
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Fig 3. Cluster network with overlapping DEGs between AD and other selected pathologies obtained using the

online tool GeneMania [74]. Nodes indicate DEGs and links represent functional associations. The node size

indicates the rank of the gene considering its association with other nodes and width of the edges represent the

percentile contribution of the connecting nodes to a particular functional association.

https://doi.org/10.1371/journal.pone.0250660.g003
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cluster network for these overlapping DEGs using the online tool GeneMania [74]. For this we

took physical interactions, co-expression, predicted, co-localization and pathway into consid-

eration. The network shown in Fig 3 indicates 32 related genes (nodes) and 183 links between

them. The most significant pathways associated with the chosen pathologies and their percen-

tile contributions are a structural constituent of the cytoskeleton (7.35%), defense response to

a bacterium (6.58%), response to fungus (27.27%), response to a bacterium (2.99%), defense

response to other organisms (2.66%), neutrophil chemotaxis (8.33%), neutrophil migration

(8.33%), chemokine production (6.82%), regulation of inflammatory response (2.84%) and

inflammatory response (1.77%).

Semantic similarity and KEGG enrichment

The semantic similarity measures for DEGs of the selected disease conditions are represented

in a matrix as shown in Fig 4. AD06_GSE33000 is associated with two selected comorbidities:

Parkinson’s disease and multiple sclerosis exhibiting the value of semantic similarity at least

0.7. Considering other evidence from AD11_GSE110226 and AD07_GSE48350a/b, Parkin-

son’s disease, Huntington’s disease, amyotrophic lateral sclerosis, frontotemporal dementia,

multiple sclerosis and spinal muscular atrophy are closely associated with AD.

Fig 4. Semantic similarity matrix for the differential expressed genes in the five most significant GO terms. The first two letters of each entry

represents the selected pathologies (AD-Alzheimer’s disease, ALS-Amyotrophic lateral sclerosis, FTD-Frontotemporal dementia, HD-Huntington’s

disease, LBD-Lewy body disease, MS-Multiple sclerosis, PD-Parkinson’s disease).

https://doi.org/10.1371/journal.pone.0250660.g004
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Fig 5 depicts the semantic similarity matrix for the top five GO terms. Notably, all AD data-

sets except AD05_GSE12685 are similar (semantic similarity value of 1) to PD01_GSE6613

dataset considering the top five GO terms. In addition, observing the semantic similarity mea-

sure being greater than 0.9, AD05_GSE12685 and AD06_GSE33000 are well clustered with

both amyotrophic lateral sclerosis datasets. But if we inspect the semantic similarity measure at

least 0.8, all Parkinson’s disease, Huntington’s disease, Lewy body disease, amyotrophic lateral

sclerosis, frontotemporal dementia, multiple sclerosis and spinal muscular atrophy employs

significant similarity with some of the AD datasets.

Fig 6 represents the matrix of DO terms using semantic similarity. Surprisingly, AD exhib-

ited very trivial association with other NDDs considering the DO terms analysis data. Notable

significance was observed between spinal muscular atrophy and amyotrophic lateral sclerosis

(0.67). On the other hand, Parkinson’s disease showed significant association (0.55) with lewy

body disorder.

Fig 7 shows the KEGG pathway association with all selected datasets. Resulting pathways

with at least two occurrences among AD datasets are neuroactive ligand-receptor interaction

and malaria. Moreover, recurring pathways common between at least one AD dataset and

other pathologies are Parkinson’s disease, amphetamine addiction, synaptic vesicle cycle, rheu-

matoid arthritis, hematopoietic cell lineage, graft-versus-host disease, Staphylococcus aureus

infection and IL-17 signaling pathway.

Fig 5. Semantic similarity matrix for the five most significant GO terms. Entry names are similar as Fig 4.

https://doi.org/10.1371/journal.pone.0250660.g005
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Discussion

In this work, we introduced an analytical framework of bioinformatics analysis for AD-comor-

bidity studies and demonstrated its efficacy for mining information in public databases. We

employed this approach on AD and other NDDs using selected microarray gene expression

data from public databases. We applied GSEA to DEGs that we identified, and identified

related molecular pathways and their association among selected transcriptomic data using

GO and DO. Moreover, we also investigated the effectiveness of semantic similarity as a prox-

imity measure between the diseases using selected ontologies. Identification of the intercon-

nection within a set of pathologies at the molecular level can certainly enrich our insight about

the disease mechanism and eventually promotes the possibility for accurate diagnosis and effi-

cacious remedy planning. Our approach leverages publicly available gene expression data from

microarray experiments ensuring the possibility of reusing available data. This yields an

opportunity to extract hidden information from previously published and publicly accessible

datasets. Furthermore, we considered data from different sources and also for different cell

types to demonstrate the robustness of the work. Utilization of patient omics data is opening

new windows for enhancement in clinical decision making including disease risk assessment,

accurate diagnosis and subtyping, treatment planning and dose determination [75]. Incorpo-

ration of such data into patient care by medical practitioners through clinical activities such as

Fig 6. Semantic similarity matrix for DO terms. AD-Alzheimer’s disease, ALS-Amyotrophic lateral sclerosis, FTD-Frontotemporal dementia,

HD-Huntington’s disease, LBD-Lewy body disease, MS-Multiple sclerosis, PD-Parkinson’s disease.

https://doi.org/10.1371/journal.pone.0250660.g006
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electronic prescribing of medications is a serious prospect. In the near future, aspects of both

personalized and preventive medicine will become clinically feasible with potential disease

progression assessed by tracking multiple layers of omics and clinical data from healthy indi-

viduals. Our work provides methodologies for comorbidity analysis and enhanced visualiza-

tion as an effective analytical approach that can help professional physicians.

Among the obtained overlapping genes, GFAP has been reported to be associated with AD

[76], ALS [77] and MS [78]. Analyzing the co-occurrence of GO terms and molecular path-

ways between AD and its comorbid neurodegenerative diseases several significant terms and

pathways were found to be common. Defects of Oxidative phosphorylation has clear associa-

tion with AD and PD [79, 80]. Upregulation in cAMP signaling pathway has implication with

AD [81]. The association of neuroactive ligand-receptor interaction with α-synuclein is

involved in PD [82]. IL-17 signaling pathway has been reported to be involved in the patho-

genesis of chronic neuroinflammatory disorder like AD, MS, FTD and HD [83, 84]. The dopa-

minergic system contributes in neuromodulation and hence the dopaminergic synapse

pathways evoke the onset and progression of disorders of central nervous system [85]. The gap

junctions connect the cytoplasm of adjacent cells and such interconnections in central nervous

system cells maintain normal function. Gap junctions are involved in the pathology of most

neurological diseases [86].

We carried out analytical processes for AD and common neurodegenerative comorbidities,

although this can be employed for any other AD datasets with other comorbidities if the data-

sets contain adequate samples for both diseases affected cases and healthy controls. We

selected the cutoff sample size 10 considering at least five individuals with active disease state

and at least five healthy samples. Our methodology is implemented in an R programming plat-

form that incorporates several other packages from the Bioconductor repository, although

these can be easily substituted with another implementation using a different platform. From

the methodological point of view, such approaches have been successfully demonstrated vari-

ous disease interactions recently [41, 87]. It’s noteworthy, however, that the dataset selection

would have some qualitative and quantitative effects on the outcomes. The findings

Fig 7. KEGG pathway enrichment analysis for differentially expressed genes. Each row represents a KEGG pathway associated with the diseases

shown in columns. The domination of genes in the pathway indicated by the dimension of the circles and the range of the circles represents the

statistical validation for p-value = 0.05.

https://doi.org/10.1371/journal.pone.0250660.g007
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documented here could be enhanced by incorporating more datasets from other sources as

well as different cell types. Nevertheless, our study has employed a new and innovative analyti-

cal approach for comorbidity analysis of these complex diseases.

Conclusion

We investigated how the methodology described in this manuscript can be used to analyse the

transcriptome of AD and neurodegenerative diseases that are common comorbidities; we

employed techniques of interconnected processes, inflammation pathways, associations of dif-

ferent omics data in terms of different ontology, such as GO and DO. This has two advantages:

a better insight into AD composing comorbidity disease networks and the presentation of a

novel pipeline constituting statistical analysis for complex diseases. Moreover, the neurodegen-

erative disease comorbidity analysis of AD presented here could be utilized for improving

diagnosis and to help the discovery of novel therapeutic targets. Therefore, our methodology

and pipeline could move forward the clinical decision making for personalized medicine.
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