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Abstract

The energy demand in the world has increased rapidly in the last few decades. This demand

is arising the need for alternative energy resources. Solar energy is the most eminent

energy resource which is completely free from pollution and fuel. However, the problem

occurs when it comes to efficiency under different atmospheric conditions such as varying

temperature and solar irradiance. To achieve its maximum efficiency, an algorithm of

maximum power point tracking (MPPT) is needed to fetch maximum power from the photo-

voltaic (PV) system. In this article, a nonlinear backstepping terminal sliding mode control

(BTSMC) is proposed for maximum power extraction. The system is finite-time stable and

its stability is validated through the Lyapunov function. A DC-DC buck-boost converter is

used to deliver PV power to the load. For the proposed controller, reference voltages are

generated by a radial basis function neural network (RBF NN). The proposed controller per-

formance is tested using the MATLAB/Simulink tool. Furthermore, the controller perfor-

mance is compared with the perturb and observe (P&O) MPPT algorithm, Proportional

Integral Derivative (PID) controller and backstepping MPPT nonlinear controller. The results

validate that the proposed controller offers better tracking and fast convergence in finite time

under rapidly varying conditions of the environment.

1 Introduction

Energy plays a vital role in a modern-day economy. It is essential in running the machines of

industrial units and factories, lightening the cities and empowering the vehicles. Due to the

population growth and development of industries, the demand of energy has been immensely

increased. In this regard, many types of energy resources are explored for power generation

such as solar, wind, biomass, geothermal, etc. Solar energy is one of the most reliable, abun-

dantly available, and prominent sources of energy. In 2015, Globally 55 Gigawatts (GWs) of
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solar energy have been added to installed capacity which is a remarkable achievement [1]. The

sun gives infinite energy to the planet earth which is effortlessly available everywhere and to

everyone. It is completely sustainable. Solar panels never cause any type of pollution.

PV systems can be connected with the electrical grid or load. Although the PV system’s

installation cost is low, it has the problem of efficiency that varies with the atmospheric condi-

tions [2]. The four major components of a PV system are the PV panel, DC-DC converter,

MPPT controller, and electric load. The direct connection between the PV array and load is

inefficacious. A buck-boost converter is used as an interface between a PV array and electric

load. The duty cycle of the converter is optimally varied in a way where the PV module is oper-

ated at maximum voltage and current. This phenomenon ensures that the PV module is

extracting the maximum power and operating at a maximum power point (MPP) [3]. Accord-

ing to one diode model of a PV system, continuously changing the environmental conditions

like temperature and irradiance keep on varying the maximum voltage [2]. But the problem is

to extract maximum power from the available PV panels. To fetch maximum power, PV panels

must operate at MPP. MPPT is a commonly used technique that is employed to achieve maxi-

mum power from the energy source. The objective of this technique is to get optimal MPP

operation in different conditions of environment [4].

Different techniques and algorithms are applied to achieve maximum power point from the

PV system. Almost all MPPT techniques have to track current, Impp or voltage, Vmpp at maxi-

mum power point at which module of PV will deliver the maximum power. Tracking the Vmpp

or Impp is an important process to ensure efficient utilization of a PV system.

The conventional methods are based on the hill-climbing technique, mainly including two

algorithms, perturb and observe P&O MPPT algorithm and incremental conductance (IC)

MPPT algorithm. P&O algorithm is the simplest technique to fetch maximum power. The

basic concept behind this algorithm is to perturb the voltage or current of the PV panel and

perceives any difference in the extracted power. The perturbation is presented due to changes

in the duty cycle of the electronic converter. The power difference, ΔP is checked at various

levels of voltage. The converter’s duty cycle is varied to achieve MPPT. This process of pertur-

bation and observation takes time and repeats as well at every stage. In the end, the PV system

attains MPP. The oscillations occur around the MPP. Thus, the system efficiency is reduced

[5–7]. IC algorithm is another commonly used method to achieve MPP. The drawback of the

P&O technique is encountered in the IC MPPT algorithm. The oscillation in MPP can be

obliterated in this method of MPPT by comparing the incremental conductance of the panel,

ΔIpv/ΔVpv and instantaneous conductance of panel, Ipv/Vpv. MPP is attained, when the sum of

ΔIpv/ΔVpv and Ipv/Vpv is zero. The implementation is simple. Its accuracy in tracking and better

efficiency gives an edge over P&O algorithm [8, 9]. Thus, this technique requires some extra

circuitry of control for better performance under variant conditions of environment [10].

Optimization-based algorithms like particle swarm optimization (PSO) algorithm, genetic

algorithm (GA), ant colony optimization (ACO) algorithm, flower pollination algorithm

(FPA), artificial bee colony (ABC), firefly algorithm (FFA), shuffled frog leaping algorithm

(SFLA) and grey wolf (GW) optimization algorithm are used for achieving maximum power

but these all are population-based algorithms [11–16]. Although these algorithms fix the partial

shading issue, the performance of these algorithms highly depends upon the initial conditions

and selected parameters. Many parameters like chromosome selection, size of the population,

crossover rate, and mutation rate are needed. These requirements enhance the computational

complexity and steady-state time [17].

Artificial Intelligence (AI) techniques exhibit advantages over conventional methods. They

can deal with the input variables and handle system nonlinearity. There is no need for a system

mathematical model. As compared with the conventional MPPT techniques, AI control
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techniques are more robust. Artificial neural network (ANN) and fuzzy logic controller (FLC)

are types of AI techniques. FLC needs a rule base table and performs well under varying irradi-

ance. When FLC is combined with other MPPT algorithms like P&O [18] and ANN [19] then

it is highly appreciable. For designing the FLC rules, plenty of system knowledge and more

training is required. That requires a huge amount of memory and processing time. Adaptive

fuzzy logic controller (AFLC) is proposed to achieve MPPT which operates into two rules [20].

In the first one, the duty cycle of the electronic converter is adjusted while the controller gain

is adjusted in the second rule. In [21], adaptive neuro-fuzzy inference system technique is

applied to get MPPT for the PV system under different atmospheric conditions. Fuzzy based

controllers are developed with expert system knowledge to produce MPPT rules. ANN method

is gleaned from the behavior of the a human being. ANN has the thinking ability to decide and

more knowledge is required for the training of neurons. It has three layers; input, hidden, and

output. In [22], ANN based FLC for MPPT fetching is proposed. ANN and FLC based MPPT

techniques results in better performance as compared to the optimization based algorithms.

Demerits are implementation complexity and computational cost. These MPPT controllers

need regular maintenance because the PV array electricity curve changes over time.

Many linear controllers have been proposed to attain MPP from a PV module. Among lin-

ear control techniques, the PID controller is normally used in literature and industrial plants

due to its simplicity in implementation and low cost. These controllers have been utilized with

numerous MPPT algorithms. In [23], the author optimized the PID controller parameters to

fetch maximum power. Likewise, the PI controller gains for a standalone PV system were opti-

mized using the ACO algorithm to get MPPT [24]. Gradient descent optimization (GDO)

algorithm is used to optimize the PID controller gains for better performance [25]. Linear con-

trollers show better performance but unable to effectively handle the system nonlinearities and

operation over a wide range of operating conditions. These techniques are unreliable under

varying conditions of the environment. It is essential to adapt the control strategy to handle

nonlinearities and maintain performance under varying operating conditions.

In recent times, a lot of research work has been done in the nonlinear control area to

achieve MPPT through different nonlinear control schemes. Several controllers are proposed

to fetch maximum power like sliding mode control (SMC) [26] and backstepping [2]. The cell

of a PV panel has a nonlinear nature. In [27], a nonlinear backstepping control technique is

proposed to power up the towers of cellular networks. SMC method is widely used for nonlin-

ear control systems. The control of an electronic converter is provided in this technique,

which helps in tracking MPP under varying conditions of the environment. In the PV system,

buck-boost converter transfers the power from panel to load. SMC mainly depends upon the

switching frequency of the converter to obtain MPP. As the switching increases then speed of

MPPT becomes faster. In [28], terminal sliding mode control (TSMC) is implemented to attain

MPP for PV system with uncertainties. Similarly, backstepping based sliding mode (BSMC)

controller is designed to obtain maximum power [29].

In the proposed work, RBF NN based BTSMC is proposed for MPPT of a PV system in

varying environmental conditions. TSMC technique provides better results under varying

atmospheric conditions. Backstepping technique [2] is highly efficient but not robust in vary-

ing conditions. For better robustness in varying conditions, Backstepping is synthesized with

TSMC nonlinear control technique. When TSMC is compared with the other techniques, it

offers fast convergence and better tracking precision in a finite time. BTSMC along RBF NN

seems a better approach to extract maximum power due to less chattering effect, improve tran-

sient response, tracking with precision, and fast convergence.

The working principle of the proposed algorithm is completely different when it is com-

pared with the conventional algorithms. The proposed technique senses irradiance and
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temperature on the PV panel. The set of data is provided to the RBF NN, as presented in Fig 1

The RBF NN utilizes the relation between varying conditions of the environment i.e., Temper-

ature and Irradiance and Vmpp to generate the reference voltage. The nonlinear controller can

track the reference voltage Vpvr. The controller is designed using a non-inverting converter

mathematical model. The output signal of the controller controls the converter’s duty ratio

through the pulse width modulation.

The paper structure is organized as: following an introduction in section 1, radial basis

function neural network is described in section 2. The modeling of the converter is presented

in section 3. The proposed control scheme with system stability analysis is explained in section

4. The performance of the controller is analyzed in section 5. In the end, section 6 concludes

the findings of the research article.

2 Radial basis function neural network

In this work, RBF NN generates reference voltage for the BTSMC. Recently, RBF NN has

gained attention as compared to other feed-forward neural networks (FF NN) due to its simple

structure and better generalization ability. The source nodes are present in the input layer

which establishes a connection between the network and environment. In a hidden layer, a set

of the activation functions is provided through hidden units. These units are hidden nodes.

The activation function which produces the hidden layer output, is:

hjðtÞ ¼ ðeÞ
�
kxðtÞ� cjðtÞk

2

2b2
j ; j ¼ 1; 2; ::;m ð1Þ

where bj denotes positive scalar known as width and m denotes no. of hidden nodes. In pro-

posed work, three hidden nodes are used in the hidden layer. The output layer which is the

Fig 1. Block diagram of proposed work.

https://doi.org/10.1371/journal.pone.0249705.g001

PLOS ONE RBF neural network based backstepping terminal sliding mode MPPT control

PLOS ONE | https://doi.org/10.1371/journal.pone.0249705 April 8, 2021 4 / 23

https://doi.org/10.1371/journal.pone.0249705.g001
https://doi.org/10.1371/journal.pone.0249705


combination of linear weights, as follows:

yiðtÞ ¼
Xm

j¼1

wjihðtÞ; i ¼ 1; 2; ::; n ð2Þ

where n denotes no. of output, w denotes the weight of output layer and y denotes the output

of the network. The result of the system is produced in an output layer which is the last layer of

RBF NN. In this work, output of neural network is reference voltage Vpvr. The data of reference

voltage is obtained from characteristic curve of the PV module under various levels of irradi-

ance (600 W/m2 − 1100 W/m2) and temperature (20˚C–85˚C). The data set having 29767

training points is used to train the neural network. The training data set has three entities: tem-

perature, irradiance and voltage. Each entity has same number of training points. The 3-D

plane of RBF NN obtained from this data is shown in Fig 2 while the inner view of the neural

network is presented in Fig 3.

3 Non-inverting buck-boost DC-DC converter

The non-inverting topology of buck-boost converter is utilized which has ability to step down

or step up the voltage according to the requirement. This converter is used to follow the output

voltage of PV array, Vpv to desired voltage, Vmpp through adjustment of duty cycle. The con-

verter’s circuit diagram is presented in Fig 4.

The assumption has been made that converter is operated in continuous conduction mode.

There are two modes of operation i.e. mode 1 and mode 2. In mode 1, both switches Sx and Sy
are turned on and the diodes Dx and Dy are in reverse biased condition. In mode 2, the

switches Sx and Sy are turned off while the diodes are forward biased. According to Fig 4, state-

Fig 2. 3-D plane of RBF NN.

https://doi.org/10.1371/journal.pone.0249705.g002
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space equations for the first switching interval in vector-matrix form are:

dvpv

dt

diL
dt

dvcy

dt

2
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Fig 3. RBF NN inner view.

https://doi.org/10.1371/journal.pone.0249705.g003

Fig 4. Non-inverting topology of buck-boost converter.

https://doi.org/10.1371/journal.pone.0249705.g004
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The state-space equations for the second switching interval in matrix form are as follows:

dvpv

dt

diL
dt

dvcy

dt
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Now the average model for non-inverting buck-boost converter in vector-matrix form is as

follows:

dvpv

dt

diL
dt

dvcy

dt
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Assuming x1, x2, x3 and μ as the average values of vpv, iL, vcy
and u, respectively. Under these

assumptions, then desired state-space model is presented as:

_x1
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_x3
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4 Backstepping terminal sliding mode control design

A nonlinear BTSMC controller is designed to track x1r = Vpvr for maximum power extraction.

The backstepping is a nonlinear control methodology that is generally used as a part of control

design. The controller output μt controls the duty ratio of the converter’s switches. Firstly,

define the tracking error:

e1 ¼ x1 � x1r ð7Þ

Taking derivative of Eq (7),

_e1 ¼ _x1 � _x1r ð8Þ

Using dynamics of converter, we get

_e1 ¼
Ipv
Cx
�

x2

Cx
m � _x1r ð9Þ
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Now introducing the stabilization function ‘α1’,

a1 ¼ � l1e1 �
e
O1
O2
1

l2

ð10Þ

where O1, O2 (1 < O1/O2 < 2) and λ1, λ2 are positive odd numbers. The tracking error has

upgraded with the stabilization function.

e2 ¼ _e1 � a1 ð11Þ

Applying first Lyapunov stability function,

V1 ¼
1

2
e2

1
ð12Þ

Eq (12) can be re-written as;

_V 1 ¼ e1e2 � l1e2
1
�

e
O1þO2
O2

� �

1

l2

ð13Þ

From Eq (11), then we get

_e2 ¼
Ipv
cx
�

x2

cx
m �

m

Cx
�

x3

L
þ

x1 þ x3

L

� �
m

h i
� x::

1r þ l1 _e1 þ
O1

l2O2

e
O1 � O2
O2

� �

1 _e1
ð14Þ

Applying second Lyapunov stability function;

V ¼ V1 þ
1

2
sTs ð15Þ

The sliding surface ‘s’ is followed as:

s ¼ e1 þ e2 ð16Þ

Taking the derivative of second lyapunov stability function;

_V ¼ e1e2 � l1e2
1
�
ðe1Þ

O1 � O2
O2

� �

l2

þ sT _e1ð1þ l1Þ þ
O1

l2O2

ðe1Þ
O1 � O2
O2

� �

_e1 þ
_Ipv
Cx
�

"

_mt
x2

Cx
�
m

Cx

� x3

L
þ

x1 þ x3

L

� �
m

� �
� €x1rÞ

�
ð17Þ

Total control law is characterized as:

_mt ¼ _meq: þ _mdis: ð18Þ

Substituting Eq (18) in Eq (17);

_V ¼ e1e2 � l1e2
1
�
ðe1Þ

O1 � O2
O2

� �

l2

þ sT _e1ð1þ l1Þ þ
O1

l2O2

ðe1Þ
O1 � O2
O2

� �

_e1 þ
_Ipv
Cx
� _meq:

x2

Cx

"

� _mdis:
x2

Cx
�
m

Cx

� x3

L
þ

x1 þ x3

L

� �
m

� �
� €x1r

��
ð19Þ
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_s ¼ 0 gives the equivalent control law, _meq: . This control law is very essential for desired track-

ing without any consideration of uncertainties and disturbances i.e. _mdis: .

_meq: ¼
Cx

x2

� �

_e1ð1þ l1Þ þ
O1

l2O2

ðe1Þ
O1 � O2
O2

� �

_e1 þ
_Ipv
Cx
�
m

Cx

� x3

L
þ

x1 þ x3

L

� �
m

� �
� €x1r

" #

ð20Þ

Using Eqs (19) and (20), the expression for _V is,

_V ¼ e1e2 � l1e2
1
�

e
O1þO2
O2

� �

1

l2

þ sT
� _mdisx2

cx

� �
ð21Þ

To satisfy the condition of Lyapunov stability, the corrective control law ‘ _mdis’ is described

as:

_mdis: ¼
Cx

x2

1

sT
e1e2 �

e
O1þO2
O2

� �

1

l2

þ k signðsÞ

0

B
B
@

1

C
C
A

2

6
6
4

3

7
7
5

ð22Þ

Subtitution of Eq (22) in Eq (21);

_V ¼ � l1e2
1
� ksTsignðsÞ ð23Þ

where ‘k’ is sliding gain

_V � l1je2
1
j � kjsj ð24Þ

where |s| = sT sign(s), ‘sign’ function is replaced by tangent hyperbolic function, ‘tanh’. Signum

function causes chattering phenomenon, therefore term ‘tanh’ is introduced to diminish this

impact.

_V � l1je2
1
j � ksT tanh ðsÞ ð25Þ

The term ‘sTtanh(s)’ in Eq (25) is constantly positive so that condition has to be negative

(i.e. sTtanh(s)>0 if either s> 0 or s< 0). Therefore achieving control signal is characterized as:

_mdis ¼
Cx

x2

1
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e1e2 �

e
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1
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þ tanh ðsÞ
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For total BTSMC control law, substituting Eqs (20) and (26) in Eq (18),

_mt ¼
Cx

x2

� �

_e1ð1þ l1Þ þ
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l2O2

ðe1Þ
O1 � O2
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� �

_e1 þ
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�
m
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L
þ

x1 þ x3

L

� �
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� �
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" #

þ
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1
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e1e2 �

e
O1þO2
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� �

1
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þ k tanh ðsÞ
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5

ð27Þ

The flow chart and closed-loop system for the proposed nonlinear control paradigm is pre-

sented in Figs 5 and 6, respectively.
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Fig 5. Flow chart of proposed technique.

https://doi.org/10.1371/journal.pone.0249705.g005

Fig 6. Closed-loop control system.

https://doi.org/10.1371/journal.pone.0249705.g006
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5 Simulation results and discussion

The performance of the proposed BTSMC scheme is validated through the simulations per-

formed in MATLAB/Simulink. The parameters of the PV system are presented in Table 1, and

the BTSMC and PID control parameter are mentioned in Table 2. Firstly, the BTSMC perfor-

mance is analyzed under varying temperature and irradiance with varying load. Secondly, the

performance of the proposed controller is benchmarked against backstepping control, conven-

tional PID control and P&O algorithm. To further investigate the performance, BTSMC tech-

nique is compared with above mentioned techniques with fault and uncertainty in the system.

5.1 Performance comparison of proposed controller with backstepping,

P&O and PID under varying load and environmental conditions

The BTSMC performance is verified in the case of varying levels of irradiance and tempera-

ture, as shown in Fig 7 with varying residential load. Initially, level of irradiance and

Table 1. Parameters of the PV system.

Name Quantity Value

PV Array Series cells/PV module 72

Parallel cells/PV module 1

No. of modules/PV string 4

No. of strings/PV array 4

No. of modules/PV array 16

Single module output power 1; 555W

24; 880W

102:60V

15:16A

165:80V

17:56A

9
>>>>>>>>>>>=

>>>>>>>>>>>;

@STC

PV array output power

Module voltage at MPP

Module current at MPP

Module open-circuit voltage

Module short-circuit current

DC-DC Converter Input capacitor, Cx 1 mF
Output capacitor, Cy 48 μF
Inductor, L 0.5 mH
Switching frequency, fs 5 kHz
Load resistances, RL 30, 40, 50 O

https://doi.org/10.1371/journal.pone.0249705.t001

Table 2. Parameters of MPPT controllers.

Name Gains Value

Backstepping Constant, k1 100

Constant, k2 9000

PID Constant, kP 0.002054

Constant, kI 0.2737

Constant, N 252.10

BTSMC Constant, k 5

Constant, O1 91

Constant, O2 47.77

Constant, λ1 9345

Constant, λ2 1500

https://doi.org/10.1371/journal.pone.0249705.t002
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temperature are at 650 W/m2 and 25˚C, respectively from 0.0 to 0.1 seconds and load at 30 O.

Furthermore, conditions are changed to 800 W/m2 and 40˚C from 0.1 to 0.2 seconds and load

at 40O. For the time interval of 0.2 to 0.3 seconds, the level of irradiance and temperature are

again shifted to 650 W/m2 and 25˚C, respectively and load at 50O. The scenario of varying res-

idential load is shown in Fig 8. The reference of voltage for varying environmental conditions

Fig 7. Varying meteorological conditions.

https://doi.org/10.1371/journal.pone.0249705.g007

Fig 8. Scenario of varying load.

https://doi.org/10.1371/journal.pone.0249705.g008
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is generated by RBF NN. The proposed controller performance with varying residential load is

compared with P&O, PID, and backstepping controller under varying levels of irradiance and

temperature. It is observed that BTSMC controller reach steady-state condition more rapidly

at all levels as compared to the existing techniques as shown in Fig 9. The output power of the

PV array is presented in Fig 10 with other MPP curves of contenders. It can also be observed

that the MPP is attained successfully with negligible oscillations, as compared to other MPPT

techniques.

The error based four performance indices are also analyzed [30]. The indexes include

integral of absolute error ðIAEÞ ¼
Z T

0

jepjdt, integral of time-weighted absolute error

ðITAEÞ ¼
Z T

0

tjepjdt, integral of squared error ðISEÞ ¼
Z T

0

ðepÞ
2dt, and integral of time-

weighted squared error ðITSEÞ ¼
Z T

0

tðepÞ
2dt. IAE, ITAE, ISE, and ITSE with the proposed

controller and its other competitors are shown in Figs 11–14. In all indices, the BTSMC

scheme shows the least index value that verifies the best performance as compared to the

benchmarked control schemes. Fig 15 shows the conversion efficiency of the converter.

The maximum power is extracted for the load by the developed BTSMC technique with the

efficiency, η = 98.74%, which is maximum as compared to the existing MPPT techniques

efficiencies. In this regard, BTSMC is robust under varying loads and meteorological

conditions.

Fig 9. Output voltage under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g009
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5.2 Comparison of proposed controller with P&O, PID and backstepping

under varying climatic and faulty conditions

In this case, multiple faults are injected in the plant under varying conditions of temperature,

irradiance, and load. In this work, two uncertain conditions are introduced in the system. In

the time interval 0.06 to 0.08 seconds, a fault, x2f = 0.5μ sin(t)/Cx, is inoculated in inductor

current x2, Δx2 = x2+x2f. In the time interval of 0.16 to 0.18 seconds, a uncertainty of

ΔC = 0.48nF is introduced in output capacitor ‘x3’, as Δx3 = Cy + ΔC. The output voltage of

PV deviates from the reference, as depicted in Fig 16. The proposed controller shows robust-

ness as compared to other existing techniques in faulty conditions. It can be observed that

the BTSMC controller attains steady-state earliest than the other MPPT techniques. The PV

output power is shown in Fig 17. It clearly shows that the proposed control technique out-

performs its contenders in this scenario. The performance indices (IAE, ITAE, ISE, and

ITSE) of this PV system under faulty conditions are presented in Figs 18–21. The effective

performance of developed control technique is verified by the least value in these indices.

The proposed BTSMC has transmitted the power to load with the efficiency of 98.72%, as

shown in Fig 22. These results illustrate that the developed control technique outperforms

the existing competitive MPPT techniques in this scenario of parametric variations. The pro-

posed control technique is shown robustness against the faulty conditions and having less

chattering effect, high rise time, better settling time, improved transient response, fast-track-

ing precision, and convergence. The statistical analysis of all MPPT techniques is presented

in Table 3.

Fig 10. Output power under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g010
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Fig 11. Performance index IAE under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g011

Fig 12. Performance index ITAE under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g012
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Fig 14. Performance index ITSE under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g014

Fig 13. Performance index ISE under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g013

PLOS ONE RBF neural network based backstepping terminal sliding mode MPPT control

PLOS ONE | https://doi.org/10.1371/journal.pone.0249705 April 8, 2021 16 / 23

https://doi.org/10.1371/journal.pone.0249705.g014
https://doi.org/10.1371/journal.pone.0249705.g013
https://doi.org/10.1371/journal.pone.0249705


Fig 15. Efficiency (η) under varying conditions.

https://doi.org/10.1371/journal.pone.0249705.g015

Fig 16. Output voltage under varying climatic and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g016
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Fig 17. Output power under varying climatic and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g017

Fig 18. Performance index IAE under varying climatic and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g018

PLOS ONE RBF neural network based backstepping terminal sliding mode MPPT control

PLOS ONE | https://doi.org/10.1371/journal.pone.0249705 April 8, 2021 18 / 23

https://doi.org/10.1371/journal.pone.0249705.g017
https://doi.org/10.1371/journal.pone.0249705.g018
https://doi.org/10.1371/journal.pone.0249705


Fig 19. Performance index ITAE under varying conditions and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g019

Fig 20. Performance index ISE under varying conditions and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g020
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Fig 21. Performance index ITSE under varying conditions and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g021

Fig 22. Efficiency (η) under varying climatic and faulty conditions.

https://doi.org/10.1371/journal.pone.0249705.g022
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6 Conclusion and future work

The article presented the BTSMC control scheme for the MPPT application of PV systems.

The buck-boost converter is used as an interface between load and PV array. The non-invert-

ing topology of the buck-boost converter has been utilized in this work. To attain maximum

power, the duty cycle of the converter is controlled through BTSMC. The reference of voltage

has been generated by the RBF NN. The finite-time stability of the system has been verified

using the Lyapunov stability function. The proposed controller performance is validated by

comparison with P&O, PID, and backstepping controller under varying conditions of temper-

ature, irradiance, and load. Furthermore, the developed control technique is again compared

with its existing contenders under varying conditions of load and environment with fault and

uncertainty. The proposed controller has been outperformed its existing competitors in all

scenarios. The performance indices show the best performance of the proposed control tech-

nique in all conditions as compared to other existing techniques. Although, the proposed con-

troller performs exceptionally well but it depends upon the reference values of the RBF NN

plane. It is needed to update the RBF NN plane due to any type of failure in the PV system

for optimal performance of the controller. In this manner, the generation of reference may

demand the amalgamation of other algorithms like ACO and PSO to generate maximum

power successfully.

The possible directions for future research work include;

• Comparison of proposed control schemes with other different MPPT techniques under par-

tial shading conditions (PSC).

• Integration of the PV system with grid and parallel operation with other renewable energy

systems.

• Application of the different inverter topologies to transfer the PV array output power into

AC electric appliances.

• Development of the hybrid energy storage system to store energy for peak hours.

• Hardware-level implementation of proposed nonlinear control algorithms under varying

environmental conditions.
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