
RESEARCH ARTICLE

An area efficient and high throughput

implementation of layered min-sum iterative

construction a posteriori probability LDPC

decoder

Hasnain RazaID*, Syed Azhar Ali Zaidi, Aamir Rashid, Shafiq Haider

Electronics Engineering Department, Faculty of Electronics and Electrical Engineering, University of

Engineering and Technology, Taxila, Pakistan

* Hasnain.raza8084@gmail.com

Abstract

Area efficient and high speed forward error correcting codes decoder are the demand of

many high speed next generation communication standards. This paper explores a low

complexity decoding algorithm of low density parity check codes, called the min-sum itera-

tive construction a posteriori probability (MS-IC-APP), for this purpose. We performed the

error performance analysis of MS-IC-APP for a (648,1296) regular QC-LDPC code and pro-

posed an area and throughput optimized hardware implementation of MS-IC-APP. We pro-

posed to use the layered scheduling of MS-IC-APP and performed other optimizations at

architecture level to reduce the area and to increase the throughput of the decoder. Synthe-

sis results show 6.95 times less area and 4 times high throughput as compared to the stan-

dard min-sum decoder. The area and throughput are also comparable to the improved

variants of hard-decision bit-flipping (BF) decoders, whereas, the simulation results show a

coding gain of 2.5 over the best implementation of BF decoder in terms of error

performance.

1. Introduction

Low density parity check (LDPC) codes [1,2] are used in many communication systems [3]

and are also of particular interest in data storage systems [4] due to their excellent error correc-

tion capability. With the increasing demand of high data rates in next generation communica-

tion systems, it is required to implement a very high speed decoder that should also meet the

area and power requirements of the communication standard. Because of the inherent parallel-

ism in their encoding and decoding algorithms, it is possible to implement a very high

throughput encoder and decoder of LDPC codes. The low complexity variants of the soft-deci-

sion iterative message passing belief propagation (BP) algorithm, such as min-sum (MS) [5],

offset min-sum [6] and scaled min-sum [7], are usually the choice of hardware implementation

because of their excellent error correction performance close to the Shannon limit. Two types

of scheduling are used in all these message passing algorithms namely, flooding schedule [8]

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Raza H, Zaidi SAA, Rashid A, Haider S

(2021) An area efficient and high throughput

implementation of layered min-sum iterative

construction a posteriori probability LDPC decoder.

PLoS ONE 16(3): e0249269. https://doi.org/

10.1371/journal.pone.0249269

Editor: Saeed Mian Qaisar, Effat University, SAUDI

ARABIA

Received: January 5, 2021

Accepted: March 16, 2021

Published: March 29, 2021

Copyright: © 2021 Raza et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work. Hasnain Raza(methodology,

software/Hardware, Conceptualization, Write

original draft and implementation) Syed Azhar Ali

Zaidi (Supervision, help in methodology, help in

writing original draft, review and editing the draft)

Aamir Rashid and Shafiq Haider(Formal analysis

and review the article).

https://orcid.org/0000-0002-8822-6754
https://doi.org/10.1371/journal.pone.0249269
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1371/journal.pone.0249269
https://doi.org/10.1371/journal.pone.0249269
http://creativecommons.org/licenses/by/4.0/


and layered scheduling [9] depending upon how messages are propagated between the check

nodes and variable nodes of the parity check matrix. In the flooding schedule, the check nodes

and the variable nodes compute their messages subsequently in each iteration. Whereas, in lay-

ered scheduling the rows of parity check matrix is divided into layers and the messages passed

by the check nodes are immediately used to update the log likelihood ratios (LLRs) variable

nodes within the processing of one layer. Therefore, the processing of next sequential layer

uses the update values of LLRs. The number of iterations are reduced to half in layered sched-

uling as compared to flooding schedule which helps in the implementation of high speed

decoders.

Many prior works have implemented high speed LDPC decoders based on the low com-

plexity variants of BP algorithm. The main challenge in these implementations is the selection

of parallelism in order to meet the area and throughput requirements of the communication

standard, design of the routing network, the placement of data in memories in order to avoid

the memory conflicts during the read and write of check node and variable node messages,

and dealing with the pipeline hazards in the pipelined layered architecture of LDPC codes. In

[10], a block level parallel architecture for quasi-cyclic (QC) LDPC codes is implemented,

where, all the rows in a layer are processed in parallel. The variable node and check node pro-

cessors are optimized and a flexible routing network is used between the LLR memory and the

processors in order to adapt the architecture to various parity check matrices. The routing net-

work is implemented with the help of barrel shifters, where, the shift factors are stored in a

memory. The authors in [11] have implemented pipelined layered decoder architecture for

QC-LDPC codes. A high throughput is achieved by implementing a flexible partially parallel

decoder supporting different parallelism factors and a routing network supporting different

matrices. Single port memory banks are used and an offline algorithm is used to organize the

messages in these memory banks in order to avoid memory access conflicts for processing

large number of rows in parallel. Similarly the offline algorithm is used to relax the messages

read access constraints in order to avoid the read after write hazard in the pipelined architec-

ture. Many works have implemented a fully parallel and unrolled LDPC decoder architecture

[12–14]. In a fully parallel unrolled decoder architecture is implemented with a throughput of

588 Gbps for high speed optical and Ethernet networks. However, these fully parallel and ultra

high throughput decoders are implemented at the expense of large area.

Another class of decoding algorithms called the hard-decision algorithms result in very low

complexity decoders but at the cost of reduced error correction performance. Among the

hard-decision algorithms are the bit-flipping (BF) algorithms and the majority-logic decoding

algorithm. Many researchers have proposed changes in these hard-decision algorithms in

order to improve the error correction performance and to maintain a reasonable hardware

complexity [15–17]. However, the error correction performance of these algorithms is still low

as compared to the MS algorithm, especially, at low frame error rate.

In this paper, we have analyzed another class of decoding algorithm called the Gradient-

Projection (GP) decoding of LDPC codes proposed by Kasparis and Evans in [18]. The GP

decoding algorithm is based on formulating a non-linear multimodal objective function,

which include all the parity check constraints, and then finding the global minimum of this

objective function by using the gradient projection method. The authors also proposed the var-

iations of GP decoding algorithm in [19], called the Iterative Construction of A Posteriori

Probability (IC-APP) and MS-IC-APP (min-sum variant) decoder, which results in reducing

the complexity of the GP decoder and at the same time linked the GP algorithm with the BP

algorithm and its low complexity variants. The authors showed that the GP algorithm and its

variants perform close to the MS algorithm, especially, for geometry-based LDPC codes. In

this paper, we have used the MS-IC-APP algorithm for the decoder implementation. We

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 2 / 12

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0249269


analyzed the performance of MS-IC-APP for a regular quasi-cyclic (QC) LDPC code and com-

pared the performance with MS algorithm and the improved variants of the hard-decision BF

algorithms. We implemented an area optimized and high throughput hardware of the MS-I-

C-APP decoder. In this regard, we also proposed to use the layered version of the MS-IC-APP

algorithm (similar to the layered MS decoding proposed in [9]), which results in the elimina-

tion of the check-to-variable (CTV) message memory, and therefore, results in large area sav-

ings. The permutation unit in our proposed implementation is optimized by replacing the

large barrel shifters with multiplexers at the input of a single check node processor. This results

in further reducing the area and shortening the critical path, thus, increasing the frequency

and the throughput of the decoder. Simulation and implementation results show better error

correction performance of the layered MS-IC-APP algorithm, especially, at low frame error

rate and comparable hardware complexity as compared to the hard-decision BF algorithms.

The rest of the paper is organized as follows: Section 2 gives the introduction about the

LDPC codes and presents the algorithm of layered MS-IC-APP. Section 3 gives the simulation

results of the layered MS-IC-APP algorithm for a (648,1296) regular QC-LDPC code. The pro-

posed hardware architecture of the layered MS-IC-APP decoder is discussed in Section 4. Sec-

tion 5 gives the synthesis and simulation results of the layered MS-IC-APP algorithm for (648,

1296) regular QC-LDPC code and shows the comparison of the results with the state of the art

implementations. Section 6 concludes the paper.

2. Background

2.1. LDPC codes

A binary LDPC code is described by a sparse parity check matrix, H, having dimension M×N,

where, N>M. A valid codeword x̂ of N bits should satisfy H � x̂T , where x̂T , denotes the trans-

pose of x̂. The codeword r received from the channel could have an error whose probability

depends upon the underlying communication channel. E.g. for a binary symmetric channel

(BSC), the crossover probability, β, shows the number of bits that are likely to be flipped in the

transmitted code-word x̂. In this paper, we have used the BSC for performance evaluation and

decoder implementation. The number of 1’s in a row and column of H is called the row and

column degree, respectively. A regular parity check matrix has equal number of 1’s in all the

rows/columns, whereas, an irregular matrix has variable degree across different rows/columns.

The parity check matrix is also categorized as structured or unstructured depending upon

whether it has a regular structure or not. The QC-LDPC codes are a class of structured LDPC

codes, where, the parity check matrix consists of Mb×Nb array of Z×Z circulant permutation

sub-matrices. The number of 1’s in a row or a column of a circulant sub-matrix, θi,j, is the

weight of the sub-matrix. The weight w of the sub-matrix can be 0, 1 or higher and therefore,

the sub-matrix can be either a zero matrix, cyclically shifted identity matrix or multiple inde-

pendent cyclically shifted identity matrices superimposed in a sub-matrix, respectively. The

regular structure of LDPC codes result in a simplified architecture of the encoder and decoder.

The parity check matrix is represented graphically with the help of a bi-partite Tanner graph.

The Tanner graph consists of N variable nodes (VNs) (which correspond to the columns of H)

and M check nodes (CNs) (which correspond to the rows of H), where, the connection

between a VN and CN denotes that the entry in the corresponding row and column of H is

equal to 1.

2.2. MS-IC-APP algorithm

As mentioned in the previous section, we have used the low complexity min-sum variant of

the IC-APP algorithm, proposed in [19], called the MS-IC-APP algorithm. Similar to BP,

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 3 / 12

https://doi.org/10.1371/journal.pone.0249269


messages are exchanged between VNs and CNs in MS-IC-APP for gradually updating the reli-

ability values of the VNs towards correct values. The horizontal layered scheduling of the

MS-IC-APP algorithm is described in Algorithm 1. The following notations are used in this

algorithm:

• Lj is the a-priori log-likelihood ratio (LLR) computed from the bits rt received from the

channel given as log
Prðxt¼0jrtÞ
Prðxt¼1jrtÞ

� �

• g
ðkÞ
ij is the CTV message given by the ith CN to the jth VN in the kth iteration.

• N(i) is the set of VNs connected to the ith CN and N(i)\j is the set of VNs connected to the

ith CN except VN j.

• rðkÞij and RðkÞj denote the variable to check (VTC) message from the VN j to CN i and the a pos-

teriori LLR of VN j at kth iteration, respectively.

Algorithm 1: Layered MS-IC-APP decoding algorithm.
1. Initialization:
8 VNj, j2{1,. . .,N} do Rð0Þj ¼ Lj

2. Check node processing:
8 CNi, i2{1,. . .,M} and 8 VNj, j2{1,. . .,N} do.

rðkÞij ¼ Rðk� 1Þ

j ð1Þ

g
ðkÞ
ij ¼

Q
j02NðiÞn jsgnfrkij0 g � min

j02NðiÞn j
jrðkÞij0 j � a ð2Þ

RðkÞj ¼ rðkÞij þ g
ðkÞ
ij ð3Þ

Estimated code-word is X̂ ¼ ðx̂1; x̂2; . . . ; x̂NÞ, where element X̂ j is calculated
as:

x̂j ¼
0 if RðkÞj � 0

1 else
ð4Þ

(

If Hx̂T = 0 then stop, with correct code-word x̂, otherwise go to the
step 2.

From Algorithm 1, we can see that in each iteration k, the LLRs are directly given to the

CNs as VTC messages as compared to the standard min-sum algorithm in which the VTC

message is computed as: rðkÞ ¼ RðkÞj � g
ðk� 1Þ

ij This modification in the MS-IC-APP algorithm

results in reduction of hardware as compared to the MS algorithm but at the cost of reduced

error correction performance. In order to further reduce the area, we have used the layered

version of the MS-IC-APP algorithm in this work instead of flooding schedule. In the layered

algorithm, the M rows of H are divided into L different layers, where, each layer consists of NL

= M/L rows. The layers are processed sequentially and all the rows in a layer are processed in

parallel. During the processing of a layer, all the computed CTV messages are used to update

the LLRs of the corresponding VNs, as given in Eq 3, and therefore, the next sequential layer

uses the updated LLRs of VNs. The modification of VTC message and the layered scheduling

results in the elimination of CTV message memory in MS-IC-APP and therefore, results in

large reduction of the area of decoder. The number of iterations in the layered algorithm

reduces to half and therefore, results in doubling the throughput of the decoder as compared

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0249269


to the flooding schedule. In this work, we have implemented the LDPC decoder hardware of a

(3,6) regular QC-LDPC code described by a base matrix of size Mb×Nb = 12×24, and expansion

factor Z = 54, relating to a parity check matrix of dimension M×N = 648×1296.

The base matrix is shown in Fig 1. The base matrix is divided into three layers, where, each

layer consists of 4 rows of circulants i.e. 4×54 = 216 rows of H. There are six cyclically shifted

identity sub-matrices, represented by non-negative entries, in each row of the base matrix,

where, the non-negative number shows the corresponding shift factor. We denote these sub-

matrices with Cst_Lp where, s = 1:4 shows the corresponding row of circulants in a layer p, and

t = 1:6 shows the corresponding non-negative column of circulant in a row s.

3. Layered MS-IC-APP error-correction performance

We performed the monte carlo simulations for analyzing the error correction performance of

(648,1296) QC-LDPC code at different number of quantization bits of LLRs. For this purpose,

a simulator of the whole communication system with QC-LDPC code encoder, decoder and

the BSC is implemented in C. For the binary symmetric channel, a 32-bit linear feedback shift

register (LFSR) is implemented and the random values produced by the LFSR are divided by

the maximum value of LFSR i.e. 232 and then the result is compared with the value of BSC

crossover probability β. These noise bits with the probability of 1 as β is XORed with the bits

sent from the transmitter.

The parameters for the simulations are set as follows: We used q bits for Lj and Q = q+1 bits

for Rj. We measured the value of frame error rate (FER) at different values of β, where, a total

of 1×107 frames are simulated for each value of β and the simulations are stopped when 100

wrong frames are measured at a particular value of β. The maximum number of iterations is

set as 20. The scaling factor alpha/ = 0.5 is used. Fig 2 shows the simulation results of

(648,1296) QC-LDPC code using different values of q in layered MS-IC-APP. The simulation

results for the floating point implementation and the flooding schedule of MS-IC-APP for

q = 7 are also given for comparison purposes. As the number of rows in the chosen layers of

the base matrix to be processed in parallel does not contain two 1’s in a single column, there-

fore, there is no degradation in the performance of layered schedule as compared to the flood-

ing schedule. This is evident from the figure for the case of q = 7. From the figure we can see

that the performance increases slightly with the increases in number of quantization bits. E.g.

there is a difference of β = 0.005 approximately at a FER of 1×10−3 between q = 5 and q = 7.

The figure also shows that the results of q = 7 and q = 8 are very close to each other.

Fig 1. Base matrix of (648,1296) regular QC-LDPC code with a column and row degree of 3 and 6, respectively.

https://doi.org/10.1371/journal.pone.0249269.g001

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 5 / 12

https://doi.org/10.1371/journal.pone.0249269.g001
https://doi.org/10.1371/journal.pone.0249269


4. Hardware architecture of layered MS-IC-APP algorithm

The overall block diagram of the proposed MS-IC-APP decoder hardware for (648,1296) regu-

lar QC-LDPC code is shown in Fig 3. The register bank is used to store the a-priori LLRs

received from the channel and the updated a-posteriori LLRs received from processing units

in each iteration. The register bank consists of 24 registers, where, each register is an array of

flip-flops for storing the corresponding 54 LLRs of 1 column of circulants. There are four Pro-

cessing Units in the hardware which are responsible for processing all 216 rows of a layer,

where, each processing unit process 1 row of circulants, i.e. 54 rows, in parallel in a layer. The

processing units receive LLRs from the register bank through the permutation units. Similarly,

the updated LLRs from the processing units are given to the register bank through permuta-

tion units.

The permutation units at the input of processing units consists of blocks of MUXes for

selecting the required LLRs corresponding to Cst_Lp for all processing units, and therefore,

total 6 × 54 LLRs are given to 1 processing unit for processing 1 row of circulants in layer p.

These permutation units also rotate the LLRs corresponding to the shift factor of Cst_Lp. E.g.

Fig 2. Simulation results of MS-IC-APP for (648,1296) QC-LDPC code with different number of quantization bits of LLRs. (a) Frame error rate (b) Average

numbers of Iterations.

https://doi.org/10.1371/journal.pone.0249269.g002

Fig 3. Top level block diagram of the decoder.

https://doi.org/10.1371/journal.pone.0249269.g003

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 6 / 12

https://doi.org/10.1371/journal.pone.0249269.g002
https://doi.org/10.1371/journal.pone.0249269.g003
https://doi.org/10.1371/journal.pone.0249269


for C11_L0 = 49, a left rotation of 49 is performed on the first set of Z LLRs given to the first

processing unit in layer 0. Fig 4 shows the case of processing 1 row of circulants in a layer. In

this figure, a single permutation unit is shown at the output of register bank. There are 6 blocks

of MUXes in a permutation unit i and each block consists of Z = 54 MUXes. These blocks of

MUXes select and rotate 6 set of Z LLRs for the processing unit corresponding to the processed

layer p, where, p = 0 to 2. Similarly, there are 24 permutation units at the input of the register

bank, where, each permutation unit consists of a block of 54 MUXes for rotating and selecting

the correct updated LLRs for each register from the processing units.

The processing unit consists of 54 check node processors (CNPs) which process the whole

row of circulants i.e. 54 rows in parallel. Each CNP receives 6 LLRs from the permutation unit

as VTC messages, compute the CTV messages and output the updated value of these LLRs by

adding the CTV messages with the corresponding LLRs. The internal architecture of CNP is

shown in Fig 5. There are 6 units in CNP for converting the corresponding LLRs of VNs into

Fig 4. Detailed data flow diagram for processing 1 row of circulants in a layer.

https://doi.org/10.1371/journal.pone.0249269.g004

Fig 5. Architecture of a Check Node Processor (CNP).

https://doi.org/10.1371/journal.pone.0249269.g005

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 7 / 12

https://doi.org/10.1371/journal.pone.0249269.g004
https://doi.org/10.1371/journal.pone.0249269.g005
https://doi.org/10.1371/journal.pone.0249269


sign-magnitude format. The SPU block is then used to find the product of all the signs of LLRs

and the min_ind block is used to find the first two minimums and the index of the first mini-

mum from the absolute values of LLRs. The tree like architecture for finding the first two mini-

mums and index of first minimum as proposed in [20] is used for the min_ind block. The

XOR gates are used to exclude the sign of each LLR from the sign product in order to compute

the final sign of each CTV message, denoted as sgn_ctvi, where, i = 1:6. The concatenation

block receives all the signs of CTV messages, the first two minimums and the index of the first

minimum. The minimum values are then scaled by the scaling factor/. The concatenation

block computes the magnitude of all CTV messages by comparing the index of first minimum

with the index of each LLR and gives 2nd minimum as magnitude of CTV message for the

LLR whose index is equal to the index of the first minimum, whereas, the first minimum is

given to the rest. The concatenation unit gives CTV messages as output (denoted as CTV1 to

CTV6 in Fig 5) by combining the sign of each CTV message with the magnitude and convert-

ing it to the 2’s compliment format. The CTV messages are then added to the corresponding

LLRs and quantized to Q bits. These updated LLRs from all CNPs are then given to the permu-

tation unit for rotating and then storing in the correct register in the register bank. As men-

tioned in the previous section, we have employed layered decoding of MS-IC-APP algorithm.

Due to the layered decoding, all the CTV messages are used in the current iteration for updat-

ing the LLRs and are not required in the subsequent iteration. Therefore, the CTV message

memory is eliminated in the proposed hardware which results in large area saving of the

decoder.

5 Hardware implementation and simulation results

The architecture of layered MS-IC-APP decoder, as described in the previous section, is imple-

mented using Verilog HDL. We used 7 bits for the intrinsic information from the channel i.e.

a priori LLRs and 8 bits for the a-posteriori LLRs. The bits are chosen based on the simulation

results given in section 3. The Verilog Model is synthesized by targeting the 90 nm CMOS

standard cell library and using Leonardo Spectrum tool from Mentor Graphics. The synthe-

sized area, maximum achieved frequency of the decoder after synthesis and the throughput at

a particular FER is shown in Table 1. The throughput of the hardware is calculated based on

Table 1. Area and throughput comparison with state of the art implementations for (648, 1296) QC-LDPC code.

Area (mm2) (technology) Area (mm2) (scale d to 90nm) fmax (MHz) Nclk/iter TP(Gbps) @ 1×10−5 FER TAR Gbps/mm2

GDBF [17] 0.088 (65nm) 0.17 160.28 1 103.97 (Navg_iter = 2.00) 611.59

LSFR-PGDBF S = 4Z [17]� 0.10 (65nm) 0.19 168.95 1 62.17 (Navg_iter = 3.50) 327.21

IVRG-PGDBF S = 4Z [17]� 0.093 (65nm) 0.18 168.95 1 62.17 (Navg_iter = 3.50) 345.39

MS [10] 0.72 (65nm) 1.38 180.56 6 16.66 (Navg_iter = 2.34) 12.07

VNSA-PGDBF p0 = 0.7 [23]�� 0.32 (90nm) 0.32 370 1 99.3 (Navg_iter = 4.83) 310.31

VNSA-IM-PGDBF p0 = 0.7 [23]�� 0.29 (90nm) 0.29 400 1 81.3 (Navg_iter = 6.38) 280.34

Layered MS [22]��� 0.85 (40nm) 4.30 249.78 - 1.69–5.067 0.39–1.18

This work 0.188 (90nm) 0.188 220 3 68.37 (Navg_iter = 1.39) 363.67

�S is register size of random sequence generator and its size, taken as integer multiples of circulant size Z, effect the hardware complexity and the performance of

PGDBF.

��p0 and (1-p0) are the functions of type-1 and type-2 VNUs in VNSA through which the random sequence generator function of PGDBF is implemented in VNSA,

therefore, removing the need of random sequence generator.

���The hardware implementation supports three different frame lengths, FL = 648, 1296 and 1944, used in the IEEE 802.11 n/ac/ax.

https://doi.org/10.1371/journal.pone.0249269.t001

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 8 / 12

https://doi.org/10.1371/journal.pone.0249269.t001
https://doi.org/10.1371/journal.pone.0249269


the following formula:

TPdec ¼
fmax � N

Navg iters � Nclk=iters
ð5Þ

where, Navg_iter is the average number of iterations for decoding 1 frame and Nclk/iter is the

number of clocks for completing 1 iteration of the decoder.

For comparison purpose, we have also given the results of the hardware implementation of

the same QC-LDPC code from the prior state of the art works in Table 1, where, both the MS

and the improved variations of the BF algorithm are included. The results of the previous

hardware implementations are scaled to 90 nm technology for fair comparison. The area and

frequency are scaled by the factor 1/K2 and K, respectively, where K is the ratio of two different

technologies [21]. From the table we can see that the area efficiency of the proposed hardware

is very high as compared to the layered MS implementation in [10] and [22]. whereas, the area

of the proposed decoder is also comparable to the improved variants of the hard-decision BF

algorithm. Due to a high achieved frequency and reduced average iterations of MS-IC-APP

algorithm, the throughput measured at a FER of 1×10−5 is 68.37 Gbps which is 4 times as com-

pared to the MS decoder in [10]. The throughput is also high as compared to the PGDBF algo-

rithm, which is the best available implementation of the improved BF algorithm in terms of

error performance. The authors in [23] have proposed a variable-node-shift architecture

(VNSA) based approach for implementing the PGDBF algorithm. Their implementation

results in a high throughput hardware, however, with an increase in the area as compared to

the implementations in [17]. We have also given the throughput to area ratio (TAR) in the last

column of Table 1. Apart from GDBF algorithm, the proposed implementation has the highest

TAR as compared to the PGDBF and MS implementations. These results show the high area-

efficiency and throughput performance of the proposed implementation.

For comparing the error performance of the layered MS-IC-APP algorithm, we have given

the FER results of the proposed and state of the art implementations in Fig 6. The result of the

proposed decoder is given for q = 7 bits and a scaling factor/ = 0.5. From the figure we can

see that the layered MS implementation has the best error correction performance, whereas,

the GDBF performance is low than all other algorithms. From the figure we can see that the

layered MS implementation has the best error correction performance, whereas, the GDBF

performance is low than all other algorithms. The MS-IC-APP algorithm error performance is

close to the LFSR-PGDBF algorithm till FER of 1×10−4, whereas, at low FERs the performance

of the MS-IC-APP algorithm is better than the LFSR-PGDBF and IVRG-PGDBF. E.g. there is

a difference of β = 0.006 at a FER of 1×10−8 between MS-IC-APP and LFSR-PGDBF with

S = 4Z and p0 = 0.7 (please refer to [17, 23] for details of S and p0, respectively) and hence

shows a coding gain of 2.5 as compared to the LFSR-PGDBF. The improvement in the perfor-

mance is due to the fact that the MS-IC-APP algorithm works on the soft-decision LLRs from

the channel instead of hard-decision bits from the receiver for BSC in case of GDBF, PGDBF

and VNSA-PGDBF. The MS-IC-APP algorithm performance is low as compared to the MS

algorithm as reasoned in section 2.2. However, at low values of cross-over probability, the aver-

age number of iterations for the MS-IC-APP is very low (as given in Table 1, average iterations

is 1.39 at a FER of 1×10−5) and therefore, the performance becomes close to MS algorithm as

shown in the figure. The performance is even better for the cross-over probability of 0.01

which shows the good error correction performance of MS-IC-APP.

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 9 / 12

https://doi.org/10.1371/journal.pone.0249269


6. Conclusion

In this work, we analyzed the low complexity variant of a different class of LDPC code decod-

ing algorithm called the MS-IC-APP algorithm. We proposed an area-efficient and high

throughput hardware implementation of the MS-IC-APP algorithm. We used the lay-ered

scheduling of the MS-IC-APP in order to eliminate the CTV message memory and also per-

formed some other optimizations in the hardware in order to optimize the area-efficiency of

the decoder. The layered scheduling also results in increasing the throughput of the decoder.

We presented the synthesis and simulation results of the proposed decoder for a (648,1296)

regular QC-LDPC code and compared the results with the state of the art implementations of

hard-decision BF algorithms and the standard MS algorithm for the same code. Results show

that the proposed implementation has 6.5 times less area and 4 times high throughput as com-

pared to the layered MS implementation, whereas, the area and throughput is comparable to

the LFSR-PGDBF implementation. The simulation results show that the layered MS-IC-APP

achieves a coding gain of 2.5 at a FER of 1×10−8 over the LFSR-PGDBF.

Supporting information

S1 Algorithm. MATLAB code to generating the (648,1296) matrix by using QC-LDPC

matrix.

(DOCX)

Fig 6. Comparison of error correction performance of layered MS-IC-APP algorithm with state of the art implementations for

(648,1296) QC-LDPC code.

https://doi.org/10.1371/journal.pone.0249269.g006

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249269.s001
https://doi.org/10.1371/journal.pone.0249269.g006
https://doi.org/10.1371/journal.pone.0249269


Acknowledgments

The authors would like to thanks the Director General, National Institute of Electronics (NIE),

for giving permission to use the IC Design Center in NIE. The authors would also like to

thanks the staff of IC Design Center for their support and guidance to use the synthesis tool.

Author Contributions

Conceptualization: Hasnain Raza, Syed Azhar Ali Zaidi.

Data curation: Hasnain Raza.

Formal analysis: Hasnain Raza, Aamir Rashid.

Investigation: Hasnain Raza.

Methodology: Hasnain Raza.

Software: Hasnain Raza, Syed Azhar Ali Zaidi.

Supervision: Syed Azhar Ali Zaidi, Shafiq Haider.

Validation: Hasnain Raza.

Visualization: Hasnain Raza.

Writing – original draft: Hasnain Raza, Syed Azhar Ali Zaidi.

Writing – review & editing: Syed Azhar Ali Zaidi, Shafiq Haider.

References
1. Gallager RG. Low-density parity-check codes. IRE Trans Information Theory. 1962; 8(1): 21–28.

https://doi.org/10.1109/TIT.1962.1057683

2. MacKay DJC, Neal RM. Near Shannon limits performance of low-density parity-check codes. Electron

Lett. 1996; 32(18):1645. https://doi.org/10.1049/el:19961141

3. OHTSUKI T. LDPC Codes in Communications and Broadcasting. IEICE Trans on Communications.

2007; E90-B(2):440–453. https://doi.org/10.1093/ietcom/e90-b.3.440

4. Zaidi SAA, Tuoheti A, Martina M, Masera G. FPGA Accelerator of Algebraic Quasi Cyclic LDPC Codes

for NAND Flash Memories. IEEE Design & Test. 2016; 33(6):77–84. https://doi.org/10.1109/MDAT.

2015.2497322

5. Fossorier MPC, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity

check codes based on belief propagation. in IEEE Transactions on Communications 1999 May. 47

(5):673–680. https://doi.org/10.1109/26.768759

6. Chen J, Fossorier MPC. Density evolution for two improved BP-Based decoding algorithms of LDPC

codes. IEEE Communications Letters 2002 May. 6(5):208–210. https://doi.org/10.1109/4234.1001666

7. Chen J, Fossorier MPC. Near optimum universal belief propagation based decoding of LDPC codes

and extension to turbo decoding. Proceedings of IEEE International Symposium on Information Theory

(IEEE Cat.No.01CH37252); 2001 june 29–29; Washington, DC, USA, 2002. https://doi.org/10.1109/

ISIT.2001.936052

8. Kschischang FR, Frey BJ. Iterative decoding of compound codes by probability propagation in graphical

models. IEEE Journal on Selected Areas in Communications. 1998; 16(2): 219–230.

9. Hocevar DE. A reduced complexity decoder architecture via layered decoding of LDPC codes. IEEE

Workshop on Signal Processing Systems; 2004 Oct 13–15; Austin, TX, 2004: 107–112. https://doi.org/

10.1109/SIPS.2004.1363033

10. Nguyen-Ly TT, Gupta T, Pezzin M, Savin V, Declercq D, C Sorin. Flexible, Cost-Efficient, High-

Throughput Architecture for Layered LDPC Decoders with Fully-Parallel Processing Units. Euromicro

Conference on Digital System Design (DSD); 2016 Sep; Limassol, 2016. https://doi.org/10.1109/DSD.

2016.33

11. Boncalo O, Kolumban-Antal G, Amaricai A, Savin V, Declercq D. Layered LDPC Decoders With Effi-

cient Memory Access Scheduling and Mapping and Built-In Support for Pipeline Hazards Mitigation. In

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 11 / 12

https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1049/el%3A19961141
https://doi.org/10.1093/ietcom/e90-b.3.440
https://doi.org/10.1109/MDAT.2015.2497322
https://doi.org/10.1109/MDAT.2015.2497322
https://doi.org/10.1109/26.768759
https://doi.org/10.1109/4234.1001666
https://doi.org/10.1109/ISIT.2001.936052
https://doi.org/10.1109/ISIT.2001.936052
https://doi.org/10.1109/SIPS.2004.1363033
https://doi.org/10.1109/SIPS.2004.1363033
https://doi.org/10.1109/DSD.2016.33
https://doi.org/10.1109/DSD.2016.33
https://doi.org/10.1371/journal.pone.0249269


IEEE Transactions on Circuits and Systems I: Regular Papers. 2019; 66(4): 1643–1656, April 2019,

https://doi.org/10.1109/TCSI.2018.2884252

12. Ghanaatian R, et al. A 588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing. in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems. 2018; 26(2): 329–340, https://doi.org/

10.1109/TVLSI.2017.2766925

13. Blanksby AJ, Howland CJ. A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder.

IEEE J. Solid-State Circuits. 2002; 37 (3): 404–412.

14. Schläfer P, When N, Alles M, Lehnigk-Emden T. A new dimension of parallelism in ultra high throughput

LDPC decoding. in Proc. IEEE Int. Workshop Signal Process. Syst; 2013. pp. 153–158.

15. Jiang M, Zhao C, Shi Z, Chen Y. An improvement on the modified weighted bit flipping decoding algo-

rithm for LDPC codes. IEEE Communications Letters. 2005; 9(9):814–816. https://doi.org/10.1109/

LCOMM.2005.1506712

16. Wadayama T, Nakamura K, Yagita M, Funahashi Y, Usami S, Takumi I. Gradient descent bit flipping

algorithms for decoding LDPC codes. In 2008 International Symposium on Information Theory and Its

Applications; 2008 Dec 7–10; Auckland; 2008 p. 1–6. https://doi.org/10.1109/ISITA.2008.4895387

17. Le K, Ghaffari F, Declercq D, Vasi´c B. Efficient Hardware Implementation of Probabilistic Gradient

Descent Bit-Flipping. IEEE Transactions on Circuits and Systems I: Regular Papers 2017 April; 64

(4):906–917. https://doi.org/10.1109/TCSI.2016.2633581

18. Kasparis C, Evans BG. Gradient Projection Decoding of LDPC Codes. IEEE Communications Letters.

2007 March; 11(3):279–281. https://doi.org/10.1109/LCOMM.2007.061780

19. Kasparis C, Beaudonnet M, Gyftodimos E, Evans BG. Gradient projection decoding of LDPC codes

and algorithmic variations. in IET Communications. 2010 January; 4(2):223–233. https://doi.org/10.

1049/iet-com.2009.0094

20. Wey C, Shieh M, Lin S. Algorithms of Finding the First Two Minimum Values and Their Hardware Imple-

mentation. IEEE Transactions on Circuits and Systems I: Regular Papers. 2008 Dec; 55(11):3430–

3437. https://doi.org/10.1109/TCSI.2008.924892

21. Dennard RH, Gaensslen FH, Yu H, Rideout VL, Bassous E, LeBlanc A.R. Design of ion-implanted

MOSFET’s with very small physical dimensions. in IEEE Journal of Solid-State Circuits. 1974 Oct; 9(5):

256–268. https://doi.org/10.1109/JSSC.1974.1050511

22. Usman S, Mansour M. An Optimized VLSI Implementation of an IEEE 802.11n/ac/ax LDPC Decoder.

In proceedings of IEEE international Symposium on Circuits and system, ISCAS, Sevilla, Spain 2020.

23. Khoa L.E, Declercq D, Ghaffari F, Kessal L, Boncalo O, Saven V. Variable-Node-Shift Based Architec-

ture for Probabilistic Gradient Descent Bit Flipping on QC-LDPC Codes. IEEE Transactions on Circuits

and Systems. 2018; 65: 2183–2195.

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 12 / 12

https://doi.org/10.1109/TCSI.2018.2884252
https://doi.org/10.1109/TVLSI.2017.2766925
https://doi.org/10.1109/TVLSI.2017.2766925
https://doi.org/10.1109/LCOMM.2005.1506712
https://doi.org/10.1109/LCOMM.2005.1506712
https://doi.org/10.1109/ISITA.2008.4895387
https://doi.org/10.1109/TCSI.2016.2633581
https://doi.org/10.1109/LCOMM.2007.061780
https://doi.org/10.1049/iet-com.2009.0094
https://doi.org/10.1049/iet-com.2009.0094
https://doi.org/10.1109/TCSI.2008.924892
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1371/journal.pone.0249269

