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Abstract

A loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral

flow biosensor (LAMP-LFB) was established for the rapid and accurate detection of the

mobilized colistin resistance gene (mcr-1), which causes the loss of colistin antibacterial effi-

cacy in clinical treatments. The amplification stage of the assay was completed in 60 min at

63˚C, and the reaction products could be visually detected by employing the LFB, which pro-

vided a fast (within 2 min) and objective method to evaluate the amplification results. The

LAMP assay amplified the target sequences of mcr-1 with high specificity. In pure strains,

the detection limit of the LAMP-LFB assay was 360 fg plasmid DNA/reaction, and in spiked

feces samples the value was approximately 6.3×103 CFU/mL (~6.3 CFU/reaction), which

was tenfold more sensitive than the PCR assay. The results show that the developed

LAMP-LFB assay will be a worthy tool for the simple, rapid, specific, and sensitive detection

of mcr-1 gene in clinical settings and resource-limited areas.

Introduction

As one of the last-resort drugs, colistin is an antibiotic that can treat the serious infections

caused by carbapenem-resistant Enterobacteriaceae (CRE) [1]. Nevertheless, the global out-

break of CRE has brought about a surged use of colistin, and this phenomenon will inevitably

increase the risk of developing colistin resistant bacteria.

In 2015, the understanding of the colistin resistance mechanism involving in chromosomal

mutations changed when the plasmid-mediated resistance gene mcr-1 was discovered [2]. The

mcr-1 was first discovered in China [2], and afterwards which has been detected in various
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countries including United States of America, Brazil, and Europe [3, 4]. This gene has been

identified in different bacterial species, such as Klebsiella aerogenes [5], Citrobacter freundii
[6], Escherichia coli [7], Enterobacter aerogenes [8], Klebsiella pneumoniae [2], Escherichia fer-
gusonii [5], Kluyvera ascorbata [9]; and Salmonella enterica [10]. Not only are mcr-1-positive

bacteria present in clinical settings (including veterinary hospitals), livestock and vegetable

markets, but they can also be isolated from waterborne sources (sea and river water) [11]. The

high transferability of the mcr-1 gene is due to the existence of mcr-1-bearing plasmid reser-

voirs such as IncFI [12], IncFII [13], IncHI1 [14], IncHI2 [15], IncP [16], IncX4 [3] and

IncX3-X4 mosaic version [17]. Additionally, the coexistence with other antibiotic resistance

genes (KPC, NDM and ESBL) [18–20] broadens the bacteria drug resistance spectrum. The

wide dissemination of mcr-1 could lead to fewer antibiotics being able to treat infections

caused by multidrug-resistant isolates. Therefore, the rapid and accurate identification of mcr-
1 could normalize the use of antibacterial agents and reduce the need for empirical therapy.

Recently, conventional and real-time polymerase chain reaction (PCR) assays were

employed in the detection of the mcr-1 gene [21]. Although these common molecular meth-

ods possess some merits, such as rapidity and high sensitivity, the requirements of expensive

devices and specialized personnel make them unsuitable for primary-care hospitals and

“on-site” surveillance [22]. Loop-mediated isothermal amplification (LAMP) is a novel

nucleic acid-based technique, known for its reliability, efficiency and rapidity, which has

been employed in the detection of genetic material from parasites [23], viruses [24] and bac-

teria [25]. This approach amplifies DNA (without the denaturing step) at a constant temper-

ature (60–70˚C) using Bst DNA polymerase, which triggers the autocycling trait of strand

displacement [26]. Due to the isothermal feature, a low-cost water bath can be used to incu-

bate the reaction, instead of an expensive thermocycler [26]. The LAMP-amplified products

can be routinely visualized by various means, such as turbidity measurement, electrophore-

sis, and colorimetric indicator [27]. However, these approaches present some disadvan-

tages. For example, turbidity measurement and electrophoresis require sophisticated

equipment, while the colorimetric indicator is unable to detect very low product concentra-

tions. Alternatively, a gold nanoparticles-based lateral flow biosensor (LFB) [28] could be

used to detect the amplified target products. Herein, we proposed a LAMP-LFB method to

rapidly identify the mcr-1 gene and evaluated its analytical performance in fecal samples. To

the best of our knowledge, it is the first reported LAMP assay coupled with an LFB designed

for the screening of mcr-1.

Materials and methods

Bacterial strains

A total of 21 mcr-1-positive and 58 mcr-1-negative bacterial strains were used in this study

(Table 1). The bacteria carrying the mcr-1 gene consisted of Escherichia coli, Escherichia fergu-
sonii, and Salmonella enteritidis, for which 13, 7 and 1 isolates were acquired, respectively. Five

genotype categories of carbapenemase producers (IMP-4, VIM-1, VIM-2, KPC-2, NDM-5)

were incorporated in the non-mcr-1 isolates: 8 Escherichia coli, 28 Klebsiella pneumoniae, 2

Enterobacter cloacae, and 2 Pseudomonas aeruginosa. Similarly, the control group also

included non-mcr-1/carbapenemase isolates (2 Escherichia coli, 4 Pseudomonas aeruginosa, 3

Acinetobacter baumannii, 2 Serratia marcescens, 3 Staphylococcus aureus, 3 Enterococcus faeca-
lis, and 1 Enterococcus faecium). Conventional PCR and subsequent sequencing were used to

identify all resistance genes. Genomic, plasmid, and spiked fecal samples DNA were extracted

using bacterial genome, plasmid, and stool DNA extraction kits (Tiangen Biotech Co., Ltd.,

Beijing, China), respectively, according to the manufacturer’s instructions. DNA
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concentrations were determined using the NanoDrop 2000 (Thermo Fisher Scientific Inc.,

Waltham, MA, United States). Plasmid DNA extracted from mcr-1-producing E. coli
(WHCDC128) was used as a template in the optimization of the LAMP conditions and deter-

mination of the detection limits. The LAMP assay was implemented using isothermal amplifi-

cation kits, which included Bst DNA polymerase and reaction buffer (BeiJing-

HaiTaiZhengYuan Technology Co., Ltd., Beijing, China). Centrifuge tubes loaded with reac-

tion mixtures were set in a simple heating thermostat. Afterwards, the LAMP products could

be detected via the disposable LFB (BeiJing-HaiTaiZhengYuan Technology Co., Ltd., Beijing,

China), the colorimetric indicator Malachite Green (BeiJing-HaiTaiZhengYuan Technology

Co., Ltd., Beijing, China), or electrophoresis, for which an UV transilluminator (Analytik Jena

AG, Jena, Germany) was used to analyze the gel.

Primer design for the LAMP assay

We designed LAMP primers targeting the mcr-1 gene sequence (GenBank accession number:

MK405590.1) using Primer Explore V5 (version 4) and Primer Premier (version 6.0). A cluster

of six primers, including one pair of outer primers (F3 and B3), two loop primers (LF and LB),

and two inner primers (FIP and BIP), were designed to target several distinct regions of mcr-1
gene. Moreover, the primers FIP# and LF# originated from the FIP and LF primers, which

were labeled with biotin and FITC at the 5’ end, respectively. The primers detailed information

is presented in Table 2. All oligomers were purified using HPLC.

Table 1. Bacterial strains.

Genotype Bacteria species Strain source† No. of isolates

mcr-1 Escherichia coli WHCDC (WHCDC128) 1

Escherichia coli WHCDC 4

Escherichia coli ICDC 8

Escherichia fergusonii ICDC 4

Escherichia fergusonii WHCDC 3

Salmonella enteritidis ICDC 1

IMP-4 Klebsiella pneumoniae WHCDC 7

Escherichia coli WHCDC 5

VIM-1 Enterobacter cloacae WHCDC 2

VIM-2 Klebsiella pneumoniae WHCDC 4

KPC-2 Klebsiella pneumoniae WHCDC 11

Pseudomonas aeruginosa WHCDC 2

Escherichia coli WHCDC 3

NDM-5 Klebsiella pneumoniae WHCDC 6

Non� Acinetobacter baumannii WHCDC 3

Pseudomonas aeruginosa WHCDC 4

Serratia marcescens WHCDC 2

Escherichia coli WHCDC 2

Enterococcus faecalis WHCDC 3

Enterococcus faecium WHCDC 1

Staphylococcus aureus WHCDC 3

�Non, the isolates did not carry the aforementioned genes.
†WHCDC, Wuhan Centers for Disease Control and Prevention; ICDC, National Institute for Communicable Disease Control and Prevention, Chinese Center for

Disease Control and Prevention.

https://doi.org/10.1371/journal.pone.0249582.t001
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Preparation of gold nanoparticle-based dipstick biosensor

The development of the LFB (4×6 cm) was based on the previous study of Wang and co-work-

ers [29]. A set of four components–absorbent pad, NC membrane, conjugate pad, and sample

pad–were orderly assembled on a support card and held together by a plastic casing. The mon-

itoring reagents biotin-bovine serum albumin (2.5 mg/mL) and anti-FITC antibody (0.15 mg/

mL) were immobilized on the detection regions of the dry-reagent strips, and formed the CL

and TL, respectively. A 5-mm gap was set between the two lines. Cutting machine was used to

cut the assembled cards into 4-mm isometric strips. Finally, the assembled biosensors were

packed and stored at room temperature, in dry conditions.

LAMP assay

The LAMP assay was conducted in a 25-μL reaction volume, which contained Bst DNA poly-

merase (1 μL), colorimetric indicator (1 μL), reaction buffer (12.5 μL), inner primers (1.6 μM),

loop primers (0.8 μM), outer primers (0.4 μM), and DNA template (1 μL). The negative con-

trols were preformed using IMP-4-positive K. pneumoniae (WHCDC261) and KPC-2-produc-

ing E. coli (WHCDC332), while the blank control was done using nuclease-free water. The

LAMP mixtures were incubated in isothermal conditions (60–67˚C) for 60 min.

Three methods were used to detect the LAMP reaction products: electrophoresis (2% aga-

rose gel), colorimetric indicator, and LFB. In the electrophoretic analysis, the reaction prod-

ucts (4 μL) were drifted at 100 V for 70 min. When using the colorimetric indicator, the color

of the reaction mixture containing amplified products remained the same, while in the nega-

tive and blank controls the solution turned transparent [30]. When employing LFB, two red

lines (CL and TL) could be visualized for the positive reactions, while only the CL was

observed in the negative and blank controls [30].

Specificity and sensitivity of the mcr-1-LAMP-LFB method

DNA templates of 21 mcr-1-positive and 58 non-mcr-1 bacterial isolates were used to determine

the specificity of the mcr-1-LAMP-LFB assay. Colorimetric indicator and electrophoresis were

used to confirm the LAMP-LFB assay results, and each assay was performed twice. The sensitiv-

ity was determined using tenfold serial dilutions (3.6 ng/μL to 36 fg/μL) of plasmid DNA from

the reference strain E. coli WHCDC128. Measurements were performed three times.

Evaluation of mcr-1-LAMP-LFB assay in spiked feces samples

The performance of the mcr-1-LAMP-LFB assay in real matrices was assessed using spiked

human fecal samples, which were donated by a consenting adult. The samples were previously

Table 2. Primers used in the LAMP assay to identify the mcr-1 gene.

Primers Sequences and modifications (5’-3’) Length†

LF#� FITC-GCTTACGCATATCAGGCTT 19 nt

LB ATCGATGGCGTGACCAA 17 nt

FIP#� Biotin-ACGACGAACACCACTAGGCGTAAAGACGCGGTACAAGCAAC 38 mer

BIP GAGCGCGATACTTTCCCACAGCGCCGCACGATGTGACATT 40 mer

F3 AGTGCGCCAAAAGATACCAT 20 nt

B3 TGAACATACACGGCACAGAA 20 nt

�LF#, 5’ end of LF was labeled with FITC. FIP#, 5’ end of FIP was labeled with biotin.
†nt–nucleotide; mer–monomeric.

https://doi.org/10.1371/journal.pone.0249582.t002
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screened for the resistance gene, using the PCR assay, and were classified as mcr-1-negative.

The spike test was carried out as described by Gong and co-workers [30]. Plate counting

was performed after the mcr-1-producing reference strain E. coli WHCDC128 was consecu-

tively diluted tenfold (6.3×106–6.3×101 CFU/mL). Further, Afterwards, a fecal sample was

inoculated with 100 μL of a diluted culture, this was done for all dilutions. The spiked sam-

ples were extracted by a stool DNA extraction kits according to the manufacturer’s specifi-

cation. The extracted DNA was eluted with 100 μL of buffer solution, and 1 μL of the eluted

solution was used in the mcr-1-LAMP-LFB assay. The negative control was performed

using a non-spiked fecal sample. Finally, three measurements were used for the determina-

tion of LAMP products.

PCR assay

The conventional PCR assay was performed as previously described by Gong and co-workers

[30], using 5’-CGGTCAGTCCGTTTGTTC-3’ and 5’-CGGTCAGTCCGTTTGTTC-3’ as

the forward and reverse primers, respectively, which were specific for the mcr-1 gene. The

detection threshold of the PCR assay was determined using pure cultures and fecal samples.

Ethics statement

We utilized the fecal samples from a healthy volunteer in Wuhan Center for Disease

Control and Prevention. The volunteer participated in this study when he had signed

informed consent. The study protocol was reviewed and approved by the Institutional

Review Board of Wuhan Center for Disease Control and Prevention (WHCDCIRB- SQ-

2019012).

Results and discussion

Causing enormous mortality, CRE have become a serious threat in clinical settings. Colistin is

recognized as the last line of defense in the treatment of infections caused by those superbugs.

However, the antibiotic began to lose its bactericidal effect since the mcr-1 gene emerged,

transmitted, and outbroke in various gram-negative bacteria. Moreover, the mcr-1 gene car-

ried by transposons and plasmids could bring about no cure when combining with other anti-

biotic resistance genes, such as KPC and CTX-M, in a single isolate [31]. Thus, the

identification of mcr-1 will contribute to control the gene’s horizontal transmission. Herein,

we proposed a loop-mediated isothermal amplification assay coupled with a lateral flow bio-

sensor (LAMP-LFB) to detect mcr-1 gene.

A set of mcr-1 specific primers (Table 2) were designed to target the gene’s conserved region

and then screened for the LAMP assay, which was performed under isothermal conditions (62
oC) for 60 min. Amplification products were obtained from mcr-1-positive E. coli
(WHCDC128), but not from IMP-4-positive K. pneumoniae (WHCDC261), KPC-2-produc-

ing E. coli (WHCDC332) and the blank control (Fig 1). Thus, these results confirmed that the

three pairs of primers were suitable for the mcr-1-LAMP-LFB assay.

In the mcr-1-LAMP-LFB system, FIP# and LF# primers (Table 2) were respectively labeled

with biotin and fluorescein isothiocyanate (FITC) at the 5’ end. After the LAMP reaction stage,

the double-labeled amplicons would be recognized by the anti-fluorescein antibody immobi-

lized in the test line (TL) of the LFB [28]. Further, After adding a small drop (2 μL) of amplifi-

cation products solution to the biosensor’s test pad, followed by several drops of buffer

solution [30], the results could be confirmed visually within 2 min, with the formation of one

or two red lines. When compared with electrophoretic monitoring, analysis of LAMP products

using LFB is a faster and simpler approach. Additionally, LFB has an accurate judgement
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when amplicons concentrations are very low, but the color change will be vague in that situa-

tion by using colorimetric indicator. Hence, LFB will become a preferable choice for the iden-

tification of LAMP products.

Fig 1. Confirmation of the mcr-1-LAMP products. Three detection methods were used to identify the LAMP products: (a) colorimetric indicator; (b) 2% agarose gel

electrophoresis; (c) LFB. Four samples were tested: 1. mcr-1-producing E. coli (WHCDC128); 2. IMP-4-positive K. pneumoniae (WHCDC261); 3. KPC-2-producing E.

coli (WHCDC332); 4. distilled water. The positive results are shown in tube 1, lane 1, and biosensor 1.

https://doi.org/10.1371/journal.pone.0249582.g001

Fig 2. Electrophoretic analysis of mcr-1 amplicons obtained under different temperature conditions. Lanes 1–8: amplification

products generated from E. coli WHCDC128 plasmid DNA (3.6 pg/μL) with incremented temperatures (60–67˚C, 1˚C increments).

Lane 9: negative control (3.6 pg of E. coli WHCDC332 genomic DNA). Lane 10: blank control (nuclease-free water).

https://doi.org/10.1371/journal.pone.0249582.g002
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The optimal reaction temperature will increase the amplification efficiency of the LAMP

assay. Therefore, plasmid DNA templates (3.6 pg/μL) from E. coli WHCDC128 were added

into the mcr-1-LAMP reaction system in order to optimize the assay’s temperature conditions.

Amplicons of mcr-1 were detected when the reaction was performed at 60–67˚C, with 1˚C

increments for 60 min. According to the electrophoresis results, the best amplification effi-

ciency was obtained in the 62–65˚C range (Fig 2), and thus we chose 63˚C as the temperature

condition to perform further experiments.

The specificity of the LAMP assay was evaluated by employing LFB (Fig 3). Two red detec-

tion bands (TL and control line- CL) were observed for the mcr-1-positive strains samples,

Fig 3. Specificity of the mcr-1-LAMP-LFB assay. Biosensors 1–6, mcr-1-positive E. coli WHCDC128, E. coli from WHCDC, E. coli from

ICDC, E. fergusonii from ICDC, E. fergusonii from WHCDC, and S. enteritidis from ICDC, respectively. Biosensors 7–14, IMP-4-positive K.

pneumoniae, IMP-4-positive E. coli, VIM-1-positive E. cloacae, VIM-2-positive K. pneumoniae, KPC-2-producing K. pneumoniae, KPC-

2-producing P. aeruginosa, KPC-2-producing E. coli, NDM-5-positive K. pneumoniae, respectively. Biosensors 15–21, A. baumannii, P.

aeruginosa, S. marcescens, E. coli, E. faecalis, E. faecium, S. aureus, respectively (these isolates did not carry the aforementioned genes).

Biosensor 22, blank control (nuclease-free water).

https://doi.org/10.1371/journal.pone.0249582.g003
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while only the CL was detected for all the non-mcr-1 samples, including mcr-1/carbapene-

mase-negative strains, carbapenemase-producing bacteria, and blank control. Therefore, the

LAMP assay designed in this study was highly specific for mcr-1.

The analytical sensitivity of the mcr-1-LAMP-LFB assay was determined using serial dilu-

tions of DNA templates of E. coli WHCDC128. As shown in Fig 4, LFB analysis indicated that

Fig 4. Sensitivity of the mcr-1-LAMP-LFB assay. Tubes (A)/lanes (B)/biosensors (C) 1–6 represented the levels of plasmid DNA (E. coli WHCDC128) 3.6 ng, 360 pg, 36

pg, 3.6 pg, 360 fg and 36 fg per reaction, respectively. Tubes (A)/lanes (B)/biosensors (C) 7 and 8 represented the negative (KPC-2-producing E. coli WHCDC332) and

blank controls (nuclease-free water), respectively.

https://doi.org/10.1371/journal.pone.0249582.g004

Fig 5. Sensitivity of the mcr-1-LAMP-LFB assay in spiked fecal samples. Tubes (A)/lanes (B)/biosensors (C) 1–6 represented the E. coli WHCDC128 DNA levels of

6.3×103, 6.3×102, 6.3×101, 6.3, 6.3×10−1, and 6.3×10−2 CFU per reaction, respectively. Tubes (A)/lanes (B)/biosensors (C) 7 and 8 represented the negative (non-spiked

fecal sample) and blank controls (nuclease-free water), respectively.

https://doi.org/10.1371/journal.pone.0249582.g005
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the concentration threshold of the LAMP assay was 360 fg/μL, which was in agreement with

the colorimetric indicator and electrophoresis analysis. The practicability of the mcr-1-

LAMP-LFB was assessed with stool samples inoculated with mcr-1-positive isolates. Positive

results were observed when E. coli WHCDC128 concentration was higher than 6.3×103 CFU/

mL (~6.3 CFU/reaction) (Fig 5), while lower concentrations, non-spiked sample, and blank

control gave a negative result. Similarly, three different approaches obtained identical out-

come. Hence, those manifested the established LAMP-LFB approach was suitable for mcr-1
detection.

The detection limit of the method was 360 fg/L plasmid DNA in pure strains and 6.3×103

CFU/mL in spiked feces samples, which was tenfold more sensitive than the mcr-1-PCR assay

(Table 3). Moreover, conventional PCR could be inhibited by various interfering substances

present in practical specimens, but such inhibitors did not affect the amplification reaction of

the LAMP assay [26]. The mcr-1-LAMP-LFB assay had the equivalent sensitivity and specific-

ity with the mcr-1-MCDA-LFB method described in previously study [30], but the latter was

more complex in terms of primers design and screening. Although the detection of mcr-1 was

achieved with high sensitivity using other methods, like MALDI-TOF mass spectrometry and

real-time PCR [21, 32], their application in fields of resource shortage would be limited by the

need of expensive equipment and rigorous experimental conditions. The mcr-1-LAMP-LFB

assay overcomes the aforementioned restrictions, requiring only a simple thermostat to supply

a constant temperature (63˚C), making the assay appropriate for the identification of mcr-1 on

the spot. Importantly, the whole process of the trial, including specimen treatment (20 min),

LAMP reaction (60 min) and detection (2 min), could be finished within 85 min. The test time

was at least 90 min less than the standard mcr-1-PCR method. Therefore, the established

method showed distinct merit in the aspect of testing time.

Conclusion

In conclusion, a LAMP-LFB assay was designed for the identification of the colistin resistance

gene mcr-1. The method is simple, rapid, sensitive, and specific. The LFB required no additional

equipment and could offer a fast and objective way for readout of amplified products. Thus, the

mcr-1-LAMP-LFB assay will be a worthy tool in clinical settings and resource-poor areas.
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