
RESEARCH ARTICLE

Multistage allocation problem for Mexican

pension funds

Andrés Garcı́a-MedinaID
1,2*, Norberto A. Hernández-Leandro2, Graciela González Farı́as3,
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Abstract

The problem of multistage allocation is solved using the Target Date Fund (TDF) strategy

subject to a set of restrictions which model the latest regulatory framework of the Mexican

pension system. The investment trajectory or glide-path for a representative set of 14 assets

of heterogeneous characteristics is studied during a 161 quarters long horizon. The

expected returns are estimated by the GARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1)

models, and a stationary block bootstrap model is used as a benchmark for comparison. A

fixed historical covariance matrix and a multi-period estimation of DCC-GARCH(1,1) are

also considered as inputs of the objective function. Forecasts are evaluated through their

asymmetric dependencies as quantified by the transfer entropy measure. In general, we

find very similar glide-paths so that the overall structure of the investment is maintained and

does not rely on the particular forecasting model. However, the GARCH(1,1) under a fixed

historical covariance matrix exhibits the highest Sharpe ratio and in this sense represents

the best trade-off between wealth and risk. As expected, the initial stages of the obtained

glide-paths are initially dominated by risky assets and gradually transition into bonds

towards the end oof the trajectory. Overall, the methodology proposed here is computation-

ally efficient and displays the desired properties of a TDF strategy in realistic settings.

1 Introduction

At present, population aging poses substantial economic challenges to nearly all of the govern-

ments of the world. Pension systems face a series of difficulties mainly due to incomplete con-

tribution records, increased life expectancy, and uncertainty over future market fluctuations.

Moreover, pension systems must be sustainable, adequate, and equitable to satisfy the

demands and preferences of people and offer them a plan suitable for the present era of rapid

change. As a consequence, it is necessary to search for a general solution to pension system

issues. The main paths towards such a solution proposed thus far are to reduce monthly pen-

sions, to increase voluntary contributions, to delay the retirement age, and to increase worker

output [1].
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One way in which the pension system has met the challenges mentioned above has been to

shift from models in which employees rely on social security under defined benefit (DB) pen-

sion plans to a system in which employees must rely on their own savings and investment deci-

sions to fund their retirement, a system known as a defined contribution (DC) plan. In the

latter system, employees are responsible for financing their own retirement. Moreover, the

current approach to the investment problem is based on life-cycle plans [2, 3], whereby inves-

tors should allocate a larger share of their long-term savings to stocks when they are young

and decrease this allocation as they approach retirement age. Life-cycle funds reduce the stock

exposure of the fund as the target maturity date approaches. Adopting them as default invest-

ment options in DC pension plans might help a significant number of individuals, particularly

those with lower levels of education, wealth, and income because, as argued in [4], members of

these groups exhibit a high degree of inertia in their contribution and investing decisions.

In particular, and to overcome the problems derived from the increase in the elderly popu-

lation and overall life expectancy, the Mexican pension system has experienced several reforms

in recent decades. In 1997, Mexico reformed its DB plan and implemented a DC plan based

on a mutual fund system in which the so called Investment Societies Specialized in Retirement

Funds (SIEFOREs, for its acronym in Spanish) manage different investment funds with differ-

ent risk exposure profiles. Until 2004, the official investment policy of the SIEFOREs was

restricted to investing only in Mexican government and corporate debt securities; but in that

year a new regulation enabled SIEFOREs to include Mexican equity. In 2007, the investment

policy changed again and began to follow a life-cycle investment profile. Since then, SIEFOREs

have been allowed to invest in international stocks and in real estate. Five categories of SIE-

FOREs were available until 2019, with type 5 being the riskiest one with a portfolio consisting

primarily of equities and international debt, and type 1 being more conservative and dimi-

nated by bonds [5]. For a review and analysis of this pension system with data up to 2014, the

reader is referred to [6].

At the end of 2019, derived from the new provisions of the regulation of the Retirement

Savings System (SAR, for its acronym in Spanish) in Mexico [7], the Retirement Fund Admin-

istrators (Afore, for its accronim in Spanish; see [8] for a review of the market of Afores in

Mexico) ceased to operate under the multi-fund scheme and was shifted to a model called Tar-

get Date Funds (TDF). The main difference between the multi-fund model and TDF is the

investment process. In the multi-fund model, at a certain age, the worker migrates between

funds, which are characterized by having a different investment regime and a different risk

exposure. In TDF, the individual makes an initial investment and continues to contribute

throughout his or her working life. The investor’s objective is then to maximize his or her pen-

sion benefits during retirement [9]. In TDF, the investment portfolio is restructured reducing

its share of risky assets as the worker approaches the retirement date. This implies that the

worker’s resources stay in the same fund (unlike the DC system in which funds were trans-

ferred from one SIEFORE to another), the long-term investment strategy of which is adjusted

with respect to risk exposure and the age of the employee.

A long-term investment strategy, investment trajectory or glide-path, determines the pace

at which TDF changes its composition, depending on the risk-return ratio of its constituent

assets. In addition to risk, the worker’s retirement date and income prospects at retirement –

the replacement rate (RT)– and contributions over time are crucial in determining the alloca-

tion trajectory of the fund. Thus, the most recent regulation in Mexico, implemented on the

13th of December 2019, poses a rather interesting dynamic optimization problem whose opti-

mal glide-path is fundamental. Some restrictions are imposed on this glide-path by regulation.

For instance, the newly managed funds need to contemplate the savings of the particular gen-

eration. Additionally, the glide-path must have a horizon of 161 quarters, which amounts to
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approximately 40 years. Finally, regulation establishes the investment limits for each asset class

in time. For example, a maximum of 60% of the total resources available can be invested in

equity during the first quarter; but this figure falls to 15% in the last quarter. The traceability of

investments is not defined and depends on various variables inherent to the profile of the

workers such as savings rate, contributions, and demographic profile, among others factors.

The new regulation demands a solution that supports the notion that the retirement hori-

zon matters for asset allocation. Thus, we should prefer the approach of a life-cycle pension

plan with age-based and risk-based characteristics. Unfortunately, the traditional approach of

the mean-variance portfolio analysis of Markowitz [10] does not provide scientific support for

the horizon-based investing approach to asset allocation that characterizes life-cycle funds [4].

The reason is that mean-variance analysis assumes that investors live in a parsimonious world

of constant risk and return. A TDF pension fund must address the challenges of implementing

state-of-the-art life-cycle optimization techniques to incorporate the long-term investment

horizon while also accounting for the periodic contributions of the investor to adequately

model the pension funds in a TDF system.

In this paper, we attempt to solve the TDF problem for the case of Mexico. To this end, we

implement a function that obtains an optimal asset allocation strategy and simultaneously

allows maximizing a generation’s target wealth under the investment limits established by the

new regulation. In doing so, we choose realistic scenarios considering a set of assets and invest-

ment limits that are used in practice and obey the requirements of the new regulation. The

general considerations of our analysis are based on the premises of the homogeneity of human

capital characteristics, equal risk tolerance for the participants, a single long-term investment

option, and tax irrelevance. Under these premises, a single life-cycle fund per retirement hori-

zon is sufficient [4].

More specifically, we model the asset allocation as a multi-period optimization problem in

which the objective is to minimize the risk at the end of the investment trajectory while satisfy-

ing a lower bound constraint on the total return of investment. This lower bound is in fact

related to the desired replacement rate of the investment fund. An optimal frontier is obtained

for a set of replacement rates attained with the lowest investment risk in a range of values. We

thus obtain a set of optimal solutions, each with a particular glide-path.

The rest of the paper is structured as follows: Section 2 introduces the multiperiod objective

function that is used to solve the allocation problem. In section 3, the volatility models to esti-

mate the input of the objective function are described. Transfer entropy theory is briefly dis-

cussed in section 4 to analyse the dependencies among the assets. Next, section 5 describes the

dataset and the set of constrains used in the multistage allocation problem. Section 6 discusses

the methodology to compute the expected returns and covariance matrices, and shows prelim-

inary results on the behavior of the forecasted values and their asymmetric dependencies. The

optimized results are shown and interpreted in section 7. Finally, in the concluding section 8,

the main findings are summarized, and future research directions are proposed.

2 Multistage model

We are interested in solving the asset allocation problem with restrictions under a multiperiod

approach. Thus, the objective function must consider the effect of each period on the realloca-

tion of assets within the portfolio and seek to minimize the total risk of the investment, that is,

when considering the 161 quarters of the investment fund horizon established by the new reg-

ulation in Mexico.

To achieve this objective, we adopt a discrete approach since the continuous approach [2, 3,

11] is practically infeasible in a computational sense when dealing with a large number of
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variables, periods, and restrictions, as is the case for the pension fund problem that we aim to

solve.

Nevertheless, discrete representation also presents problems that can lead to an implemen-

tation where the computation time increases exponentially with the number of the periods

considered. The difficulty is that a stochastic programming formulation starts from the fact

that the decisions made in each stage or period are decision rules conditioned on past events.

This problem restricts the applicability of the multiperiod approach to a limited number of

assets, periods and restrictions.

Thus, the specific approach that we propose is mainly based on [12], where the multistage

asset allocation problem is reduced to a convex quadratic programming problem with linear

constraints that can be solved globally and at relatively low computational cost.

2.1 Model definition

Let us consider a set of p assets and an investment horizon T divided into t periods of equal

duration Δt. Denote by xi(k) the portion of the total investment assigned to an asset i at step k,

for i = 1. . ., p, and k = 1, . . ., T. In vector notation, the portfolio x at period k is built as

xðkÞ ¼ ðx1ðkÞ; . . . ; xpðkÞÞ: ð1Þ

In the same way, the total wealth at period k is given by

WðkÞ ¼
Xp

i¼1

xiðkÞ ¼ 10xðkÞ: ð2Þ

Suppose that at the end of each period, the portfolio is rebalanced. Let us denote by x+(k)

the adjusted portfolio at period k with optimized variable u(k)

xþðkÞ ¼ xðkÞ þ uðkÞ: ð3Þ

Further, let us assume the portfolio is self financing, i.e., no cash is injected into it or with-

drawn from it. Then,

Xp

i

uiðkÞ ¼ 0: ð4Þ

On the other hand, the profit of asset i at time k is given by

giðkÞ ¼ riðkÞ þ 1; ð5Þ

where ri(k) is the return of asset i at time k. If we construct the diagonal matrix G(1) = diag
(g1(1), . . ., gp(1)), the portfolio composition at the end of the first period can be written as

xð1Þ ¼ Gð1Þxð0Þ þ Gð1Þuð0Þ: ð6Þ

Then, the dynamic equation of the portfolio at the end of the period k + 1 is given by

xðk þ 1Þ ¼ Gðkþ 1ÞxðkÞ þ Gðkþ 1ÞuðkÞ; k ¼ 0; . . . ; t � 1: ð7Þ

Using this recursion formula, the total investment capital at step k can be expressed as

WðkÞ ¼ 10xðkÞ ¼ Φ0ð1; kÞxð0Þ þ
Xk

j¼1

Φ0ðj; kÞuðj � 1Þ; ð8Þ

where F0(j, k) = 10G(k)G(k − 1). . .G(j), y F0(k, k) = 10G(k). Hence, total investment risk is
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quantified as a weighted sum of capital volatility during the k stages

JðtÞ ¼
Xt

k¼1

gðkÞvarfWðkÞg; ð9Þ

where γ(k)� 0 is the level of risk associated with each period, which is set heuristically.

In this multiperiod problem, the objective is to minimize the risk at the end of the invest-

ment trajectory, represented by J(T), while satisfying a lower bound constraint on the total

returnFlb. The quantity Flb is directly related to the minimum bound of the desired replace-

ment rate of the investment fund. In practice, an optimal frontier is obtained for a set of desired

replacement rates accomplished with the lowest total investment risk in a range of values. Thus,

we obtain a set of optimal solutions, each with a particular glide-path. Then, we can choose a

solution that meets the particular risk aversion of the investor, similar to the optimal frontier of

Markowitz [10]. Note that J(t) is the objective function that we will seek to optimize under the

specific investment limits or restrictions listed in Table 2 applied to the assets of Table 1.

2.2 Model as a convex quadratic programming problem

In [12] the convexity of J(t) under the assumptions discussed above is proved. Explicitly, the

objective function is minimized at each stage k by the model

min
�uð0Þ;...;�uðT� 1Þ

XT

k¼1

gðkÞvarfWðkÞg

subjet to :

EfWðTÞg � Flbxð0Þ;
10�uðkÞ ¼ 0; k ¼ 0; . . . ;T � 1

EfxþðkÞg � 0; k ¼ 0; . . . ;T � 1

nlb;jðkÞ1
0EfxðkÞg �

X

i2cj

ðEfxiðkÞg þ �uiðkÞÞ � nub;jðkÞ1
0EfxðkÞg;

j ¼ 1; . . . ; l; k ¼ 0; . . . ;T � 1

ð10Þ

where:

Table 1. Assets considered to this study.

Category Name Asset Identifier

c1 Structured BBVA B+EST1 STRUCTURED

c2 Commodities SP’GSCITR S&P GSCI Total Return Index COMMODITIES

c3 Fibras Fibra Uno Administracion (FUNO11) FIBRAS

c4 Equities MSCI All Country World Index

S&P/BMV IPC

ACWI

IPC

c5 Securitized CEMEX (CEMEXCPO)

Fomento Economico Mexicano (FEMSAUBD)

CEMEX

FEMSA

c6 Foreign Assets Global-Aggregate Total Return Index

MSCI World Real Estate Index

GAI

REITS

c7 Udibonos (lower) SPVIFUBT Index UDIBONOS

c8 FOREX USD-MXN X-RATE

U.S. Dollar Index

MXN

DXY

c9 Unbounded S&P/BMV Sovereign MBONOS Bond Index

182-day CETES

MBONES

CETES182

The first column enumerates the asset’s category. The second column lists the names of categories. The third column describes the full name of each asset. The fourth

column represents the assets by an identifier.

https://doi.org/10.1371/journal.pone.0249857.t001
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• �uðjÞ: Optimal expected adjustment vector at step j. This provides the optimal portfolio rebal-

ancing at the end of each stage as a result of optimizing the objective function.

• Flb: Lower bound of the portfolio return at the end of the period. It is associated with the

replacement rate.

• νlb,i,νup,i: lower and upper bound, respectively, of the sum of asset weights in category cj,
where j = 1, . . ., l. This restriction allows us to limit, for example, the proportion of high- and

low-risk assets to add to the portfolio. In our case, we have l = 9 categories of different

restrictions.

• γ(k): These values weight the risk contribution of each stage in the global investment

trajectory.

Furthermore, the values of E{W(k)}, E{x(k)} and var{W(k)} are estimated as a function of

the optimal values of �u as well as through the estimated covariance matrix of the model and

the expected returns.

In practice, the investment in a fund is not expected to suffer significant changes in two

consecutive periods. For this reason, we add the constraints (11) in order to control the adjust-

ment performed at each period.

� aWðkÞ � �uiðkÞ � aWðkÞ 8 k ¼ 1; . . . ;T; i ¼ 1; . . . ; p; ð11Þ

where α indicates the maximum and the minimum portion of adjustment allowed from the

total wealth at each period.

3 Volatility models

A way to estimate the expected returns and covariance matrices needed to optimize (10) is

through the analysis of volatility. As explained by [13] among many others, financial time

series exhibit a series of statistical regularities which successful models necessarily take into

account. In particular, returns are unpredictable, have large and frequent outliers, outliers in

both directions tend to be clustered in time, and returns may have an asymmetric impact on

volatility.

The main way to incorporate these features into a time series model is to use a multiplica-

tive model where returns are expressed in terms of the unobservable volatility process, namely:

εt ¼ stZt;

where the random process {Zt} is white noise and the volatility process fs2
t gmodels, dynami-

cally, the conditional variance of the returns given past information. Two alternative specifica-

tions have been suggested in the literature for the volatility process: the GARCH (Generalized

Autorregressive Conditional Heteroskedasticity) family and the ARSV (Autorregressive Sto-

chastic Volatility) models.

GARCH models were first introduced in [14, 15] and specify σt as a function of a vector of

unknown parameters θ. Due to its success in several fields of application, and in order to better

accommodate different features of financial data, the original GARCH model has seen a num-

ber of extensions and modifications. Most of these extensions are included in the f-GARCH
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model, family GARCH, of [16] according to which θ = (α, β, λ, ν, b, c)T, and

slt � 1

l
¼ oþ

Xq

i¼1

aist� if ðεtþi� 1Þ
n
þ
Xp

j¼1

bj
slt� j � 1

l
;

f ðεtÞ ¼ jεt � bj � cðεt � bÞ:

ð12Þ

Different choices of the orders p, q and the parameters in θ provide different models. Notice

that the volatility process σt is not directly modeled; but is instead included via a Box-Cox

transformation. The first parameter, λ, governs the shape of this transformation. As custom-

ary, we take the Box-Cox transformation with λ = 0 as the logartithmic transformation. The

parameters {αi, i = . . ., q} capture the impact of past returns on the variance. In this sense, they

are considered the ARCH part of the model. The influence of past returns of the volatily pro-

cess is modulated by the function f and the power parameter ν. The main reason to include f in

this formulation is to allow for asymmetric responses so that negative and positive returns

have a different impact on the volatility. This asymmetry, also known as leverage, is an impor-

tant part of financial theory. Parameters a, b, c, and ν allow for a flexible specification of the

asymmetric effect. Finally, the parameters {βj, j = 1. . ., p}, known as the GARCH part of the

model, measure the influence of past volatilities on the present one.

Stochastic Volatility Models, on the other hand, can be traced to the framework of [17] and

model the dynamics of the volatility by introducing a stochastic process directly into it. One of

the most representative models in this family is the Autorregressive Stochastic Volatility

Model (ARSV) process which specifies

st ¼ sexpfht=2g;

ht ¼ �ht� 1 þ Zt:

The stochastic process ηt is white noise, usually Gaussian, and independent of Zt. The stochas-

tic properties of the model, which make it suitable for modeling financial series, can be found

in [18–20]. Just as in GARCH models, asymmetric effects have been incorporated into the SV

framework by different authors as early as [21, 22] and later revisited by [23]

Further generalizations of this asymmetric response which simultaneously add a strong

non-linear effect have been given which are inspired in the Threshold Autorregressive Model

of [24, 25]. Threshold non-linearity is incorporated into the mean and variance specifications

of a SV model by [26] in his Threshold Stochastic Volatility model (THSV) through

log s2
tþ1
¼ aStþ1

þ �Stþ1
logðs2

t Þ þ Zt; ð13Þ

In this equation, St is the indicator function of εt� 0 so that

St ¼

(
1; εt � 0;

0; εt < 0:

Therefore, the parameters in the volatility process have two states which depend on the sign of

past returns. Parameter ϕ takes on value, say, ϕ1 if St = 1 and value ϕ2 if St = 0. A very similar

model, which uses Eq (13) but omits the term aSt and only deals with asymmetry in the vari-

ance specification, was introduced some years later by [27] and labeled Threshold Asymmetric

Autorregressive SV (TA-ARSV) model. Later, in [28] the TA-ARSV is again put forward as a

modelling strategy and applied to precious metal returns. According to the authors, and based

on a selected sample of returns of financial stock and three precious metals, the TA-ARSV is
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more sensitive to asymmetries and more capable of measuring the leverage effect when com-

pared to the A-GARCH, T-GARCH, A-ARSV, and ARSV models. Like GARCH processes,

threshold SV models have been applied in several fields and capture the statistical regularities

of different financial instruments and price processes. For example, the leverage effect of spot

prices in the energy market have been studied in [29, 30]. The model was also successfully

applied to stock markets in [27, 31, 32], to daily average prices of energy products in [33], and

to predict crypto and wold currencies in [34].

While all these models may be appropriate for modelling certain forms of the leverage effect

in volatility, they offer no distinct advantage over the f-GARCH asymmetric models for our

modelling purposes. In this paper we focus thus on returns generated by Eq (12) and seek to

optimize the investment trajectories based on them. Different approaches to portfolio optimi-

zation and hedging using GARCH type models and asymmetric correlations can be found in,

for example, [35, 36].

We will further specify that p = q = 1, in which case both, α and β are only real numbers.

Most of applied work is done around this specification, although some authors argue that

other values for p and q could be more appropriate. See, for example, section 8.5 of [37].

Under this assumption, if λ = 0, ν = 1, b = 0 we obtain the exponential GARCH(1, 1) model of

[38], whereas if λ = ν = 2, b = 0 we obtain the GJR-GARCH(1, 1) of [39] which are particularly

useful in financial applications due to their ability to measure the leverage effect. The reader is

referred to [16, 37, 40, 41] for a survey of GARCH models and some of their uses in finance.

Several generalizations to multivariate models for conditional heteroskedasticity,

M-GARCH for short, have been proposed in the literature. Generally speaking, the data is now

modeled as a random vector xt = (x1,t, . . ., xn,t)
0 with joint dynamics given by

xt ¼ mtðyÞ þ �t; ð14Þ

�t ¼ S1=2

t ðyÞzt; ð15Þ

where μt(θ) is the n × 1 vector of conditional means, St(θ)1/2 denotes a squared root of the n ×
n conditional covariance matrix of the vector �t, and θ is a vector of unknown parameters.

M-GARCH models can be roughly classified as either direct generalizations of the univariate

GARCH (VEC, BEKK, and Factor Models), weighted averages of univariate GARCH models

(O-GARCH, GO-GARCH), or nonlinear transformations mixing univariate GARCH models

(Dynamic covariance GARCH models such as CCC, DCC, GDC, and Copula GARCH). Each

of these models admits a further generalization to incorporate leverage or asymmetry. For a

full review of M-GARCH models, the reader is referred to [42].

In this paper, we forecast the expected returns and the covariance matrix of the portfolio of

Table 1 using two of the asymmetric specifications of the univariate GARCH model, namely,

the EGARCH of [38] and the GJR-GARCH of [39], and estimate the conditional covariance

matrix of such returns using the Dynamic Conditional Correlations M-GARCH. More specifi-

cally, we let the covariance matrix St be factored as

St ¼ D
1=2
t RtD

1=2
t ; ð16Þ

where Dt is n × n the diagonal matrix of conditional variances and Rt is the n × n conditional

correlation matrix. One great advantage of this model is that it greatly reduces the number of

parameters to estimate without imposing serious restrictions on the parameter space. Follwing
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[43], we further let

Rt ¼ diagðQtÞ
� 1=2
� Qt � diagðQtÞ

� 1=2 ð17Þ

Qt ¼ ð1 � d1 � d2Þ
�Q þ d1ðut� 1u0t� 1

Þ þ d2Qt� 1; ð18Þ

where �Q is the unconditional covariance matrix of ut = {�i,t/σi,t}i=1,. . .,n and

0 � d1; d2 � 1; ð19Þ

d1 þ d2 � 1; ð20Þ

is assumed, which guarantees the positive definitiveness of Rt.

4 Transfer entropy

In order to evaluate whether the dependencies between the variables are preserved before and

after applying the volatility models to the assets under study, we have measured the Transfer

Entropy (TE). Next, we draw the main elements of the theory.

Let xi = x(i) and yi = y(i), i = 1, . . ., N; denote a series of observations of systems X and Y.

TE measure is defined as [44]

TY!Xðk; lÞ ¼
X

i;j

pðxtþ1; x
ðkÞ
t ; y

ðlÞ
t Þlog

pðxtþ1jx
ðkÞ
t ; y

ðlÞ
t Þ

pðxtþ1jx
ðkÞ
t Þ

; ð21Þ

TE attempts to incorporate time dependence into account by relating previous observations

xi and yi in order to predict the next value xi+1. Then, it quantifies the deviation from the gen-

eralized Markov property, p(xi+1|xi, yi) = p(xi+1|xi), where p denotes the transition probability

density to state xi+1 given xi and yi. If there is no deviation from the generalized Markov prop-

erty, Y has no influence on X. Then, TE quantifies the incorrectness of this assumption, and

being formulated as the Kullback-Leibler entropy between p(xi+1|xi, yi) and p(xi+1|xi) is explic-

itly nonsymmetric with respect to the exchange of xi and yi.
A straightforward approach to estimate TE is to partition the data into discretized values.

Thus, a time series x(t) is partitioned as follows to obtain the symbolically encoded sequence

S(t)

St ¼

1 for yt � q1

2 for q1 < yt � q2

..

. ..
.

n � 1 for qn� 1 < yt < qn

n for qn

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð22Þ

The above symbolic sequence replaces the value in the observed time series by the discrete

states {1, 2, . . ., n − 1, n}.

Nevertheless, the expression of TE is likely to be biased due to several factors such as finite

sample effects and the not strict stationarity of financial data. Also, time series with higher

entropy naturally transfer more entropy to the others. To reduce this bias the Effective
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Transfer Entropy (ETE) was proposed in [45] and defined as

ETEshuffledY!X ðk; lÞ : TY!Xðk; lÞ � TYshuffled!Xðk; lÞ; ð23Þ

where TYshuffled!X indicates the transfer entropy from Y to X with randomly shuffled time

series Y. Thus, all statistical dependencies between the two time series are destroyed. An

important characteristic is that TYshuffled!X(k, l) converges to zero at long sample size. Conse-

quently, any non-zero value of TYshuffled!X(k, l) is due to small sample effects.

The work of Dimpfl et. al. [46] improves the bias correction by adding an inferencial per-

spective to the estimated information flows. They proposed to use the Horowitz’s approach

[47], who bootstraps the modelled Markov process. The idea is to simulate process Y based on

the calculated transition probabilities, where the dependencies between Y and X are destroyed,

but the dynamics of the series Y is not changed. Transfer entropy is then estimated using the

simulated time series. Then, this procedure is repeated several times to create a null distribu-

tion of no information flow, which can be used to test for statistical significance. The proposed

equation has the same structure as Eq 23:

ETEbootY!Xðk; lÞ : TY!Xðk; lÞ � TYboot!Xðk; lÞ; ð24Þ

where TYboot!X indicates the average over the estimates derived from the null bootstrap

distribution.

5 Data

We consider weekly prices of 14 instruments available in the Mexican Stock Exchange (BMV,

for its acronym in Spanish) from September 21st 2012 to February 14th 2020 for a total of

n = 386 trading weeks (see 8). The data were accessed from Bloomberg (Available at https://

www.bloomberg.com/) and Yahoo Finance (Available at https://finance.yahoo.com/). This

period includes the most recent shocks in the Mexican capital markets as are the uncertainty

of the FX, the fluctuations of debt and equity market due to the American and Mexican elec-

tions. It also includes the NAFTA renegotiations in the 2016–2018 period [5], but does not

take into account the recent financial crash resulting from COVID-19.

The weekly frequency is chosen to have enough observations to avoid bias in the estimation

and, in part, because it was not possible to go beyond 2012 in the past for some of the selected

assets. Also, we avoid higher resolution data (daily, for example) because forecasting becomes

much more complex and computationally demanding. The data thus gathered presents less

than 1% of missing values, which were imputed using splines interpolation of order three.

The assets are listed in Table 1, where the first column shows the asset’s category with

respect to the allowed weight under the portfolio strategy explained in the next section. The

second column presents the name of the categories. The full name of assets belonging to each

category are listed in the third column, and the fourth column describes each asset by an iden-

tifier. This particular selection is inspired by the typical practitioner preferences of fund

administrators and in accordance with the new Mexican regulation [7]. In our asset selection,

we take into account the empirical evidence that suggests a well-diversified portfolio should

include a healthy allocation to international equities [48].

In addition, Table 2 presents the investment limits proposed in this study. The 161 quarters

periods were annualized in order to reduce the computational complexity of the multistage

allocation problem. Nonetheless they are established according to the new regulation of the

SAR agency in Mexico, where all the columns represent the upper limits allowable under the

regulation, except for category c7, which represents a lower limit.
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6 Expected returns and covariance matrices

The EGARCH(1,1), GJR-GARCH(1,1), GARCH(1,1) are considered to estimate the expected

returns and covariance matrices. The methodology is described below and implemented on R
using the libraries rugarch and rmgarch:

Table 2. Investment limits considered for each category.

Period c1 c2 c3 c4 c5 c6 c7 c8 c9

1 20.00 5.00 10.00 59.68 39.73 20.00 51.00 30.00 100.00

2 20.00 5.00 10.00 59.27 39.43 20.00 51.00 30.00 100.00

3 20.00 5.00 10.00 58.90 39.08 20.00 51.00 30.00 100.00

4 20.00 5.00 10.00 58.57 38.70 20.00 51.00 30.00 100.00

5 20.00 5.00 10.00 58.22 38.28 20.00 51.00 30.00 100.00

6 20.00 5.00 10.00 57.83 37.84 20.00 51.00 30.00 100.00

7 20.00 5.00 10.00 57.41 37.37 20.00 51.00 30.00 100.00

8 20.00 5.00 10.00 56.96 36.87 20.00 51.00 30.00 100.00

9 20.00 5.00 10.00 56.48 36.35 20.00 51.00 30.00 100.00

10 20.00 5.00 10.00 55.97 35.82 20.00 51.00 30.00 100.00

11 20.00 5.00 10.00 55.45 35.27 20.00 51.00 30.00 100.00

12 20.00 5.00 10.00 54.89 34.71 20.00 51.00 30.00 100.00

13 20.00 5.00 10.00 54.32 34.14 20.00 51.00 30.00 100.00

14 20.00 5.00 10.00 53.72 33.57 20.00 51.00 30.00 100.00

15 20.00 5.00 10.00 53.11 32.99 20.00 51.00 30.00 100.00

16 20.00 5.00 10.00 52.48 32.41 20.00 51.00 30.00 100.00

17 20.00 5.00 10.00 51.83 31.83 20.00 51.00 30.00 100.00

18 20.00 5.00 10.00 51.16 31.26 20.00 51.00 30.00 100.00

19 20.00 5.00 10.00 50.40 30.70 20.00 51.00 30.00 100.00

20 20.00 5.00 10.00 49.38 30.16 20.00 51.00 30.00 100.00

21 19.43 5.00 9.71 48.30 29.58 20.00 51.00 30.00 100.00

22 18.86 5.00 9.43 47.15 28.95 20.00 51.00 30.00 100.00

23 18.29 5.00 9.14 45.93 28.26 20.00 51.00 30.00 100.00

24 17.71 5.00 8.86 44.66 27.47 20.00 51.00 30.00 100.00

25 17.14 5.00 8.57 43.33 26.66 20.00 51.00 30.00 100.00

26 16.57 5.00 8.29 41.90 25.85 20.00 51.00 30.00 100.00

27 16.00 5.00 8.00 40.30 25.00 20.00 51.00 30.00 100.00

28 15.43 5.00 7.71 38.51 24.30 20.00 51.00 30.00 100.00

29 14.86 5.00 7.43 36.48 23.70 20.00 51.00 30.00 100.00

30 14.29 5.00 7.14 34.15 23.12 20.00 51.00 30.00 100.00

31 13.71 5.00 6.86 31.48 22.56 20.00 51.00 30.00 100.00

32 13.14 5.00 6.57 28.42 22.04 20.00 51.00 30.00 100.00

33 12.57 5.00 6.29 25.10 21.56 20.00 51.00 30.00 100.00

34 12.00 5.00 6.00 21.82 21.12 20.00 51.00 30.00 100.00

35 11.43 5.00 5.71 18.88 20.73 20.00 51.00 30.00 100.00

36 10.86 5.00 5.43 16.58 20.39 20.00 51.00 30.00 100.00

37 10.29 5.00 5.14 15.23 20.11 20.00 51.00 30.00 100.00

38 10.00 5.00 5.00 15.00 20.00 20.00 51.00 30.00 100.00

39 10.00 5.00 5.00 15.00 20.00 20.00 51.00 30.00 100.00

40 10.00 5.00 5.00 15.00 20.00 20.00 51.00 30.00 100.00

All the cases represent an upper limit, except for c7, which fixes a lower limit.

https://doi.org/10.1371/journal.pone.0249857.t002
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(a). For each historical price time series of assets, the difference in logarithmic values is cal-

culated to obtain the returns. This transformation helps to eliminate the trend compo-

nent and transforms the time series into its stationary forms.

(b). The EGARCH, GJR-GARCH, and GARCH models of order (1,1) with constant mean

and normal distribution of residuals are fitted to the empirical returns. The three

approaches are fitted independently to compare the robustness of the glide-path under

the different models.

(c). To fit the model is followed a hybrid strategy in the sense that as a first attempt is used

the solver solnp proposed in [49]. If the solver does not converge, then it is used one of

the following solvers of the rugarch library: nlminb, gosolnp, nloptr; which pri-

ority is given in the same order [50].

(d). Given the prediction horizonH and the number of desired replications, B, we generate

B bootstrap replications of the adjusted process with a path length ofH. These trajectories

can be interpreted as B possible scenarios for the nextH weeks. In our specifications, we

choose B = 1000 and H = 2093 weeks, the last because we are interested in studying the

standard horizon of a glide-path of 161 quarters, where each quarter is composed of 13

weeks.

(e). For the EGARCH and GJR-GARCH, the B trajectories of the bootstrap replications are

estimated by sampling with replacement in a semi-parametric approach. In the first step

it is obtained an estimation of the standard deviation ŝt using innovations zt* N(0, 1)

and the empirical residuals �t. Then, in a second step we adjust the innovations ẑ t ¼ �tŝt.
In this way, the normal distribution specification for the innovations is replaced by the

non-parametric adjusted distribution of the empirical data. In the GARCH case, we fol-

lowed a parametric approach with zt* N(0, 1).

(f). The covariance matrix is estimated under the DCC-GARCH(1,1) at each period k = 1,

. . ., T; and for each univariate model: EGARCH(1,1), GJR-GARCH(1,1), and GARCH

(1,1). Here, we consider a jointly Gaussian distribution and a Generalized Error Distribu-

tion (GED) for the univariate specifications of innovations.

(g). The estimated weekly expected returns are aggregated to obtain the annual expected

returns.

rðannualÞi ðkÞ ¼
XY

j¼1

riðjþ ðk � 1ÞYÞ; ð25Þ

for period k = 1, . . ., T = 40, and asset i = 1, . . ., p = 14. Similarly, the annual covariance

matrix is obtained by multiplying the weekly results by a factor of Y = 52. This is done

under the assumption of an underlying random walk process in the dynamics of returns.

(h). As a baseline comparison, we consider a Stationary Block Bootstrap Simulation (SBBS)

for the future trajectory of the set of assets following the idea of [51]. In this approach,

the block size follows a geometric distribution, where we set the expected value as μ = 13;

the number of weeks that compose a quarter. As an equivalent of expected returns, we

consider the mean of B = 1000 replications of sizeH = 2093 for each asset. Finally, the

aggregated annual expected returns are computed in the same way as the previous step.

In this case, we do not estimate the covariance matrix.
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The historical price time series of assets listed in Table 1 is preprocessed according to the

methodology described above and the weekly historical returns are obtained, which are shown

in Fig 1. These returns are the input for the forecast model for each of the p = 14 assets.

The weekly expected returns for the whole forecasting period are shown in Fig 2. It can be

seen that estimated expected returns are two orders of magnitude below historical returns.

Fig 1. Historical returns.

https://doi.org/10.1371/journal.pone.0249857.g001

Fig 2. Forecast of expected returns. (a) Figure at top left: results obtained with EGARCH models. (b) Figure at top

right: results obtained with the GJR model. (c) Figure at bottom left: results obtained with the GARCH model. (d)

Figure at bottom right: results obtained with SBBS model.

https://doi.org/10.1371/journal.pone.0249857.g002
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Hence, in agreement with GARCH theory in the sense that the mean or expected value con-

verges to zero. Further, we annualized the returns and applied the Savitsky-Golay filter [52] to

yield smoothed input values for the objective function of the multistage portfolio optimization.

The filtered expected return series are shown in Fig 3, where we have chosen a 5-year moving

window and a polynomial of order three with interpolated extension to the padded signal. We

can notice the volatility is reduced drastically, which in some sense can be interpreted as the

stochastic nature has been omitted and then we preserve only the deterministic trend. At a

simple glance, it can be noticed that the volatility and scale of the expected returns do not vary

across the different forecasting strategies followed.

As described above, the covariance matrix was estimated under the DCC-GARCH(1,1). To

illustrate the quality of the results, Fig 4 plot heatmaps of the historical and estimated covari-

ance matrices at year = 1 and 40; obtained using the univariate specifications given by the

EGARCH(1,1) and GJR-GARCH(1,1) and GARCH(1,1) models, respectively. In the same fig-

ure, the assets are organized from lower to higher standard deviation according to their histor-

ical values. Here, can be seen a block structure of the covariance matrices, where the pattern

does not change significantly over time. The most distinctive block is composed of MXN,

REITS, ACWI, IPC, DXY, COMMODITIES, FEMSA, FIBRAS, and CEMEX. These assets

belong to the categories of FOREX, Foreign Assets, Securitized, Equities, Fibras, and Com-

modities, which are more volatile by their nature. Then, a clear separation between bonds and

risky assets stands out in this representation.

6.1 Asymmetric dependencies

The asymmetric dependencies between assets were assessed by the Transfer Entropy measure

as explained in section 4. In particular, we compute ETE for the set of historical returns and

for each set of the estimated expected returns obtained by the different models. The estimation

of ETE was done considering a Markov order k = l = 1 and 300 bootstrap replications for each

direction of the estimated transfer entropy. Moreover, we drop the 50 first observations of the

Fig 3. Filtered expected returns. (a) Figure at top left: results obtained with EGARCH models. (b) Figure at top right:

results obtained with the GJR model. (c) Figure at bottom left: results obtained with the GARCH model. (d) Figure at

bottom right: results obtained with SBBS model.

https://doi.org/10.1371/journal.pone.0249857.g003
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Markov chain in each bootstrap simulation to avoid transitory effects, and set the number of

shuffles as 100.

We can see in Fig 5 the heatmaps of ETE (Eq 23), in units of bits, from the assets of the ver-

tical axis to the asset on the horizontal axis. Here, it is plotted only the values that are statisti-

cally significant, specifically, satisfying the condition of having a p-value<0.05 when testing

against the empirical bootstrap distribution. For example, we can notice in Fig 5(a) a

Fig 4. Estimated covariance matrices under DCC-GARCH(1,1). Top, univariate EGARCH specification at t = 1, 40

years ((a) and (b), respectively). Middle, univariate GJR-GARCH specification at t = 1, 40 years ((c) and (d),

respectively). Bottom, univariate GARCH specification at t = 1, 40 years ((e) and (f), respectively).

https://doi.org/10.1371/journal.pone.0249857.g004
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statistically significant flow of information from DXY to COMMODITIES but not vice versa.

Only in the expected returns forecasted by GJR-GARCH(1,1) model this direct flow of infor-

mation is preserved, whereas the majority of the other links are not correctly captured.

We measure the True Positive Rate (TPR) and the True Negative Rate (TNR) in order to

quantify the number of asymmetric dependencies that are preserved on the future trajectory of

Fig 5. Effective transfer entropy. (a) Heatmap of ETE over historical returns. Heatmap of ETE over expected returns

estimated by (b) EGARCH(1,1), (c) GJR-GARCH(1,1), (d) GARCH(1,1), and (e) SBBS model. In all cases the Markov

order is set as k = l = 1. The number of bootstrap replications for each direction of the estimated transfer entropy is

chosen as B = 300 with 100 shuffles. The first 50 observations of the bootstrapped Markov are removed.

https://doi.org/10.1371/journal.pone.0249857.g005
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each asset under the different model. These quantities are expressed as

TPR ¼
TP

TP þ FN
;

TNR ¼
TN

TN þ FP
;

ð26Þ

where TP, FP, TN and FN, stand for true positive, false positive, true negative, and false nega-

tive, respectively. It is important to remark the classification is done for expected returns in

relation to historical returns, i.e., considering the asymmetric dependencies of historical

returns as the benchmark structure.

Table 3 shows the TPR and TNR for each of the four models discussed so far. The classifica-

tion is done by transforming the ETE real values represented in Fig 5 into binary values.

Under this transformation if a ETE value is bigger than zero then it is set as one, otherwise, the

ETE value is kept as zero. It is worth noting the TPR is very low, while TNR reaches values

above 0.9 for all forecasting strategies. At this point, we can argue that neither model have

enough power to preserve the TPR, while all of them maintain a high TNR. Then, since the

point of view of asymmetric dependencies on large horizon forecasting models the selection of

one or another model is irrelevant and we can select the one that meets the specific criterion

needed for further analysis.

7 Multiperiod allocation

In this section, we present the results for the multiperiod allocation using the different estima-

tions of the returns and its covariance matrices. In this order, seven experiments were per-

formed considering the SBBS, GARCH(1,1), EGARCH(1,1) and the GJR-GARCH(1,1)

models. These experiments are described in Table 4. Here, the third column indicate if one

covariance matrix is estimated for all periods (Mono) or if one covariance matrix is estimated

for each period (Multi).

Table 3. Classification metrics for asymmetric dependencies. TPR and FNR for the binary ETE of estimated

expected returns in relation to the binary ETE of historical returns.

Case TPR TNR

EGARCH(1,1) 0 0.9096

GJR-GARCH(1,1) 0.1667 0.9158

GARCH(1,1) 0.1 0.914

SBBS 0 0.9115

https://doi.org/10.1371/journal.pone.0249857.t003

Table 4. Experiments for the multiperiod allocation.

ID Model Covariance Matrix

E1 SBBS Mono

E2 GARCH(1,1) Mono

E3 GARCH(1,1) Multi

E4 EGARCH(1,1) Mono

E5 EGARCH(1,1) Multi

E6 GJR-GARCH(1,1) Mono

E7 GJR-GARCH(1,1) Multi

https://doi.org/10.1371/journal.pone.0249857.t004
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In order to solve the multi-allocation model, we use the modeler YALMIP and the quad-
prog solver for MATLAB. The experiments were performed using MATLAB 2015 over a

computer with 64GB of RAM and an Intel Core i9-9900K processor. The parameter α for the

constraints (11) is fixed to 0.03 in the experiments since this is the best value with respect to

the smoothness of the solutions. Furthermore, the weights γ for the variance in the objective

function were considered in such a way that in the initial 22 periods are fixed to zero and in

the last periods the weights increase linearly with the condition that must sum one. These val-

ues were considered in this way because it is expected that at the beginning the retirement

fund can be exposed to risk in order to increase the wealth; but at the last periods the wealth of

the people should be assured so it must face lower risk. Finally, the initial amount of money x

(0) is generated considering one unit distributed uniformly over the assets. Finally, the algo-

rithm takes 2 hours and 45 minutes, in average, to obtain the solutions of each experiment,

which is relatively low considering that the inversion strategy is computed over 40 years.

Fig 6 shows the efficient solutions for the experiments E1, E2, E3, E4, E5, E6 and E7, respec-

tively. As can be seen, there is no significant difference among the solutions; the biggest

difference can be observed in E7, which has a similar wealth; but a greater variance. The exper-

iments show that for the SBBS, GARCH and EGARCH model there is not a significant change

in the value of the variance in the respective experiments, although it is expected that the Multi

experiments provide better estimations of the covariance matrices since they are estimated for

each period in the investment horizon. In addition, the GJR-GARCH models E6 and E7 have

the same wealth; but E7 has a slightly greater variance.

Figs 7–10 present the allocation weights for the solution of each quartile in terms of the

wealth obtained for E1, E2, E3, E4, E5, E6 and E7, respectively. The final wealth and variance

of the respective solution are shown in the title of each image. Observe that the solutions

obtained from the returns estimated with the GJR-GARCH model reach an slightly greater

wealth in comparison with the ones obtained with the other models to estimate the returns.

Furthermore, the distributions of the investment are very similar among all the experiments,

Fig 6. Pareto efficient allocations.

https://doi.org/10.1371/journal.pone.0249857.g006
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Fig 7. Allocation weights from the solution at the first quartile. (a) Case E1 with E{W(T)} = 7.1765 and var{W(T)} =

0.0570. (b) Case E2 with E{W(T)} = 7.0592 and var{W(T)} = 0.0549. (c) Case E3 with E{W(T)} = 7.0591 and var{W(T)}

= 0.0607. (d) Case E4 with E{W(T)} = 7.4455 and var{W(T)} = 0.0568. (e) Case E5 with E{W(T)} = 8.9328 and var{W
(T)} = 0.0665. (f) Case E6 with E{W(T)} = 7.9412 and var{W(T)} = 0.0646. (g) Case E7 with E{W(T)} = 8.9331 and var
{W(T)} = 0.0722.

https://doi.org/10.1371/journal.pone.0249857.g007
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Fig 8. Allocation weights from the solution at the second quartile. (a) Case E1 with E{W(T)} = 15.1176 and var{W
(T)} = 0.2502. (b) Case E2 with E{W(T)} = 14.8490 and var{W(T)} = 0.2436. (c) Case E3 with E{W(T)} = 14.8487 and

var{W(T)} = 0.2652. (d) Case E4 with E{W(T)} = 14.3866 and var{W(T)} = 0.2111. (e) Case E5 with E{W(T)} = 15.8739

and var{W(T)} = 0.2179. (f) Case E6 with E{W(T)} = 15.3782 and var{W(T)} = 0.2436. (g) Case E7 with E{W(T)} =

15.8740 and var{W(T)} = 0.2312.

https://doi.org/10.1371/journal.pone.0249857.g008
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Fig 9. Allocation weights from the solution at the third quartile. (a) Case E1 with E{W(T)} = 22.1764 and var{W(T)}

= 0.6683. (b) Case E2 with E{W(T)} = 21.7731 and var{W(T)} = 0.6512. (c) Case E3 with E{W(T)} = 21.7731 and var{W
(T)} = 0.7222. (d) Case E4 with E{W(T)} = 21.8235 and var{W(T)} = 0.6088. (e) Case E5 with E{W(T)} = 22.3193 and

var{W(T)} = 0.5934. (f) Case E6 with E{W(T)} = 22.3193 and var{W(T)} = 0.6408. (g) Case E7 with E{W(T)} = 22.8151

and var{W(T)} = 0.6901.

https://doi.org/10.1371/journal.pone.0249857.g009
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Fig 10. Allocation weights from the solution at the last quartile. (a) Case E1 with E{W(T)} = 29.2352 and var{W(T)}

= 2.4781. (b) Case E2 with E{W(T)} = 28.6974 and var{W(T)} = 2.2212. (c) Case E3 with E{W(T)} = 28.6974 and var{W
(T)} = 2.4701. (d) Case E4 with E{W(T)} = 28.2689 and var{W(T)} = 2.0927. (e) Case E5 with E{W(T)} = 28.2689 and

var{W(T)} = 2.0181. (f) Case E6 with E{W(T)} = 29.2605 and var{W(T)} = 2.3225. (g) Case E7 with E{W(T)} = 29.2605

and var{W(T)} = 4.4609.

https://doi.org/10.1371/journal.pone.0249857.g010
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which means that the forecasts made with the different models are also similar. As expected,

the solutions tend to make greedy decisions in the distribution with the maximum wealth, i.e.,

the algorithm tries to invest the most in the assets with the highest return at each period of the

investment horizon.

The two lower quartiles in all experiments end up with over 80% of its assets coming from

the debt market. Indeed, UDIBONOS and CETES182 replace COMMODITIES, IPC, GAI,

and REITS in the long run. Actually, we can see that risky assets tend to be eliminated from

the portfolio very early in the glide-path; as soon as 10-15 years. The third quartile is still con-

formed as the first two, in the end; but tends to include risky investment in the middle of its

glide-path, starting around year 10 and reinvesting in it around 5–15 years. Finally, the fourth

quartile restricts its share of bonds to 50% (UDIBONOS) and includes a greater part of risky

assets. We see CETES182 being replaced by IPC, ACWI retaining a much greater participation

in the final mix, and the FOREX market increasing its share via DXY.

In general, we see a simplification of the portfolio in the glide-path of the optimal invest-

ment for lower quartiles. Indeed, lower quartiles tend to be more diverse in the beginning,

including small amounts of all assets; but with time, the capital is allocated mostly in five assets:

UDIBONOS, CETES182, MXN, DXY, and ACWI. On the contrary, higher quartiles are less

diverse at the start of the investment period and include diversification towards the end of the

glide-path.

In order to provide a strategy for the selection of an solution, we propose to consider the

maximum Sharpe ratio [53], which represents the solution with the best trade-off between the

total wealth and variance. In particular, the following equation is considered

SR ¼
Rp � Rf
sp

;

where Rp and σp are the return and the standard deviation of the portfolio for a given solution,

and Rf represents the risk-free rate. In this work, the asset CETES182 is considered to compute

Rf. Fig 11 show the plots of the behavior of the Sharpe ratio over the fronts obtained in the

experiments E1, E2, E3, E4, E5, E6 and E7. The red points in the figure represent the solutions

with the maximum Sharpe ratio of each front.

In addition, Fig 12 present the weights of the solution with the highest Sharpe ratio of each

case, where the respective wealth and variance is shown.

We can see E2 reach the highest Sharpe ratio corresponding to the GARCH(1,1) model with

fixed historical covariance matrix. Note the solutions show a balance between low and medium

risk inversions. As expected in the early stages the portfolio allocate roughly half of their wealth

Fig 11. Sharpe ratio of the cases E1, E2, E3, E4, E5, E6 and E7. (a) Plot of Sharpe ratio and standard deviation. (b)

Plot of Sharpe ratio and wealth.

https://doi.org/10.1371/journal.pone.0249857.g011
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Fig 12. Allocation weights from the solution with the highest Sharpe ratio. (a) Case E1 with E{W(T)} = 21.2941 and

var{W(T)} = 0.5862. (b) Case E2 with E{W(T)} = 20.9075 and var{W(T)} = 0.5725. (c) Case E3 with E{W(T)} = 20.0420

and var{W(T)} = 0.5541. (d) Case E4 with E{W(T)} = 21.3277 and var{W(T)} = 0.5619. (e) Case E5 with E{W(T)} =

20.8319 and var{W(T)} = 0.4588. (f) Case E6 with E{W(T)} = 22.3193 and var{W(T)} = 0.6408. (g) Case E7 with E{W
(T)} = 21.3277 and var{W(T)} = 0.5285.

https://doi.org/10.1371/journal.pone.0249857.g012
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on ACWI and REITS, whilst starting at the tenth year the glide-path gradually allocate mostly

UDIBONOS and CETES182. This behaviour coincides with the glide-paths found on the litera-

ture and applied by practitioners, where is expected a high allocation of risk assets at early stages

and a dominant allocation of bonds as the investment horizon reach its final stage.

8 Conclusions

The challenges posed to dynamically optimizing allocation in investment portfolios by the new

regulations to the Mexican pension system put statistical and computational modeling to the

test. Accounting for the many and diverse factors that affect the overall return of investment,

while simultaneously computing the optimal glide-path calls for the use and synthesis of sev-

eral complementary techniques. In this paper, we have shown that an adequate mixture of sta-

tistics, econometrics, and dynamic optimization provides a step forward in the solution to this

problem. Specifically, we assumed a dynamic self-financing portfolio and minimized risk, as

measured by weighted volatility, in each period. We evaluated the performance of this method

using long-horizon bootstrap forecasts of each individual asset in the portfolio for three differ-

ent volatility specifications as well as a stationary block bootstrap simulation as a baseline

model for comparison purposes.

The dependence of the results we get on the particular GARCH specifications used in the

simulations is shown to be minimal. Indeed, the SBBS, GARCH(1,1), EGARCH(1,1) and

GJR-GARCH(1,1) experiments reveal very similar glide-paths so that the overall structure of

the investment is maintained. This is a very desirable property of the model since it suggests

we do not need to worry about model uncertainty when forecasting volatility. The optimal

investment was also robust to the model employed for the correlation matrix of the returns.

Overall, most of the solutions capture the property of allocation of risky assets at early stages

and a dominance of bonds at the final steps. Nevertheless, the glide-paths found at the highest

Sharpe ratio show the most parsimonious solution in the sense of the best trade-off between

wealth and variance. In particular the GARCH(1,1) experiment with fixed historical covari-

ance matrix represents the best solution in terms of risk aversion.

The relatively low computational cost granted by the reduction of the multistage allocation

problem to a convex quadratic programming problem with linear constraints makes this

method applicable. The inclusion of the risk weighting constants γ(k), k� 1 provides flexibility

and allows for the inclusion of risk ratings, risk management strategies, or regulatory

constraints.

The fact that a simpler GARCH(1,1) model reaches the higher Sharpe ratio and the TPR

and TNR of the asymmetric dependencies measured with transfer entropy did not present

remarkable variations between the different forecasting models motivates us to hypothesize

the next. In long-range multi-step optimization, the most important matter is that the depen-

dencies of the assets are maintained. Thus, we could relax some stylized assumptions about

financial returns in order to reduce the complexity of the forecasting models and instead focus

on improving the optimization strategy. This is certainly something that should be studied in

future work systematically. Also, interesting future research may include even more realistic

settings possibly including contributions and withdrawals as well as tax commissions and their

practical implications in the replacement rate on the Mexican pensioners.

Supporting information

S1 File. Data. Returns of assets used in this study as described in the data section.
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