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Abstract

Objective

The aim of this study is to systematically analyze the transcriptional sequencing data of cer-

vical cancer (CC) to find an Tumor microenvironment (TME) prognostic marker to predict

the survival of CC patients.

Methods

The expression profiles and clinical follow-up information of CC were downloaded from the

TCGA and GEO. The RNA-seq data of TCGA-CESC samples were used for CIBERSORT

analysis to evaluate the penetration pattern of TME in 285 patients, and construct TME-

score. Other data sets were used to validate and evaluate TMEscore model. Further, sur-

vival analysis of TMEscore related DEGs was done to select prognosis genes. Functional

enrichment and PPI networks analysis were performed on prognosis genes.

Results

The TMEscore model has relatively good results in TCGA-CESC (HR = 2.47,95% CI =

1.49–4.11), TCGA-CESC HPV infection samples (HR = 2.13,95% CI = 1–4.51), GSE52903

(HR = 2.65, 95% CI = 1.06–6.6), GSE44001 (HR = 2.1, 95% CI = 0.99–4.43). Patients with

high/low TMEscore have significant difference in prognosis (log-rank test, P = 0.00025), and

the main difference between high TMEscore subtypes and low TMEscore subtypes is

immune function-related pathways. Moreover, Kaplan-Meier survival curves found out a list

of identified prognosis genes (n = 86) which interestingly show significant enrichment in

immune-related functions. Finally, PPI network analysis shows that highly related nodes

such as CD3D, CD3E, CD8A, CD27 in the module may become new targets of CC

immunotherapy.
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Conclusions

TMEscore may become a new prognostic indicator predicting the survival of CC patients.

The prognostic genes (n = 86) may help provide new strategies for tumor immunotherapy.

Introduction

Cervical cancer(CC) is the fourth-ranked malignant tumor in female morbidity and mortality

worldwide [1]. For the treatment of CC, surgical resection, chemotherapy, radiotherapy or

comprehensive treatment methods are mainly used in clinical practice. Although the treat-

ment effect for patients with early CC is relatively good, the treatment effect is poor for patients

with persistent, advanced or recurring CC [2, 3]. Therefore, there is an urgent need for new

biomarkers that can provide prognostic information to guide the prevention of CC metastasis

and recurrence. In recent years, genome analysis has become the main method for discovering

new biological targets in CC in the world [4, 5]. Interestingly, some studies have revealed the

importance of tumor-related structures and the up-regulation of signaling pathways in cancer

cells and the tumor microenvironment (TME) [6, 7], indicating that the intercellular relation-

ships are more important than genomic factors at the single-cell level [8–10].

TME is a complex ecosystem consisting of various types of cells and their secreted products

(such as cytokines, chemokines) and other non-cellular components of the extracellular

matrix, with obvious heterogeneity, dynamics and complexity. The cell-to-cell correlation [11,

12]. TME plays a vital role in the growth and development of tumors [6, 13]. Tumor infiltrat-

ing immune cells (TICs) are an important part of TME, and there is a certain correlation

between their infiltration patterns and clinical results. As we all know, CC is a malignant

tumor that is highly related to human papillary virus (HPV) [14], considering the molecular

mechanism of HPV-related CC immunotherapy provides another reasonable treatment

option for CC [15]. In tumor immunotherapy, TICs play an important role in tumor control

and response to treatment. Real-time understanding of the infiltration of immune cells in

tumors is a very important indicator to guide clinical treatment [16, 17]. Therefore, analyzing

the composition and characteristics of TICs in CC, as well as the correlation between the infil-

trating pattern and prognosis, will help to better understand the complex anti-tumor response

and guide effective immunotherapy in CC.

In the past, immunohistochemistry or flow cytometry was mostly used to analyze TICs in

tumor tissues, which resulted in cumbersome procedures and low feedback efficiency. With

the development of bioinformatics, many deconvolution methods can now be used to predict

cell type and proportion information in complex tissue samples [17]. "Cell type Identification

By Estimating Relative Subsets Of RNA Transcripts"(CIBERSORT) is a biology tool for bioin-

formation analysis based on linear support vector regression using the deconvolution method

[19]. The CIBERSORT method can use standardized gene expression data to estimate the cell

composition in different tumor samples. It has the advantages of high resolution and simulta-

neous quantification of multiple types of immune cells. Its superior performance has been ver-

ified in a variety of malignant tumors, such as colorectal cancer, breast cancer and lung

adenocarcinoma [18–22]. Our study aims to use the CIBERSORT algorithm to analyze the

gene expression data and clinical data of CC patients in TCGA to reveal the pattern of CC spe-

cific immune infiltration, and lay a foundation for revealing the potential biomarkers and tar-

gets of CC immunotherapy.

In our study, we estimated the TME infiltration pattern of TCGA-CESC CC patients for the

first time, and obtained the TMEscore model through the principal component analysis
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algorithm. Importantly, by comparing the overall gene expression analysis and survival analy-

sis of the TMEscore high/low groups, we obtained a list of prognostic genes (n = 86), which

may help to describe the prognosis of patients with CC.

Methods

1. Cervical cancer data sets and preprocessing

1.1 Obtain gene expression profile data and clinical information of patients with CC

from the TCGA database (https://tcga-data.nci.nih.gov/tcga/). After removing duplicate

samples and samples without survival information, there were 285 transcriptome samples used

to verify TMEscore; further removing samples with survival time less than 30 days and samples

without clinical information, there were 265 samples for differential analysis. Data preprocess-

ing process:(a) Download CC RNA-seq count data from TCGA-CESC. (b) Delete adjacent

samples. (c) Apply limma’s voom method to convert count data into CPM data, and then cal-

culate weights according to the mean-variance relationship, so that the weighted data can be

applied to linear models.

1.2 Download the expression profile data and clinical data of 55/300 samples of

GSE52903 and GSE44001 from GEO (https://www.ncbi.nlm.nih.gov/geo/) for verifica-

tion. Both dataset of GEO data supported analysis, and neither sample were removed (S1

Table).

2. Tumor microenvironment analysis

2.1 Proportion of infiltrating cells in the tumor microenvironment. Using TCGA--

CESC RNA-seq data from 285 CC samples for CIBERSORT (https://cibersort.stanford.edu/)

analysis [18, 23], and scores of 22 immune cells were obtained using LM22 signature and 1000

permutation.

2.2 Use unsupervised clustering to identify TME patterns and classify tumor samples

into subgroups. According to the immune cell proportion data analyzed by CIBERSORT

[18], the elbow (WSSE or within-cluster sum of squared error, this method is to find the best

number of clusters by finding the "elbow point") and gap statics (The point at which Wk drops

the fastest, K value corresponding to the maximum Gap) was used to evaluate the number K of

the best category. The ConsensusClusterPlus R package [24] was used to classify to obtain

TMEcluster (kmeans, euclidean, ward.D), and this procedure was repeated 1,000 times to

ensure the stability of classification. Then we combined survival data to check whether this

classification is related to survival.

2.3.Calculate TMEscore and analyze whether TMEscore is related to survival. Based on

the above TMEcluster results, map the clustering results to the RNA-seq data, and use limma

R package [25] to screen differentially expressed genes (DEGs) for different TMEcluster types

of samples. The screening threshold is adj.P values< 0.05 and | log2FC |> log2(1.5). Select

class-specific differential genes, then use random forest classification algorithm to eliminate

redundant genes to obtain signature genes [26], Next perform functional enrichment analysis

on these genes to see which pathways are mainly enriched. The genes were divided into two

categories (coefficient is positive or negative) using the cox regression model, and the TME-

score was calculated using the following formula with reference to the GGI score [27].

TMEscore ¼
X

log
2
ðXþ 1Þ�

X
log

2
ðYþ 1Þ

Equation 1: X is the expression value of the gene set whose Cox coefficient is positive, and Y

is the expression value of the gene set whose Cox coefficient is negative.
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Using the maximum selection test to find the best cut point, the samples were divided into

two categories: TMEscore-High and TMEscore-Low, and the correlation between the two

types of samples and prognosis was further analyzed.

2.4 Use TCGA-CESC HPV infection samples, GSE52903 and GSE44001 data for valida-

tion. Based on the above results, TCGA-CESC HPV infection samples, GSE52903 and

GSE44001 data were applied to the model to calculate TMEscore. Then the best pointcuts were

found by the maximum selection test, which divides samples into TMEscore-high and TME-

score-low, and the correlation between the two samples and prognosis was analyzed. The sin-

gle factor cox was used to calculate the 95% CI and HR of each factor in the forest diagram,

HR is for TMEscore low vs TMEscore high.

3. Identification of differentially expressed genes

According to the grouping of the two types of TMEscore samples, limma package [25] was

used to analyze the gene expression data. |log(Fold Change)|>1 and adj.P values<0.05 were

set as the standards, and genes that meet the standards were defined as differentially expressed

genes (DEGs).

4. Survival analysis

Survival analysis refers to the method of analyzing and inferring the survival time of organisms

or people based on the data obtained from experiments or surveys, and studying the relation-

ship between survival time and outcome and many influencing factors and their degree. It is

also called survival rate analysis. DEGs were divided into high and low expression groups

according to their median expression and subjected to survival analysis. The Kaplan-Meier

diagram was drawn to illustrate the relationship between the overall survival (OS) of patients

and the expression level of DEGs; Log-rank test was used to define DEGs with P<0.05 as

prognostic genes related to survival.

5. PPI network construction

Prognosis genes related to survival were placed in a STRING database [28] (https://string-db.

org/) to retrieve the protein-protein interaction (PPI) network and reconstructed via Cytos-

cape software [29]. At the same time, in order to identify the modules that are closely con-

nected in the network, we used the Molecular COmplex DEtection (MCODE) plug-in (k-

score = 3) and required the Degree Cut-off�10 in the module to further mine the network,

find the cluster according to the topology structure, and locate the densely connected modules.

6. Enrichment analysis

The clusterProfiler package [30] was used to identify and visualize the GO biological processes

(BP) terms and KEGG pathways enriched by related genes. adj.P values< 0.05 was set as the

cut-off criterion for the significant enrichment.

7. Statistical analysis

All Statistical analyses were conducted using R (https://www.r-project.org/), and P<0.05 were

considered statistically significant. Unsupervised clustering methods: elbow method (R pack-

age factoextra), gap statistic (R package factoextra), consensus clustering (R package Consen-

susClusterPlus). Differential expression analysis (R package limma). Correlation analysis (R

function cor, pearson correlation). Maximum selection test to find the best cut-off point (R

package maxstat). Cox regression (R package survival). The normality of the variables was
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tested by the Shapiro-Wilk normality test [31] For comparisons of more than two groups,

Kruskal-Wallis tests was used as nonparametric methods [32]. The survival curve is generated

by Kaplan-Meier method (R package survminer) and the difference is analyzed by log-rank

test.

Results

1. Tumor microenvironment analysis

1.1 Infiltrating cells in the tumor microenvironment. CIBERSORT analysis [24] was

performed using RNA-seq data from TCGA-CESC cohort to obtain the proportion of 22

immune cells (B cells memory, Dendritic cells activated, Macrophages M0, etc.) in 285 sam-

ples. As shown in Fig 1A, the proportion of immune cells in different samples is distributed;

Fig 1B describes the correlation between 22 types of immune cells and analyzes the relation-

ship between different immune cells and survival (S2 and S3 Tables). Interestingly, we found

that activated mast cells are the most significant factor negatively correlated with survival.

1.2 TME model classification. The unsupervised hierarchical clustering method was used

to identify the TMEcluster, and the classification results of TMEcluster are shown in S4 Table.

First, according to the elbow method (Fig 1C) and gap statics (Fig 1D) to determine the opti-

mal classification K value, as shown in Fig 1C, in the elbow method, when K = 3, the decline

Fig 1. TME model classification. (A). The proportion of 22 types of immune cells in the sample. (B). 22 kinds of immune cells and their relationship with survival

(The color of the dot represents the grouping, the size represents the relationship between survival. The color of the center point represents the prognostic risk. The

connecting line between the points represents the correlation between the cell and the cell, the thickness of the line indicates the strength of cell correlation and the

color of the line represents whether the correlation is positive or negative). (C)-(E) determine the optimal classification K = 3. (C). elbow method: vertical axis

represents total within sum of square, horizontal axis represents number of clusters. (D). gap statics: vertical axis represents gap statistics, horizontal axis represents

number of clusters. (E).Survival analysis of the 3 different TMEcluster. Kaplan–Meier curves for OS of 285 patients in the TCGA-CESC cohort showing the

association between TMEcluster and OS (log-rank test, P< 0.001). (F). The proportion of immune cells in different TMEcluster. (G). Heat map of proportional

clustering of immune cells in different TMEcluster.

https://doi.org/10.1371/journal.pone.0249374.g001
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slows down. Elbow method clustering (Fig 1C) and gap statistics clustering (Fig 1D) are two

methods for determining the number of clusters. The elbow method was to find the elbow

(that is, the point where the sum of square errors within the group decreases most rapidly), we

could clearly see that the elbow point is at K = 3 (Fig 1C).The gap statistic determined the best

classification by finding the point with the largest gap, which is K = 7 (Fig 1D). Combining the

two methods, according to experience, it was obviously inappropriate to divide into 7 catego-

ries, finally we chose to divide it into3 categories. And three main TME cell infiltration sub-

types revealed by the data showed significant difference in survival (log-rank test, P< 0.001,

Fig 1E). Second, we combined the ConsensusClusterPlus function to iterate 1000 times (K = 1:

10) to stabilize the classification and obtained the classification of the sample. It was found that

when K = 3, the TMEcluster classification is better (S1A–S1D Fig). Last, mapping the classifi-

cation of TMEcluster to the immune cell proportion map, we could see that there are obvious

difference between different TMEcluster (Fig 1F and 1G).

1.3 Calculate TMEscore and analyze whether TMEscore is related to survival. Accord-

ing to the above TME classification (K = 3), R’s limma package was used to screen different

classes of differentially expressed genes (adj.P values<0.05, | log2FC |> log2 (1.5)) for differ-

ential gene analysis. As shown in Venn diagram (Fig 2A), we obtained a total of 1,419 differen-

tially expressed genes (S5 Table). Unsupervised clustering based on the differentially

expressed genes was used to divide the sample into three categories (Fig 2B, S6 Table). Next,

We used the random forest algorithm to de-redundant differentially expressed genes and

selected the signature genes (N = 82) that are most relevant to classification (S7 Table). Using

R’s ClusterProfiler package to perform functional enrichment analysis of these 82 genes, it

could be seen that these genes are significantly enriched in immune-related pathways such as

regulation of lymphocyte activation, regulation of T cell activation (Fig 2C, S8 Table). There-

fore, we used Cox regression model to judge the relationship between signature genes (N = 82)

and the survival of the samples, then divided signature genes (N = 82) into two categories

according to the coefficient value of the genes. Finally we used the TMEscore calculation for-

mula to score TMEscore for all samples. The maximum selection test was used to find the best

cut-off point (-0.0249498902040117) to divide the samples into TMEscore high and TMEscore

low (S9 Table). The Kaplan–Meier curves of survival analysis for two TMEscore groups (Fig

2D, S10 Table) showed that, the TMEscore high group has a good prognosis, while the TME-

score low group has a poor prognosis (log-rank test, P< 0.001), which indicates that clustering

the sample based on the immune cell component combined with TMEscore calculation can

well characterize the prognosis of samples. Fig 2E visualized the alluvial diagram of TMEclus-

ter and TMEscore group.

1.4 TCGA-CESC HPV infection samples, GSE52903 and GSE44001 for validation and

evaluation of TMEscore model. According to the previously obtained TMEscore model,

TCGA-CESC HPV infection samples(n = 159), GSE52903 (n = 55), and GSE44001(n = 300)

were used to evaluate the model effect. As the Fig 3A–3D shows, the obtained TMEscore can

well characterize the prognosis of the samples. The TMEscore model has relatively good results

in TCGA-CESC (HR = 2.47,95%CI = 1.49–4.11), TCGA-CESC HPV infection samples (HR =
2.13,95%CI = 1–4.51), GSE52903 (HR = 2.65,95%CI = 1.06–6.6), GSE44001 (HR = 2.1,95%
CI = 0.99–4.43), indicating that TMEscore model is a very good indicator for assessing

prognosis.

2. TMEscore significantly correlates with cervical cancer prognosis

Samples with survival time of less than 30 days were further removed, thus 265 cervical cancer

samples were finally retained for subsequent analysis. The TMEscore distribution of the
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retained 265 cervical cancer samples was shown in S2A Fig. S2B Fig showed survival analysis

of the retained 265 cervical cancer samples. As shown in Kaplan–Meier curves (OS) for high

(n = 126) and low (n = 139) TMEscore patient groups, median survival of the high score group

is longer than low score group (3097 days vs 2032 days), it is statistically different as indicated

by the log-rank test P = 0.00025. Then we performed correlation analysis on TMEscore and

American Joint Committee on Cancer (AJCC) clinical stage, but the box-plot (S2C Fig)

showed that the overall correlation between TMEscore and each stage was not statistically sig-

nificant (Kruskal-Walis test, P = 0.45).

3. Comparison of gene expression profile with TMEscores in CC

To reveal the correlation between gene expression and TMEscores, we compared the expres-

sion profile data of CC patients in the TCGA database and identified 352 differentially

Fig 2. Calculate TMEscore and analyze whether TMEscore is related to survival. (A). Venn diagram (the difference Analysis among 3 different

TMEcluster): obtaine a total of 1,419 differentially expressed genes (DEGs). (B). heatmap of consensus matrix (consensus matrix K = 3).: perform

unsupervised clustering based on DEGs (n = 1,419) to divide the samples into 3 categories. (C). Functional enrichment analysis of signature genes

(n = 84) (D). Kaplan–Meier curves for high (n = 134) and low (n = 151) TMEscore patient groups in the TCGA-CESC cohort. Log-rank test, P< 0.001.

(E). Alluvial diagram of TMEcluster in groups with different DEGs clusters, TMEscore group and survival outcomes showing difference among patients

by cluster.

https://doi.org/10.1371/journal.pone.0249374.g002
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expressed genes (DEGs, S11 Table) by grouping according to TMEscores (126 cases/139

cases), which including 351 up-regulated genes and 1 down-regulated genes as the key genes

for subsequent analysis. (Fig 4A). Next, in order to outline the potential functions of these

DEGs above, we performed GO and KEGG enrichment analysis on DEGs respectively. The

enrichment analysis results showed that DEGs significantly enrich in immune-related func-

tions. (S12 and S13 Tables and Fig 4B and 4C: choose TOP10 for demonstration).

Fig 3. TCGA-CESC HPV infection samples, GSE52903 and GSE44001 for validation and evaluation of TMEscore model. (A).

Survival analysis of TCGA-CESC HPV infection samples: Kaplan–Meier curves (OS) for high (n = 79) and low (n = 80) TMEscore patient

groups in the TCGA-CESC HPV infection cohort. Log-rank test, P< 0.05. (B). Survival analysis of GSE52903: Kaplan–Meier curves (OS)

for high (n = 44) and low (n = 11) TMEscore patient groups in the GSE52903 cohort. Log-rank test, P< 0.05. (C). Survival analysis of

GSE44001: Kaplan–Meier curves (DFS) for high (n = 260) and low (n = 40) TMEscore patient groups in the GSE44001 cohort. Log-rank

test, P< 0.05. (D). Forest maps for Survival analysis of four samples: TCGA-CESC (HR = 2.47,95% CI = 1.49–4.11), TCGA-CESC HPV

infection samples (HR = 2.13,95% CI = 1–4.51), GSE52903 (HR = 2.65, 95% CI = 1.06–6.6), GSE44001 (HR = 2.1, 95% CI = 0.99–4.43).

https://doi.org/10.1371/journal.pone.0249374.g003
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4. Survival analysis for DEGs

In order to screen out genes related to the prognosis of CC, we divided these 352 DEGs into

high and low expression groups according to their median expression and performed survival

analysis (S14 and S15 Tables). Among the 352 DEGs, a total of 86 survival-related prognosis

genes (S16 Table) were excavated (log-rank test, P<0.05). Selected prognosis gene survival

curves are shown in Fig 5.

5. Functional enrichment analysis of prognosis genes

KEGG pathway and GO enrichment analysis were performed on 86 prognosis genes. The

enrichment analysis results still show significant enrichment in immune-related functions,

such as Primary immunodeficiency (hsa05340), Th1 and Th2 cell differentiation (hsa04658),

Fig 4. Comparison of gene expression profile with TEMscores in cervical cancer. (A) Heatmap of the DEGs of TMEscores of high score vs low

score. (adj.P<0.05, |log (Fold Change)|>1). (B). KEGG enrichment of DEGs (C). GO Biological Process enrichment of DEGs.

https://doi.org/10.1371/journal.pone.0249374.g004

Fig 5. Kaplan-Meier survival curves of some prognosis genes. Red line represents high gene expression group and green line represents low gene

expression group. P<0.05 in Log-rank test. overall survival (OS) in days.

https://doi.org/10.1371/journal.pone.0249374.g005
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Th17 cell differentiation (hsa04659), T cell activation (GO:0042110), regulation of leukocyte

activation (GO:0002694), antigen receptor-mediated signaling pathway (GO:0050851), etc.

(Fig 6A, 6B and S17 and S18 Tables).

6. PPI network construction and module mining for prognosis genes

To better understand the interactions between the identified prognostic genes, we used the

STRING database to obtain a protein-protein interaction (PPI) network that includes 68

nodes and 400 edges (Fig 6C). Next, in order to further mine the information in the network,

we used the MCODE plug-in to further mine the interacting modules. In the end, only 1 mod-

ule was mined, including 17 nodes and 104 edges (Fig 6D). As shown in Fig 6D, the center of

the module is mainly occupied by key immune response genes such as CD3D, CD3E, CD8A,

and CD27, etc. These genes were defined as module genes.

Fig 6. Functional enrichment analysis and PPI network of prognosis genes. (A) GO Biological Process enrichment of prognosis genes. (B). KEGG

enrichment of prognosis genes. (C). PPI network of prognosis genes. (D). MCODE module mining: The node size represents degree, and the node

color from light to dark represents log (FC) value from small to large.

https://doi.org/10.1371/journal.pone.0249374.g006
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Discussion

The overall analysis process of this study is shown in S3 Fig. First, we performed CIBERSORT

analysis using RNA-seq data from TCGA-CESC cervical cancer samples to obtain the TME

infiltration pattern of 285 cervical cancer patients (Fig 1). Second, we performed the principal

component analysis algorithm to build a TMEscore model (Fig 2), which is divided into two

groups: TMEscore high and TMEscore low. To prove that TMEscore is a better prognostic

marker, the alluvial diagram (Fig 2E) of TMEcluster in groups with different DEGs clusters,

TMEscore group and survival outcomes showing difference among patients by cluster. It is

worth noting that in this study, we performed consistent clustering based on the results of

CIBERSORT, and the results showed that the optimal number of clusters was 3 (TMEcluster1,

TMEcluster2, TMEcluster3), then we did a survival analysis based on these three categories,

and the P = 0.0087 (Fig 1E). At the same time, we used TMEscore’s classification results

(TMEscore low, TMEscore high) for survival analysis, and the P = 0.00031 (Fig 2D). The com-

parison shows that although TMEscore is based on CIBERSORT, TMEscore is better than the

immune cell infiltration based classification. Next, the TMEscore was validated for TCGA--

CESC HPV infection samples, GSE52903, GSE44001 (Fig 3). In Fig 3C, the Kaplan Meier

curve (DFS) difference between the high (n = 260) and low (n = 40) TMEscore patient groups

in the GSE44001 cohort is statistically significant. However, in Fig 3D (Forest maps for Sur-

vival analysis of four samples), the GSE44001 sample (HR = 2.1, 95% CI = 0.99–4.43) did not

show statistical significance. We think that this result may be caused by the imbalance of the

grouped samples and the relatively small overall sample. Because CC is significantly associated

with infectious agents, most notably human papillomavirus (HPV) [14], However, due to data-

base limitations, we have not used the corresponding data to verify that the TMEscore model

is a prognostic biomarker for immune checkpoint inhibitor responses, which is deficiencies in

the study.

Next, we attempted to identify TME related genes that contribute to CC overall survival

(OS) in the TCGA database. In particular, by comparing global gene expression of the two

groups of TMEscore high and TMEscore low, we extracted 352 differentially expressed genes

and found that many of them are related to immune-related functions, as shown by GO (Fig

4B) and KEGG (Fig 4C) analysis. Then we performed survival analysis of these 352 genes and

determined that 86 genes were associated with prognosis for patients with CC. The analysis of

the 86 prognosis genes GO (Fig 6A) and KEGG (Fig 6B) also showed significant enrichment

in immune-related functions. Interestingly, we identified some pathways that are not directly

related to immune-related pathways in S8 Table, such as: positive regulation of cell activation

(GO:0050867); positive regulation of cell adhesion (GO:0045785); cellular calcium ion homeo-

stasis (GO:0006874); purinergic receptor signaling pathway (GO:0035587); calcium-mediated

signaling (GO:0019722); positive regulation of JNK cascade (GO:0046330), etc. Finally, we

constructed and finally mined a PPI network of prognosis genes (Fig 6D), all of which are

related to the immune response. Highly relevant nodes in the module include CD3D, CD3E,

and CD8A, which are mainly expressed in CD8+T lymphocyte lines. The limitation of this

study is that the results only obtained only through bioinformatics analysis. We have not fur-

ther conducted genetic and experimental studies with larger sample sizes to confirm the TME-

score model.

In summary, we first proposed the establishment of a TMEscore model to predict the prog-

nosis of CC. In this study, we used the TME infiltration pattern of TCGA-CESC CC patients

and used the principal component analysis algorithm to obtain a TMEscore model. The TME-

score was validated as a powerful prognostic biomarker by other data. By comparing the global

gene expression and survival analysis of TMEscore high/low groups, we obtained a list of
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prognostic genes (N = 86, S16 Table), which may help to describe the prognosis of CC

patients. Some previously ignored genes may become additional biomarkers for CC. In addi-

tion, further research into prognostic genes may lead to new insights into the potential link

between TME and CC prognosis.

Supporting information

S1 Fig. TME model classification. Consensus matrixes of TCGA-CESC cohort for each k

(k = 2–5), displaying the clustering stability using 1000 iterations of hierarchical clustering.

(A). heatmap of consensus matrix(K = 2). (B). heatmap of consensus matrix (K = 3). (C). heat-

map of consensus matrix(K = 4) (D). heatmap of consensus matrix (K = 5) vertical axis repre-

sents samples, horizontal axis represents the classification of consensus matrix. The more neat

the classification, the better the classification effect. (E) Consensus Cumulative Distribution

Function (CDF) Plot: vertical axis represents the consensus index, and horizontal axis repre-

sents the probability.

(TIF)

S2 Fig. TMEscore significantly correlates with cervical cancer prognosis. (A). Score distri-

bution of the retained 265 cervical cancer samples with survival time of more than 30 days.

(B). Survival analysis of the retained 265 cervical cancer samples. As shown in Kaplan–Meier

curves (OS) for high (n = 126) and low (n = 139) TMEscore patient groups, median survival of

the high score group is longer than low score group (3097 days vs 2032 days), it is statistically

different as indicated by the log-rank test P = 0.00025. (C). Distribution of TEMscores of CC

stage (AJCC). Box-plot shows the association between TMEscore and cervical cancer stage,

but it is not statistically significant (Kruskal-Walis test, P = 0.45).

(TIF)

S3 Fig. Overall project flow.

(TIF)
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