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Abstract

Objective

Numerous adverse prenatal exposures have been individually associated with risk for psy-

chiatric illness in the offspring. However, such exposures frequently co-occur, raising ques-

tions about their cumulative impact. We evaluated effects of cumulative adverse prenatal

exposure burden on psychopathology risk in school-aged children.

Methods

Using baseline surveys from the U.S.-based Adolescent Brain and Cognitive Development

(ABCD) Study (7,898 non-adopted, unrelated children from 21 sites, age 9–10, and their pri-

mary caregivers), we examined 8 retrospectively-reported adverse prenatal exposures in

relation to caregiver-reported total and subscale Child Behavior Checklist (CBCL) scores.

We also assessed cumulative effects of these factors on CBCL total as a continuous mea-

sure, as well as on odds of clinically significant psychopathology (CBCL total�60), in both

the initial set and a separate ABCD sample comprising an additional 696 sibling pairs. Anal-

yses were conducted before and after adjustment for 14 demographic and environmental

covariates.

Results

In minimally and fully adjusted models, 6 exposures (unplanned pregnancy; maternal alco-

hol, marijuana, and tobacco use early in pregnancy; pregnancy complications; and birth

complications) independently associated with significant but small increases in CBCL total

score. Among these 6, none increased the odds of crossing the threshold for clinically signif-

icant symptoms by itself. However, odds of exceeding this threshold became significant with

2 exposures (OR = 1.86, 95% CI 1.47–2.36), and increased linearly with each level of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250235 April 28, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Roffman JL, Sipahi ED, Dowling KF,

Hughes DE, Hopkinson CE, Lee H, et al. (2021)

Association of adverse prenatal exposure burden

with child psychopathology in the Adolescent Brain

Cognitive Development (ABCD) Study. PLoS ONE

16(4): e0250235. https://doi.org/10.1371/journal.

pone.0250235

Editor: Maria Christine Magnus, Norwegian

Institute of Public Health, NORWAY

Received: May 20, 2020

Accepted: April 3, 2021

Published: April 28, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0250235

Copyright: © 2021 Roffman et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data can be accessed

through the NIMH Data Archive, https://nda.nih.

gov/abcd.

https://orcid.org/0000-0001-5609-7727
https://orcid.org/0000-0003-3307-9694
https://doi.org/10.1371/journal.pone.0250235
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250235&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250235&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250235&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250235&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250235&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250235&domain=pdf&date_stamp=2021-04-28
https://doi.org/10.1371/journal.pone.0250235
https://doi.org/10.1371/journal.pone.0250235
https://doi.org/10.1371/journal.pone.0250235
http://creativecommons.org/licenses/by/4.0/
https://nda.nih.gov/abcd
https://nda.nih.gov/abcd


exposure (OR = 1.39, 95% CI 1.31–1.47), up to 3.53-fold for�4 exposures versus none.

Similar effects were observed in confirmatory analysis among siblings. Within sibling pairs,

greater discordance for exposure load associated with greater CBCL total differences, sug-

gesting that results were not confounded by unmeasured family-level effects.

Conclusion

Children exposed to multiple common, adverse prenatal events showed dose-dependent

increases in broad, clinically significant psychopathology at age 9–10. Fully prospective

studies are needed to confirm and elaborate upon this pattern.

Introduction

Long held neurodevelopmental theories posit that risk for serious mental illness begins early

in life. In particular, the fetal environment is thought to lay a foundation for such risk, in con-

cert with genetic loading [1, 2]. This insight has given rise to Barker’s Developmental Origins

of Disease model and others [3, 4], which describe a prenatal “programming” of risk for medi-

cal and psychiatric disorders that emerge even well after birth.

Birth cohort studies enable researchers to test associations between prenatal exposures and

a range of neurodevelopmental and psychiatric outcomes [5]. For example, some well-known

birth cohort studies have shown that offspring exposed to starvation in utero during the Dutch

Hunger Winter [6] and the Chinese famine of 1959–61 [7] had a 2-fold increased risk of psy-

chotic illness two decades later. Across both retrospective and prospective studies, adverse pre-

natal exposures that occur more frequently, such as pregnancy or birth complications [8, 9],

prematurity [10], maternal infections (including both serious infections such as influenza, and

more minor ones such as urinary tract infections) [11, 12], and maternal substance or tobacco

use [13–20] have also associated with a range of psychopathology, including disorders that

emerge during childhood. However, these more prevalent exposures tend to have more mod-

est effects (typically >50% increase in odds for psychopathology). For example, mildly reduced

body mass index during pregnancy has been found to associate with a 21% increased risk of

nonaffective psychosis, which is a 10-fold lower magnitude of effect compared to that observed

for famine [21]. Yet, even for these more common events, dosing of exposure seems to matter.

Indeed, heavy alcohol use throughout pregnancy has been found to associate with greater psy-

chopathology than occasional use [22].

Whether exposure to multiple common insults during pregnancy also exerts a dose-depen-

dent risk for psychopathology remains unclear. There are few models that account for effects

of multiple risk factors on such risk, although polygenic risk scoring (PRS) is perhaps the most

notable. PRS studies demonstrate cumulative, linear effects across thousands of genetic vari-

ants of small effect; however, additive effects of even the strongest (e.g., genome-wide signifi-

cant) common genetic variants are modest [23]. In contrast, given the larger effect sizes

attributed to individual prenatal environmental exposures, it is possible that only a small num-

ber of such exposures occurring in linear combination could substantially increase risk–not

only for increased dimensional symptoms, but potentially for crossing the threshold into clini-

cally significant psychopathology.

While cumulative effects of adverse postnatal exposures have been observed in children [24,

25] and adults [26], the loading burden of experiencing multiple types of adverse prenatal

events has been studied only in a relatively small sample of preschool-aged children [27] and

children with autism [28]. Further, adverse prenatal exposures frequently co-occur, reflecting
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both causal links (e.g., maternal substance use resulting in other pregnancy complications

[29]), and shared background factors (e.g., poverty increasing risk for both maternal substance

use and other pregnancy complications [30]). Similarly, just as diverse categories of psychopa-

thology share substantial genetic loading [31], the clinical effects of prenatal environmental

insults may be non-specific [32–34]. Efforts to account for overlapping risk factors are needed

to decipher the individual and joint role of prenatal exposures on psychopathology risk and

develop intervention targets.

Disentangling the effect of these prenatal exposures on psychopathology symptoms is espe-

cially challenging in studies of children, who experience rapid neurodevelopmental changes.

The Adolescent Brain and Cognitive Development (ABCD) Study [35], which has enrolled

11,875 9- and 10-year-old children across 21 U.S.-based sites, provides the opportunity to

study a cohort that is developmentally narrow, but also broadly and systematically character-

ized in regard to psychopathology and related environmental risk factors.

We leveraged baseline data from the ABCD Study to relate cumulative burden or loading of

adverse prenatal exposures, obtained through retrospective report, to dimensional measures of

psychopathology. The use of dimensional measures enabled assessment of early and subdiag-

nostic psychopathology in school-aged children, and leveraged continuous variance in these

traits across the population. The ABCD Study provides extensive phenotyping of both prenatal

and postnatal exposures that have associated with psychopathology risk (e.g., trauma, family

conflict) in prior studies [36–39], as well as of dozens of demographic and environmental fea-

tures that potentially confound these relationships. The ABCD Study also includes siblings,

and analysis of sibling pairs enables additional control over potential confounding effects of

unmeasured family-level variables. If the association is causal, siblings who are discordant for

exposures should show greater differences in psychopathology. Conversely, if the discordant

siblings do not differ in psychopathology, the observed association is explained by unmeasured

genetic and environmental factors. For example, the results of studies with sibling design have

supported causal relationships between prenatal exposure to tobacco [40], alcohol [41], and

obstetrical complications [42] and subsequent psychopathology.

We hypothesized that [1] multiple individual adverse prenatal exposures would associate

independently with increased dimensional psychopathology; and [2] increased additive load-

ing for such individual adverse prenatal exposures would associate with greater odds of psy-

chopathology, as measured both dimensionally and via thresholded indices of clinically-

relevant psychopathology [43]. We treated participants who did not have siblings as an initial

sample, and then separately examined sibling pairs for the purposes of validation and control

for family-level confounders.

Method

Participants

We analyzed baseline data from a total of 9,290 participants in the ABCD study, a longitudinal

cohort of 11,875 children from 21 research sites across the United States. All data were

obtained from the NIMH Data Archive, Curated Annual Release 2.0. General inclusion and

exclusion for the ABCD study are described elsewhere [44, 45]. In brief, 9- to 10-year-old chil-

dren were recruited from the community, had no contraindications to MRI scanning, and

were excluded if they were not fluent in English; had a history of major neurological disorders,

traumatic brain injury, or extreme prematurity; or carried a diagnosis of schizophrenia, mod-

erate to severe autism spectrum disorder, intellectual disability, or substance use disorder.

The current analysis included only non-adopted children from singleton pregnancies

(twins were excluded given known differences in pre- and postnatal life compared to

PLOS ONE Adverse prenatal exposure burden and child psychopathology in the ABCD Study

PLOS ONE | https://doi.org/10.1371/journal.pone.0250235 April 28, 2021 3 / 17

https://doi.org/10.1371/journal.pone.0250235


singletons) and children with valid Child Behavior Checklist (CBCL) scores. Children were

grouped based on whether they did (n = 1,392) or did not (n = 7,898) have a sibling who also

participated in the study (S1 Fig in S1 File). Partitioning children based on their sibling status

enabled us to use the non-sibling group as an initial set and the sibling group as a non-overlap-

ping validation set; the latter was leveraged to examine effects of discordant prenatal exposures

on CBCL scores, thus controlling for unmeasured family-level confounders. Given that enroll-

ment occurred over a 2 year period, and age at enrollment was constrained to 9.0 to 10.9 years,

all sibling pairs differed in age by less than 4 years.

IRB approval for the ABCD study is described in Auchter et al. [46]. Most ABCD research

sites cede approval to a central Institutional Review Board (cIRB) at the University of Califor-

nia, San Diego, with the remainder obtaining local IRB approval. All parents provided written

informed consent and all children provided assent.

Measures

All measures were collected at the baseline ABCD in-person study visit from the primary care-

giver, who was also the biological mother in 88.1% of Non-sibling and 88.7% of Sibling

participants.

Prenatal exposures. Primary prenatal exposures of interest were obtained based on care-

giver recall and recorded in the ABCD Developmental History Questionnaire. The following 15

exposures were extracted for each individual and coded as present or absent, consistent with

dichotomous analyses used in previous studies (e.g., [9, 18, 25, 26]):

[1] unplanned pregnancy;

[2–6] maternal use of alcohol, tobacco, marijuana, cocaine, or opiates, before pregnancy was

recognized (“early” exposure);

[7–11] maternal use of alcohol, tobacco, marijuana, cocaine, or opiates, after pregnancy was

recognized (“late” exposure);

[12] Caesarian section;

[13] pregnancy complications (coded as present if�1 of 13 listed obstetric complications, e.g.,

gestational diabetes or preeclampsia, occurred, see Methods in S1 File for complete list);

[14] birth complications (coded as present if�1 of 8 listed complications, e.g., jaundice, oxy-

gen requirement, occurred, see Methods in S1 File for complete list);

[15] pre-term birth (coded as present if birth occurred before gestational week 37).

Exposures present in less than 5% of the sample were dropped from the analysis, excepting

one scenario: if early substance exposure occurred in at least 5% of cases, late substance expo-

sure was also included regardless of frequency. This approach was necessary given the high co-

occurrence with main predictors of interest (i.e., early use of these substances), potentially dif-

ferent teratogenic effects, and related confounding potential (see also S3 Table in S1 File). The

5% threshold was chosen a priori to minimize the risk of overfitting in exposure subgroups,

given the total number of covariates.

Specifically, opiate or cocaine use during pregnancy (early or late) was reported in less than

5% of the sample, as were late alcohol, tobacco, or marijuana use. This resulted in using 8

adverse prenatal exposures for primary analysis (unplanned pregnancy; early alcohol, tobacco,

or marijuana exposure; pregnancy complications; birth complications; preterm birth; and Cae-

sarean section). Late exposure to alcohol, tobacco, or marijuana were treated as covariates of

no interest, as above.
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Psychopathology symptoms. The CBCL [43] is a widely-used tool to assess dimensional

psychopathology syndromes and related symptoms. In addition to 8 syndrome scales (Anx-

ious/Depressed, Withdrawn/Depressed, Somatic Complaints, Social Problems, Thought Prob-

lems, Attention Problems, Aggressive Behavior, Rule-breaking Behavior) the CBCL contains 2

broad-band scales (Internalizing and Externalizing Problems) and a total score, all recorded as

t-scores.

Covariates. We included a total of 10 covariates reflecting demographic, socioeconomic,

and environmental variables that could potentially covary with primary prenatal exposures of

interest and/or CBCL scores. These data were extracted from the ABCD Demographics Survey,

Developmental History Questionnaire, K-SADS Parent Diagnostic Interview, and Family History
Assessment and included:

[1] child’s age (months);

[2] child’s sex;

[3] child’s race (Caucasian/non-Caucasian);

[4] child’s ethnicity (Latinx/non-Latinx/unsure);

[5] presence or absence of a partner for the primary caregiver;

[6] caregiver income (averaged across both primary caregivers, if present; see Methods in S1

File);

[7] caregiver education (averaged across both primary caregivers, if present; see Methods in S1

File);

[8] maternal age at birth;

[9] neighborhood safety;

[10] presence or absence of an older sibling.

In addition, study site (n = 21 sites) was also included as a nominal random effect in all

models. Random, rather than fixed, effect modeling was used due to variation in sample size

among sites, and to provide a statistical basis for generalizing results beyond the study sites

[47].

Sensitivity analyses also included as covariates postnatal exposures that have been associ-

ated with psychopathology risk [36–39], but that were not considered potential confunders, as

they could not directly influence prenatal exposures. These sensitivity analyses included (in

addition to the 10 listed above):

[11] total weekday screentime;

[12] total weekend screentime (which is differentially associated with psychopathology, see

[39];

[13] Family Conflict Subscale of the Family Environment Scale;

[14] child’s exposure to zero vs.�1 significant traumas (see Methods in S1 File)

Statistical analysis

Analyses were conducted using R version 3.6.1. Missing data, assumed to be missing at ran-

dom (MAR), was imputed using multiple imputation by chained equations (mice package

3.11.0), which imputes individual variables according to their own distribution and requires
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an imputation method to be assigned to each variable. Cluster-level effects of site were

accounted for by creating separate regression coefficients for each site to be used in the impu-

tation model (i.e. a fixed effects approach). Siblings were imputed in wide format and flipped

back to long format for subsequent analyses to account for cluster effects of family. Continuous

and ordinal variables were imputed with predictive mean matching and dichotomous variables

with logistic regression. All variables that were included in later regressions—with the excep-

tion of transformed variables—were selected as predictors for the imputation models. 200

datasets were imputed from which parameter estimates were pooled to derive beta weights,

confidence intervals, and p-values, per guidelines described by Rubin [48]. This method

accounts for variance both within and across the imputation sets (i.e., additional variance due

to missing data). We also performed sensitivity analyses to compare group means/distribu-

tions and primary results from the full (imputed) and non-imputed data sets.

Initial group. Within the initial (Non-sibling) group, general linear models were used to

determine which of the 8 primary adverse prenatal exposures that were reported in at least 5%

of the sample (i.e., unplanned pregnancy; early alcohol, tobacco, or marijuana exposure; preg-

nancy complications; birth complications; preterm birth; and Caesarean section, as above)

associated with differences in total CBCL score. Importantly, both here and in subsequent

analyses, these factors were entered simultaneously (along with covariates) to determine the

independent effects of each exposure.

To better isolate effects of the 8 exposures on CBCL scores from those of other covariates,

we conducted both minimally and fully adjusted models. The minimally adjusted model

included the 8 exposures of interest, site (as a random effect), and late exposure to alcohol,

tobacco, or marijuana as covariates, as described in the Prenatal Exposures section above. The

fully adjusted model also included as covariates the 10 demographic, socioeconomic, and

other exposure-related factors, listed in the Covariates section above, that potentially confound

relationships between psychopathology and prenatal exposures.

Next, to assess effects of the 8 adverse prenatal exposures on odds of clinically relevant psy-

chopathology, CBCL total scores were recoded as being within (<60) versus above the thresh-

old for borderline clinical significance, as previously defined [43, 49]. Generalized linear

mixed model (GLMM) via the lme4 package in R provided estimates of the odds of CBCL total

�60 based on the minimally and fully adjusted models described above. Linear mixed models

were used instead of ordinary logistic regression to enable analysis of random effects. Again,

all exposures and covariates were included simultaneously in the model, enabling us to identify

measures that were independent predictors of elevated CBCL score.

Finally, to determine the cumulative odds of CBCL total�60 as a function of loading for

adverse prenatal exposures, the GLMM was repeated, substituting the integer sum of a child’s

prenatal exposures; this loading score was calculated using only exposures that were shown to

associate with increased CBCL total scores in the fully adjusted multivariate regession models

(above). We used this approach to generate additive exposure loading scores because [1] each

of the included individual exposures had been previously associated with adverse neurodeve-

lopmental outcomes in previous studies (as well as in this one); [2] it enabled development of a

clinically intuitive and straightforward risk score analysis that aggregated known risk factors

while accounting for overlapping variance; and [3] given the sample size there were no con-

cerns about overfitting and therefore no need to reduce the number of dimensions. Minimally

and fully adjusted models were evaluated as above. Main analyses set alpha at .05, two-tailed.

Post hoc analyses determined the effects of adverse prenatal exposure load on individual and

broad band CBCL scales as well as risk for clinically significant psychopathology (score�65

for individual syndrome scales and�60 for broad-band scales) [43], using the family-wise

error rate to control for multiple comparisons. Additional sensitivity analyses also included
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post-natal exposures that could influence psychopathology risk (see Covariates section, covari-

ates #11–14 above).

Validation group. Analyses within the non-overlapping validation (Sibling) group carried

forward the same exposure load approach (i.e., children were assigned a load score based on

the number of exposures that were associated with CBCL total scores in the non-Sibling analy-

sis.) GLMM was used to determine the effect of exposure load on the odds of CBCL total�60,

using the same minimally and fully adjusted models as before, with the exception that Family

ID was now included as an random effect (variance component covariance type). As in the Ini-

tial group, additional sensitivity analyses also included post-natal exposures that could influ-

ence psychopathology risk (see Covariates section, covariates #11–14 above).

Within-sibling pair analysis was conducted to control for unmeasured genetic and postnatal

confounders, using a multilevel modeling method [50]. Exposure load for each sibling within

each family was calculated by subtracting the average load across both siblings from the individ-

ual load for each sibling. As such, siblings with identical loads would each have an individual

load of zero, while those with discordant loads would have equal and opposite positive (i.e., sib-

ling with higher load) or negative (i.e., sibling with lower load) individual load values, respec-

tively. The effects of individual exposure load on CBCL total score were determined using a

linear model, controlling for family-level average exposure load, as well as three other factors

that could differ between siblings (sex, age, and maternal age at birth) and family ID. To account

for heteroscedasticity introduced by cluster effects of site, standard errors and accordingly, p-val-

ues and confidence intervals, were adjusted using the Huber-White robust sandwich estimator.

Results reflect fully adjusted models unless otherwise noted. For comparison, minimally

adjusted models are also presented within selected Tables.

Results

Characteristics of the Non-sibling and Sibling groups are provided in Table 1. Group averages

were consistent between imputed and non-imputed data (S1 and S2 Tables in S1 File).

Initial (non-sibling) group

Adverse prenatal exposures were highly correlated with each other, and with demographic,

socioeconomic, and postnatal exposures (S3 Table in S1 File). Of the 8 primary prenatal

Table 1. Characteristics of non-sibling and sibling groups.

CONTINUOUS FACTORS Non-sibling group (N = 7,898) Sibling group (N = 1,392)

Mean SD Mean SD

Age (months) 118.5 7.3 118.4 8.8

CBCL total t-score 46.4 11.3 45.1 11.3

DICHOTOMOUS FACTORS N (%) N (%)

Sex (female) 3,708 (46.9) 688 (49.4)

High CBCL (�60) 1,022 (12.9) 150 (10.8)

Unplanned pregnancy 3157 (40.0) 577 (41.5)

Early alcohol exposure 2,177 (27.6) 276 (19.8)

Early tobacco exposure 1,112(14.1) 158 (11.3)

Early marijuana exposure 513 (6.5) 66 (4.7)

Complicated pregnancy 3,238 (41.0) 524 (37.6)

Complicated birth 1,952 (24.7) 333 (23.9)

Preterm birth 637 (8.1) 100 (7.1)

Caesarian section 2,517 (31.9) 373 (26.8)

https://doi.org/10.1371/journal.pone.0250235.t001
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exposures studied, 6—unplanned pregnancy, early maternal alcohol, tobacco, or marijuana

use, pregnancy complications, birth complications—associated independently with increased

CBCL total score in both minimally and fully adjusted models (p’s�.017; S4 and S5 Tables in

S1 File). Results were similar in magnitude and statistical significance in a sensitivity analysis

restricted to the 6,271 individuals with complete data (S6 Table in S1 File). A total of 1,022

(12.9%) individuals had CBCL total scores above normal (�60). Four of these 6 exposures (all

but early alcohol and marijuana use) independently associated with increased odds of CBCL

total�60, with odds ratios ranging from 1.35 to 1.63 (p’s< .001, S7 Table in S1 File).

These 6 factors were summed to generate a cumulative exposure load (ranging from 0 to 6)

for each individual. In fully adjusted models there was a significant linear effect of exposure

load on risk for both increased CBCL as a continuous measure (1.94 CBCL points per expo-

sure, 95% CI 1.72 to 2.16, p< .001, S8 Table in S1 File) and risk for CBCL total�60 (OR 1.39

per exposure, 95% CI 1.31 to 1.47, p< .001, Table 2). Specificially, compared to children with

no adverse prenatal exposures, those with�2 exposures had significantly greater odds of

CBCL total�60 (p’s�.001), and children with 4 or more factors had a 3.53 (95% CI 2.62 to

4.76) greater odds of CBCL�60 compared to those with no exposures. In absolute terms, 29%

of children exposed to 4 or more factors exhibited CBCL total�60, compared to 7% of chil-

dren with no exposures (Fig 1A). Similar exposure load effects were observed across all indi-

vidual syndrome and broad-band CBCL scales (p’s�.001; Fig 2, S9 Table in S1 File).

Validation (sibling) group

Total load for the same 6 exposures was calculated for each child in the sibling group. Control-

ling for the same covariates as in the non-sibling analysis, and introducing family ID as an

additional random effect, there were again significant linear effect of prenatal adversity load

on CBCL total score as a continuous measure (1.86 CBCL points per exposure, 95% CI 1.31 to

2.42, p< .001, S10 Table in S1 File) and risk for CBCL total�60 (OR 1.61 per exposure, 95%

CI 1.30 to 2.01, p< .001, Table 3; see also Fig 1B). As in the Non-sibling group, compared to

those with a load of zero, children with�2 exposures had significantly higher odds of CBCL

total�60 (p’s�.004, Table 3). There was an approximate 7-fold increased odds of CBCL total

�60 for those children with�4 exposures compared to those with no exposures (OR = 6.88,

95% CI 2.26 to 20.94, p = 0.001). Further, we repeated the analysis without including family ID

as a random effect to determine the extent that unmeasured family confounding influenced

the results. Resultant odds ratios and confidence intervals were similar (S11, S12 Tables in S1

File) suggesting that effects of family-level confounders were minimal.

In an additional sensitivity analysis, we added 4 additional covariates representing postnatal

exposures that can influence psychopathology. Results were consistent with, but slightly

weaker than in the fully adjusted model (S13, S14 Tables in S1 File).

Table 2. Effect of adverse prenatal exposure load on odds of CBCL total score�60 in the initial (non-sibling) sample.

EXPOSURE LOAD, N Odds of CBCL total�60 (minimally adjusted) Odds of CBCL total�60 (fully adjusted)

Odds ratio (95% CI) p Odds ratio (95% CI) p

0, N = 1,640 Reference – Reference –

1, N = 2,712 1.26 (0.99 to 1.59) .056 1.14 (0.90 to 1.44) .285

2, N = 1,985 2.13 (1.69 to 2.69) < .001 1.86 (1.47 to 2.36) < .001

3, N = 994 3.39 (2.64 to 4.36) < .001 2.76 (2.13 to 3.57) < .001

�4, N = 567 4.51 (3.38 to 6.02) < .001 3.53 (2.62 to 4.76) < .001

Linear effect of load 1.46 (1.38 to 1.55) < .001 1.39 (1.31 to 1.47) < .001

https://doi.org/10.1371/journal.pone.0250235.t002
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Siblings within families differed in exposure load by 0 to 4 exposures. Greater discordance

between sibling pairs associated with a greater difference in CBCL total score, after controlling

for other variables that could differ between siblings (age, sex, maternal age at birth) and mean

family exposure load, with a difference of 0.67 CBCL points for each level of discordance (95%

CI 0.12 to 1.22, p = .017, S2 Fig in S1 File). After including these within-family effects in the

model, the between-family effects became non-significant (p = .077).

Discussion

In this study of 9,290 children in the ABCD cohort, loading of adverse prenatal exposures asso-

ciated with linear increases in psychopathology at age 9–10, in both dimensional and clinically

thresholded models. Nearly identical effects of exposure load were observed in two groups of

children studied in parallel–those with versus without a sibling enrolled. Across five expo-

sures–unplanned pregnancy, maternal use of alcohol or tobacco early in pregnancy, and

obstetric complications during pregnancy or at birth–that each independently associated with

increased CBCL total scores, a combination of two or more such exposures associated with sig-

nificantly increased odds of clinically meaningful psychopathology (CBCL total score�60).

Such loading was a common occurrence in the study population, as 44% of children had at

least two exposures. A combination of four our more exposure increased odds of clinically

meaningful psychopathology by approximately 4-fold. Post hoc analyses of individual syn-

drome and broad spectrum CBCL scales yielded analogous effects of exposure load across all

domains of psychopathology. These differences survived control for numerous postnatal fac-

tors that impact psychopathology risk, including those at the level of families, neighborhoods,

and study sites. In particular, among siblings discordant for exposure load, higher CBCL scores

were observed among siblings with higher exposure load. Despite the smaller sample size for

Fig 1. Frequency of CBCL total score above the normal range (�60) as related to adverse prenatal exposure load. a, p< .05; b, p<

.001 for pairwise differences in odds of CBCL total�60 in fully adjusted models.

https://doi.org/10.1371/journal.pone.0250235.g001
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that analysis, this finding suggests that the relationship between prenatal exposure load and

CBCL is unlikely to be confounded by unmeasured family-level differences, a possibility sug-

gested by previous work (e.g., [19, 51]).

We included in the full model a range of covariates, including those that could counfound

relationships between prenatal exposures and CBCL scores (e.g., socioeconomic factors). In

sensitivity analyses, we also included exposures that could not directly predispose to events

Fig 2. Increased adverse exposure load associated with higher individual syndrome and broad-band CBCL T-scores in the non-sibling group. The

association was significant for each T-score scale in fully adjusted models (p < .05, FDR corrected). T-scores�65 for individual syndrome scores, and�60 for

broad-band scores, are considered clinically significant.

https://doi.org/10.1371/journal.pone.0250235.g002
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during pregnancy but are known to associate with CBCL (e.g., early childhood trauma); of

note, these variables could also potentially be affected by CBCL scores (e.g., screen time, family

conflict). This approach comes at the potential cost of attenuating causal effects of the adverse

prenatal exposures, if, for example, some of the included covariates mediate their relationship

to child psychopathology. However, the effects of exposure burden on CBCL scores were com-

parable regardless of the number of included covariates, as seen by comparing the minimally

and fully adjusted models to those in sensitivity analyses. This pattern suggests that the rela-

tionship between exposure load and child psychopathology is robust, regardless of the complex

effects that the covariates likely confer.

A growing literature has related adverse prenatal exposures to risk for subsequent psycho-

pathology. While each of the exposures implicated herein have associated with psychopathol-

ogy risk in previous studies, almost all have considered them in isolation, and many have

related individual exposures to specific diagnoses or syndromes. For example, numerous stud-

ies have associated prenatal alcohol [13, 14, 17] or tobacco [15, 16] exposure with risk for con-

duct disorder or other externalizing symptoms. Studies of obstetric complications are

weighted toward severe mental illnesses such as schizophrenia and bipolar disorder [9],

although some have considered their relationship to psychopathology more broadly [32, 34].

There have been fewer studies of unplanned or unwanted pregnancies and offspring mental

health, although several have found associations with externalizing psychopathology [52] and

psychosis [53, 54]. There also remain questions about whether the timing of exposure (i.e.,

early versus late in pregnancy) matters in regard to risk for psychopathology [55, 56].

With its large and systematically characterized cohort, the ABCD Study provides the oppor-

tunity to disentangle relationships between a range of exposures and different clinical out-

comes. The CBCL is a versatile instrument as it assesses numerous categories of

psychopathology that can be assessed either dimensionally or categorically. Here, we first used

dimensional assessment to detect subtle relationships between exposures and clinical syn-

dromes across a large population, most of whom do not meet the threshold of illness. Once

these prenatal factors were identified, we used threshold-based models to quantify risk for clin-

ically relevant psychopathology. In so doing we found that the relationship between prenatal

exposure load and psychopathology risk was less complex than might have been imagined in

light of previous, more narrowly focused studies: more exposures, whether occurring early or

late in pregnancy, associate with greater risk for a broad spectrum of psychopathology.

This pattern is intriguing because it suggests the possibility of common biological pathways

through which prenatal insults may influence risk for a variety of psychiatric symptoms. For

example, recent work has implicated the placenta in mediating the relationship between

obstetric complications and offspring risk for serious mental illness [57, 58]. While the present

findings do not offer any specific mechanistic insights, additional translational work in this

area might identify targets for early interventions that mitigate risk across a range of

Table 3. Effect of adverse prenatal exposure load on odds of CBCL total score�60 in the validation (sibling) sample.

EXPOSURE LOAD, N Odds of CBCL total�60 (minimally adjusted) Odds of CBCL total�60 (fully adjusted)

Odds ratio (95% CI) p Odds ratio (95% CI) p

0, N = 353 Reference – Reference –

1, N = 478 3.17 (0.74 to 13.51) .118 1.92 (0.93 to 3.96) .077

2, N = 343 3.82 (0.85 to 17.06) .079 2.97 (1.41 to 6.25) .004

3, N = 143 5.76 (1.06 to 31.48) .043 4.96 (2.07 to 11.87) < .001

�4, N = 75 10.10 (1.24 to 82.27) .031 6.88 (2.26 to 20.94) .001

Linear effect of load 1.64 (1.44 to 2.35) .007 1.61 (1.30 to 2.01) < .001

https://doi.org/10.1371/journal.pone.0250235.t003
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psychiatric syndromes. In the near term, though, quantitative assessments of cumulative pre-

natal risk such as the one described here may identify children who could benefit from promis-

ing early psychosocial interventions, such as enriched learning environments, that may temper

risk conferred by adverse prenatal exposures [59–61].

In regard to the present analysis, a principal limitation of the ABCD Study design is its reli-

ance on retrospective self-report of prenatal exposures. While reported exposure rates here

were similar to those obtained in cross-sectional national studies of rates complicated preg-

nancy (40% here vs. 47% [62]), unplanned pregnancy (40% vs. 33% [63]), birth complications

(24% vs. 20% [64]), and early tobacco use (14% vs. 15% [65]), the present design may have

introduced recall error and bias that a fully prospective study with objective reporting from

medical records could minimize [66]. While some factors (e.g., obstetric complications) have

been shown to be robust to long-term recall in other studies [62, 64, 67, 68], other factors vary

in their reliability for complex reasons that could over- or underestimate the results. For exam-

ple, substance use during pregnancy is commonly underreported, an effect that would tend to

diminish the strength of the present findings; one recent study found that 61% of women

endorsed alcohol consumption between conception and recognition of pregnancy [69], more

than twice the rate reported here. However, it is notable several prospective studies of sub-

stance exposure during pregnancy report smaller or null associations with childhood psycho-

pathology [19, 70, 71]. Unplanned pregnancy has been shown to be both over- and

underestimated on the order of 20% [72, 73]. Accordingly, the measurement error related to

these factors in the present study is likely significant, but not necessarily biased in one direc-

tion, and in some cases may pull toward the null hypothesis. The large and diverse sample

afforded by the ABCD study appears to have been sufficient for signal detection, even after

controlling for numerous potential confounders.

Of note, study participants were born before the current opioid epidemic, and opiate expo-

sure during pregnancy occurred with insufficient frequency to study. To be consistent with

prior studies and facilitate a comparison of results, substance use was treated as a binary vari-

able, as were obstetric complications, although their effects on child psychopathology may be

dose-dependent [74]. Other prenatal factors that are known to influence psychopathology risk,

including maternal infection [11, 12], nutrition [75, 76], stressful events [52] and mental health

[77–79], were not measured in the ABCD study; as such the adversity loading model presented

here, while accounting for substantially more variance in risk than individual factors, is cer-

tainly incomplete. These findings may provide proof-of-concept for fully prospective longitu-

dinal studies that thoroughly canvass the prenatal environment. Finally, the included

exposures likely have heritable and non-heritable components; exposures that are more heavily

influenced by heritable factors are potentially more exposed to family-level confounding.

However, the relatively small effect of unmeasured family-level confounders within the sibling

participants might lessen this concern.

These limitations should be weighed against the many strengths of the ABCD Study: a

cohort that is large, racially and socioeconomically diverse, relatively homogenous with regard

to age, and uniformly characterized; inclusion of a range of potential postnatal exposures that

are known to influence psychopathology; and the opportunity to control for other unmea-

sured, family-level confounders through replication in a sibling cohort. Sibling designs such as

these control for systematic maternal rating bias, although they do not fully adjust for child-

parent effects. The sample is geographically diverse and reflects the socioeconomic, racial, and

ethnic diversity of the U.S., an advantage compared to other fully prospective but single-city

cohorts (ALSPAC, Generation R); notably, though, as the ABCD study recruited from aca-

demic centers, urban/suburban populations are better represented, and results may not gener-

alize as well to rural communities. Perhaps most importantly, the ABCD Study provides an
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opportunity to follow these participants through the high-risk adolescent years, enabling

future study of the stability of these patterns, their relationship to emergent psychopathology

and brain development, and their interaction with adverse life events that are captured

prospectively.

In summary, leveraging data from the ABCD Study, we report 5 prenatal exposures that

independently and additively associate with dimensional measures of psychopathology at age

9–10. The cumulative impact of these factors is clinically relevant and reproducible, and

appears robust to potential postnatal and familial confounders, although bias cannot be ruled

out in this retrospective design. These findings support the call for fully prospective, broadly

representative studies that begin during pregnancy, such as the proposed NIH HEALthy Brain

and Child Development Study. They also underscore the importance of policies and interven-

tions to promote healthy pregnancies as a means of protecting the offspring’s brain health in

childhood.
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