PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Raza H, Zaidi SAA, Rashid A, Haider S
(2021) An area efficient and high throughput
implementation of layered min-sum iterative
construction a posteriori probability LDPC decoder.
PLoS ONE 16(3): €0249269. https:/doi.org/
10.1371/journal.pone.0249269

Editor: Saeed Mian Qaisar, Effat University, SAUDI
ARABIA

Received: January 5, 2021
Accepted: March 16, 2021
Published: March 29, 2021

Copyright: © 2021 Raza et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
files.

Funding: The author(s) received no specific
funding for this work. Hasnain Raza(methodology,
software/Hardware, Conceptualization, Write
original draft and implementation) Syed Azhar Ali
Zaidi (Supervision, help in methodology, help in
writing original draft, review and editing the draft)
Aamir Rashid and Shafiq Haider(Formal analysis
and review the article).

RESEARCH ARTICLE

An area efficient and high throughput
implementation of layered min-sum iterative
construction a posteriori probability LDPC
decoder

Hasnain Raza@) *, Syed Azhar Ali Zaidi, Aamir Rashid, Shafiq Haider

Electronics Engineering Department, Faculty of Electronics and Electrical Engineering, University of
Engineering and Technology, Taxila, Pakistan

* Hasnain.raza8084 @ gmail.com

Abstract

Area efficient and high speed forward error correcting codes decoder are the demand of
many high speed next generation communication standards. This paper explores a low
complexity decoding algorithm of low density parity check codes, called the min-sum itera-
tive construction a posteriori probability (MS-IC-APP), for this purpose. We performed the
error performance analysis of MS-IC-APP for a (648,1296) regular QC-LDPC code and pro-
posed an area and throughput optimized hardware implementation of MS-IC-APP. We pro-
posed to use the layered scheduling of MS-IC-APP and performed other optimizations at
architecture level to reduce the area and to increase the throughput of the decoder. Synthe-
sis results show 6.95 times less area and 4 times high throughput as compared to the stan-
dard min-sum decoder. The area and throughput are also comparable to the improved
variants of hard-decision bit-flipping (BF) decoders, whereas, the simulation results show a
coding gain of 2.5 over the best implementation of BF decoder in terms of error
performance.

1. Introduction

Low density parity check (LDPC) codes [1,2] are used in many communication systems [3]
and are also of particular interest in data storage systems [4] due to their excellent error correc-
tion capability. With the increasing demand of high data rates in next generation communica-
tion systems, it is required to implement a very high speed decoder that should also meet the
area and power requirements of the communication standard. Because of the inherent parallel-
ism in their encoding and decoding algorithms, it is possible to implement a very high
throughput encoder and decoder of LDPC codes. The low complexity variants of the soft-deci-
sion iterative message passing belief propagation (BP) algorithm, such as min-sum (MS) [5],
offset min-sum [6] and scaled min-sum [7], are usually the choice of hardware implementation
because of their excellent error correction performance close to the Shannon limit. Two types
of scheduling are used in all these message passing algorithms namely, flooding schedule [8]

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021

1/12

https://orcid.org/0000-0002-8822-6754
https://doi.org/10.1371/journal.pone.0249269
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249269&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1371/journal.pone.0249269
https://doi.org/10.1371/journal.pone.0249269
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

Competing interests: The authors have declared
that no competing interests exist.

and layered scheduling [9] depending upon how messages are propagated between the check
nodes and variable nodes of the parity check matrix. In the flooding schedule, the check nodes
and the variable nodes compute their messages subsequently in each iteration. Whereas, in lay-
ered scheduling the rows of parity check matrix is divided into layers and the messages passed
by the check nodes are immediately used to update the log likelihood ratios (LLRs) variable
nodes within the processing of one layer. Therefore, the processing of next sequential layer
uses the update values of LLRs. The number of iterations are reduced to half in layered sched-
uling as compared to flooding schedule which helps in the implementation of high speed
decoders.

Many prior works have implemented high speed LDPC decoders based on the low com-
plexity variants of BP algorithm. The main challenge in these implementations is the selection
of parallelism in order to meet the area and throughput requirements of the communication
standard, design of the routing network, the placement of data in memories in order to avoid
the memory conflicts during the read and write of check node and variable node messages,
and dealing with the pipeline hazards in the pipelined layered architecture of LDPC codes. In
[10], a block level parallel architecture for quasi-cyclic (QC) LDPC codes is implemented,
where, all the rows in a layer are processed in parallel. The variable node and check node pro-
cessors are optimized and a flexible routing network is used between the LLR memory and the
processors in order to adapt the architecture to various parity check matrices. The routing net-
work is implemented with the help of barrel shifters, where, the shift factors are stored in a
memory. The authors in [11] have implemented pipelined layered decoder architecture for
QC-LDPC codes. A high throughput is achieved by implementing a flexible partially parallel
decoder supporting different parallelism factors and a routing network supporting different
matrices. Single port memory banks are used and an offline algorithm is used to organize the
messages in these memory banks in order to avoid memory access conflicts for processing
large number of rows in parallel. Similarly the offline algorithm is used to relax the messages
read access constraints in order to avoid the read after write hazard in the pipelined architec-
ture. Many works have implemented a fully parallel and unrolled LDPC decoder architecture
[12-14]. In a fully parallel unrolled decoder architecture is implemented with a throughput of
588 Gbps for high speed optical and Ethernet networks. However, these fully parallel and ultra
high throughput decoders are implemented at the expense of large area.

Another class of decoding algorithms called the hard-decision algorithms result in very low
complexity decoders but at the cost of reduced error correction performance. Among the
hard-decision algorithms are the bit-flipping (BF) algorithms and the majority-logic decoding
algorithm. Many researchers have proposed changes in these hard-decision algorithms in
order to improve the error correction performance and to maintain a reasonable hardware
complexity [15-17]. However, the error correction performance of these algorithms is still low
as compared to the MS algorithm, especially, at low frame error rate.

In this paper, we have analyzed another class of decoding algorithm called the Gradient-
Projection (GP) decoding of LDPC codes proposed by Kasparis and Evans in [18]. The GP
decoding algorithm is based on formulating a non-linear multimodal objective function,
which include all the parity check constraints, and then finding the global minimum of this
objective function by using the gradient projection method. The authors also proposed the var-
iations of GP decoding algorithm in [19], called the Iterative Construction of A Posteriori
Probability (IC-APP) and MS-IC-APP (min-sum variant) decoder, which results in reducing
the complexity of the GP decoder and at the same time linked the GP algorithm with the BP
algorithm and its low complexity variants. The authors showed that the GP algorithm and its
variants perform close to the MS algorithm, especially, for geometry-based LDPC codes. In
this paper, we have used the MS-IC-APP algorithm for the decoder implementation. We

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 2/12

https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

analyzed the performance of MS-IC-APP for a regular quasi-cyclic (QC) LDPC code and com-
pared the performance with MS algorithm and the improved variants of the hard-decision BF
algorithms. We implemented an area optimized and high throughput hardware of the MS-I-
C-APP decoder. In this regard, we also proposed to use the layered version of the MS-IC-APP
algorithm (similar to the layered MS decoding proposed in [9]), which results in the elimina-
tion of the check-to-variable (CTV) message memory, and therefore, results in large area sav-
ings. The permutation unit in our proposed implementation is optimized by replacing the
large barrel shifters with multiplexers at the input of a single check node processor. This results
in further reducing the area and shortening the critical path, thus, increasing the frequency
and the throughput of the decoder. Simulation and implementation results show better error
correction performance of the layered MS-IC-APP algorithm, especially, at low frame error
rate and comparable hardware complexity as compared to the hard-decision BF algorithms.

The rest of the paper is organized as follows: Section 2 gives the introduction about the
LDPC codes and presents the algorithm of layered MS-IC-APP. Section 3 gives the simulation
results of the layered MS-IC-APP algorithm for a (648,1296) regular QC-LDPC code. The pro-
posed hardware architecture of the layered MS-IC-APP decoder is discussed in Section 4. Sec-
tion 5 gives the synthesis and simulation results of the layered MS-IC-APP algorithm for (648,
1296) regular QC-LDPC code and shows the comparison of the results with the state of the art
implementations. Section 6 concludes the paper.

2. Background
2.1. LDPC codes

A binary LDPC code is described by a sparse parity check matrix, H, having dimension MxN,
where, N>M. A valid codeword X of N bits should satisfy H - x”, where x”, denotes the trans-
pose of x. The codeword r received from the channel could have an error whose probability
depends upon the underlying communication channel. E.g. for a binary symmetric channel
(BSC), the crossover probability, B, shows the number of bits that are likely to be flipped in the
transmitted code-word x. In this paper, we have used the BSC for performance evaluation and
decoder implementation. The number of 1’s in a row and column of H is called the row and
column degree, respectively. A regular parity check matrix has equal number of 1’s in all the
rows/columns, whereas, an irregular matrix has variable degree across different rows/columns.
The parity check matrix is also categorized as structured or unstructured depending upon
whether it has a regular structure or not. The QC-LDPC codes are a class of structured LDPC
codes, where, the parity check matrix consists of M,xN,, array of ZxZ circulant permutation
sub-matrices. The number of 1’s in a row or a column of a circulant sub-matrix, 6; , is the
weight of the sub-matrix. The weight w of the sub-matrix can be 0, 1 or higher and therefore,
the sub-matrix can be either a zero matrix, cyclically shifted identity matrix or multiple inde-
pendent cyclically shifted identity matrices superimposed in a sub-matrix, respectively. The
regular structure of LDPC codes result in a simplified architecture of the encoder and decoder.
The parity check matrix is represented graphically with the help of a bi-partite Tanner graph.
The Tanner graph consists of N variable nodes (VNs) (which correspond to the columns of H)
and M check nodes (CNs) (which correspond to the rows of H), where, the connection
between a VN and CN denotes that the entry in the corresponding row and column of H is
equal to 1.

2.2. MS-IC-APP algorithm

As mentioned in the previous section, we have used the low complexity min-sum variant of
the IC-APP algorithm, proposed in [19], called the MS-IC-APP algorithm. Similar to BP,

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 3/12

https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

messages are exchanged between VNs and CNs in MS-IC-APP for gradually updating the reli-
ability values of the VNs towards correct values. The horizontal layered scheduling of the
MS-IC-APP algorithm is described in Algorithm 1. The following notations are used in this
algorithm:

o L, is the a-priori log-likelihood ratio (LLR) computed from the bits r; received from the

P (x=1]r)

channel given as log (W)

. ygjk) is the CTV message given by the ith CN to the jth VN in the kth iteration.

o N(i) is the set of VNs connected to the ith CN and N(7)\j is the set of VNs connected to the
ith CN except VN j.

. r,?jk) and R](k) denote the variable to check (VTC) message from the VN j to CN 7 and the a pos-
teriori LLR of VN j at kth iteration, respectively.

Algorithm 1: Layered MS-IC-APP decoding algorithm.
1. Initialization:

v VN;, j€{1,...,N} do RJ@):gj

2. Check node processing:
vV CN;, i€{l,...,M} and V VN;, jE€{1,...,N} do.

(k) _ pl=1)
ri =R (1)
No ¢ ®
Vim = Hj’eN(i)\jsgn{rzj’} X j’en&(li),rij ‘rij’ | x o (2)
() _ (k) (k)
R™ =1 +y; (3)
Estimated code-word is X = (%,,%,,...,%y), where element Xj is calculated

as:

R 0if R¥ >0
xj—{ ! (4)

1 else

If HX" = 0 then stop, with correct code-word X, otherwise go to the
step 2.

From Algorithm 1, we can see that in each iteration k, the LLRs are directly given to the
CNs as VT'C messages as compared to the standard min-sum algorithm in which the VIC
message is computed as: r¥ = R;k) — yfj]H) This modification in the MS-IC-APP algorithm
results in reduction of hardware as compared to the MS algorithm but at the cost of reduced
error correction performance. In order to further reduce the area, we have used the layered
version of the MS-IC-APP algorithm in this work instead of flooding schedule. In the layered
algorithm, the M rows of H are divided into L different layers, where, each layer consists of N,
= M/L rows. The layers are processed sequentially and all the rows in a layer are processed in
parallel. During the processing of a layer, all the computed CTV messages are used to update
the LLRs of the corresponding VNG, as given in Eq 3, and therefore, the next sequential layer
uses the updated LLRs of VNs. The modification of VTC message and the layered scheduling
results in the elimination of CTV message memory in MS-IC-APP and therefore, results in
large reduction of the area of decoder. The number of iterations in the layered algorithm
reduces to half and therefore, results in doubling the throughput of the decoder as compared

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 4/12

https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

[49 -1
-1 -1
-1 -1
-1 20
10 -1

-1 -1 43 -1 -1 -1 -1 50 -1 -1 -1 - 2 -1 27 -1 -1 -1 -1 -1 49

0 41 -1 -1 -1 -1 52 -1 -1 3% -1 -1 -1 -1 -1 5 -1 50 -1 -1 -1

-1 -1 -1 -l 20 -1 -1 —1 51 -1 0 -1 -1 47 -1 -1 -1 -1 -1 33 -1

-1 -1 -1 22 -1 53 -1 -1 -1 -1 -1 31 -1 -1 -1 -1 18 -1 47 -1 -1

-1 5 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 53

4 -1 -1 6 -1 -1 -1 -1 -1 29 -1 40 -1 -1 6 13 -1 -1 13 -1 -1 -1
-1 -1 -1 -1 -1 13 41 -1 -1 -1 -1 -1 42 -1 -1 -1 -l 48 -1 49 -1 -1
%6 -1 -1 24 -1 -1 f -1 -1 12 -1 -1 -1 -1 -1 10 -1 -1 - 48 -1

-1 50 -1 -1 -1 -1 -1 0o -1 -1 -1 -1 9 -1 7 -1 -1 -1 -1 -1 28

-1 -1 -1 5 -1 -1 -1 -1 13 -1 3 -1 -1 29 -1 -1 -l 16 -1 -1 -1

35 - 16 -1 -1 37 -1 -1 -1 4 -1 -1 -1 - -1 24 -1 -1 - 29 -1

-1 - -1 -1 51 -1 38 -1 -1 -1 -1 6 -1 - -1 - 23 -1 16 -1 -1

Fig 1. Base matrix of (648,1296) regular QC-LDPC code with a column and row degree of 3 and 6, respectively.
https://doi.org/10.1371/journal.pone.0249269.9001

to the flooding schedule. In this work, we have implemented the LDPC decoder hardware of a
(3,6) regular QC-LDPC code described by a base matrix of size M,xN,, = 12x24, and expansion
factor Z = 54, relating to a parity check matrix of dimension MxN = 648x1296.

The base matrix is shown in Fig 1. The base matrix is divided into three layers, where, each
layer consists of 4 rows of circulants i.e. 4x54 = 216 rows of H. There are six cyclically shifted
identity sub-matrices, represented by non-negative entries, in each row of the base matrix,
where, the non-negative number shows the corresponding shift factor. We denote these sub-
matrices with Co_L, where, s = 1:4 shows the corresponding row of circulants in a layer p, and
t = 1:6 shows the corresponding non-negative column of circulant in a row s.

3. Layered MS-IC-APP error-correction performance

We performed the monte carlo simulations for analyzing the error correction performance of
(648,1296) QC-LDPC code at different number of quantization bits of LLRs. For this purpose,
a simulator of the whole communication system with QC-LDPC code encoder, decoder and
the BSC is implemented in C. For the binary symmetric channel, a 32-bit linear feedback shift
register (LFSR) is implemented and the random values produced by the LFSR are divided by
the maximum value of LFSR i.e. 2>* and then the result is compared with the value of BSC
crossover probability 8. These noise bits with the probability of 1 as 8 is XORed with the bits
sent from the transmitter.

The parameters for the simulations are set as follows: We used q bits for £; and Q = q+1 bits
for R;. We measured the value of frame error rate (FER) at different values of 8, where, a total
of 1x107 frames are simulated for each value of 8 and the simulations are stopped when 100
wrong frames are measured at a particular value of 8. The maximum number of iterations is
set as 20. The scaling factor alpha o< = 0.5 is used. Fig 2 shows the simulation results of
(648,1296) QC-LDPC code using different values of g in layered MS-IC-APP. The simulation
results for the floating point implementation and the flooding schedule of MS-IC-APP for
q =7 are also given for comparison purposes. As the number of rows in the chosen layers of
the base matrix to be processed in parallel does not contain two 1’s in a single column, there-
fore, there is no degradation in the performance of layered schedule as compared to the flood-
ing schedule. This is evident from the figure for the case of g = 7. From the figure we can see
that the performance increases slightly with the increases in number of quantization bits. E.g.
there is a difference of 8 = 0.005 approximately at a FER of 1x10° between g = 5and q = 7.
The figure also shows that the results of g = 7 and q = 8 are very close to each other.

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 5/12

https://doi.org/10.1371/journal.pone.0249269.g001
https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

10° 7 e 20 T T T T T T
—#— Layered Schedule gq=5 g +* Layered Schedule q=5
~——©—— Layered Schedule q=6 18+ Layered Schedule q=6 b
—— Layered Schedule q=7 —— Layered Schedule q=7
—k— Layered Schedule q=8 161 Layered Schedule q=8 i
10k Floating point i ~—&—— Flooding schedule q=7
Flooding schedule q=7 —#— Floating Point
T o 141 b
w c
v 2
2 S 121 b
& £
5107F E o
g g 10F 5
i g
[
<
w
103F 3 6 g
/] |
2F - 4
a4l 0 i #
10 3¢ 1 I 1 I I I
102 107 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

BSC Crossover Probability

BSC Crossover Probability

Fig 2. Simulation results of MS-IC-APP for (648,1296) QC-LDPC code with different number of quantization bits of LLRs. (a) Frame error rate (b) Average

numbers of Iterations.

https://doi.org/10.1371/journal.pone.0249269.9002

4. Hardware architecture of layered MS-IC-APP algorithm

The overall block diagram of the proposed MS-IC-APP decoder hardware for (648,1296) regu-
lar QC-LDPC code is shown in Fig 3. The register bank is used to store the a-priori LLRs
received from the channel and the updated a-posteriori LLRs received from processing units
in each iteration. The register bank consists of 24 registers, where, each register is an array of
flip-flops for storing the corresponding 54 LLRs of 1 column of circulants. There are four Pro-
cessing Units in the hardware which are responsible for processing all 216 rows of a layer,
where, each processing unit process 1 row of circulants, i.e. 54 rows, in parallel in a layer. The
processing units receive LLRs from the register bank through the permutation units. Similarly,
the updated LLRs from the processing units are given to the register bank through permuta-
tion units.

The permutation units at the input of processing units consists of blocks of MUXes for
selecting the required LLRs corresponding to C,;_L,, for all processing units, and therefore,
total 6 x 54 LLRs are given to 1 processing unit for processing 1 row of circulants in layer p.
These permutation units also rotate the LLRs corresponding to the shift factor of C;,_L,. E.g.

APP_LLRs
Permutation Processing Permutation
Unit-1 Unit-1 Unit-1
Permutation Processing Permutation
Unit-2 Unit-2 Unit-2
Register
. (I
. . Bank
Permutation Processing .
Unit-3 Unit-3 .
.
.
Permutation Pr ""e.s"i"g Permutation
Unit-4 Unit-4 Unit-24

Fig 3. Top level block diagram of the decoder.
https://doi.org/10.1371/journal.pone.0249269.g003

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021

6/12

https://doi.org/10.1371/journal.pone.0249269.g002
https://doi.org/10.1371/journal.pone.0249269.g003
https://doi.org/10.1371/journal.pone.0249269

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

Register Bank

Processing Unit

CNP-1 CNP-2 s CNP-54

From Other Processing Units

-
6xe(/)_J/ 6xe(/2J/ 6xe9J/
. ' !

6xZxQ

Permutation
Units
24xZxQ

Register Bank

Fig 4. Detailed data flow diagram for processing 1 row of circulants in a layer.

https://doi.org/10.1371/journal.pone.0249269.9004

for Cy;_Lo = 49, a left rotation of 49 is performed on the first set of Z LLRs given to the first
processing unit in layer 0. Fig 4 shows the case of processing 1 row of circulants in a layer. In
this figure, a single permutation unit is shown at the output of register bank. There are 6 blocks
of MUXes in a permutation unit i and each block consists of Z = 54 MUXes. These blocks of
MUZXes select and rotate 6 set of Z LLRs for the processing unit corresponding to the processed
layer p, where, p = 0 to 2. Similarly, there are 24 permutation units at the input of the register
bank, where, each permutation unit consists of a block of 54 MUXes for rotating and selecting
the correct updated LLRs for each register from the processing units.

The processing unit consists of 54 check node processors (CNPs) which process the whole
row of circulants i.e. 54 rows in parallel. Each CNP receives 6 LLRs from the permutation unit
as VTC messages, compute the CTV messages and output the updated value of these LLRs by
adding the CTV messages with the corresponding LLRs. The internal architecture of CNP is
shown in Fig 5. There are 6 units in CNP for converting the corresponding LLRs of VNs into

_’)Dgn_cln
Sgnctv,
D
. -
.
b A Sgn_cty,
Sgn_ctyg
Sgn_LLR, >/ >
Q i<
LLRy—7 2's-sm1 |mag.LLR,
.
. SPU I)
s 8 .
LLR Q Lol SeatLin cry
LLRy 2's-sm2
r—f -8 mag-LLR, (> @_Q/—»upd-l,l.kx
LLR,

. . CTV, e
Y Zp upd-LLR;
e inl Concatenation wf/ P
. . min <
.
.

Unit s .
.
Sgn_LLR, o i - -
L LR«ﬁQ/ 2'ssm6 : mintind i i Q
) Lt 2'S-S -
mag-LLR, . ind-minl LR & P apdlER

Fig 5. Architecture of a Check Node Processor (CNP).
https://doi.org/10.1371/journal.pone.0249269.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 7/12

https://doi.org/10.1371/journal.pone.0249269.g004
https://doi.org/10.1371/journal.pone.0249269.g005
https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

sign-magnitude format. The SPU block is then used to find the product of all the signs of LLRs
and the min_ind block is used to find the first two minimums and the index of the first mini-
mum from the absolute values of LLRs. The tree like architecture for finding the first two mini-
mums and index of first minimum as proposed in [20] is used for the min_ind block. The
XOR gates are used to exclude the sign of each LLR from the sign product in order to compute
the final sign of each CTV message, denoted as sgn_ctv;, where, i = 1:6. The concatenation
block receives all the signs of CTV messages, the first two minimums and the index of the first
minimum. The minimum values are then scaled by the scaling factor . The concatenation
block computes the magnitude of all CTV messages by comparing the index of first minimum
with the index of each LLR and gives 2nd minimum as magnitude of CTV message for the
LLR whose index is equal to the index of the first minimum, whereas, the first minimum is
given to the rest. The concatenation unit gives CTV messages as output (denoted as CTV1 to
CTV6 in Fig 5) by combining the sign of each CTV message with the magnitude and convert-
ing it to the 2’s compliment format. The CTV messages are then added to the corresponding
LLRs and quantized to Q bits. These updated LLRs from all CNPs are then given to the permu-
tation unit for rotating and then storing in the correct register in the register bank. As men-
tioned in the previous section, we have employed layered decoding of MS-IC-APP algorithm.
Due to the layered decoding, all the CTV messages are used in the current iteration for updat-
ing the LLRs and are not required in the subsequent iteration. Therefore, the CTV message
memory is eliminated in the proposed hardware which results in large area saving of the
decoder.

5 Hardware implementation and simulation results

The architecture of layered MS-IC-APP decoder, as described in the previous section, is imple-
mented using Verilog HDL. We used 7 bits for the intrinsic information from the channel i.e.
a priori LLRs and 8 bits for the a-posteriori LLRs. The bits are chosen based on the simulation
results given in section 3. The Verilog Model is synthesized by targeting the 90 nm CMOS
standard cell library and using Leonardo Spectrum tool from Mentor Graphics. The synthe-
sized area, maximum achieved frequency of the decoder after synthesis and the throughput at
a particular FER is shown in Table 1. The throughput of the hardware is calculated based on

Table 1. Area and throughput comparison with state of the art implementations for (648, 1296) QC-LDPC code.

GDBEF [17]
LSFR-PGDBEF S =4Z [17]*
IVRG-PGDBF S =4Z [17]*

MS [10]
VNSA-PGDBF p0 = 0.7 [23]**
VNSA-IM-PGDBF p0 = 0.7 [23]**
Layered MS [22]***

This work

Area (mm?) (technology) | Area (mm?) (scale d to 90nm) | £, (MHZ) | Naicer TP(Gbps) @ 1x107> FER | TAR Gbps/mm2

0.088 (65nm) 0.17 160.28 1 103.97 (Navg_iter = 2.00) 611.59
0.10 (65nm) 0.19 168.95 1 62.17 (Navg_iter = 3.50) 327.21
0.093 (65nm) 0.18 168.95 1 62.17 (Navg_iter = 3.50) 345.39
0.72 (65nm) 1.38 180.56 6 16.66 (Navg_iter = 2.34) 12.07
0.32 (90nm) 0.32 370 1 99.3 (Navg_iter = 4.83) 310.31
0.29 (90nm) 0.29 400 1 81.3 (Navg_iter = 6.38) 280.34
0.85 (40nm) 4.30 249.78 - 1.69-5.067 0.39-1.18
0.188 (90nm) 0.188 220 3 68.37 (Navg_iter = 1.39) 363.67

*S is register size of random sequence generator and its size, taken as integer multiples of circulant size Z, effect the hardware complexity and the performance of

PGDBF.

**p0 and (1-p0) are the functions of type-1 and type-2 VNUs in VNSA through which the random sequence generator function of PGDBF is implemented in VNSA,

therefore, removing the need of random sequence generator.
***The hardware implementation supports three different frame lengths, FL = 648, 1296 and 1944, used in the IEEE 802.11 n/ac/ax.

https://doi.org/10.1371/journal.pone.0249269.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 8/12

https://doi.org/10.1371/journal.pone.0249269.t001
https://doi.org/10.1371/journal.pone.0249269

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

the following formula:

fmax XN
N, X Nclk/iters

avg_iters

TPdec =

where, Noyg iter is the average number of iterations for decoding 1 frame and Nz, is the
number of clocks for completing 1 iteration of the decoder.

For comparison purpose, we have also given the results of the hardware implementation of
the same QC-LDPC code from the prior state of the art works in Table 1, where, both the MS
and the improved variations of the BF algorithm are included. The results of the previous
hardware implementations are scaled to 90 nm technology for fair comparison. The area and
frequency are scaled by the factor 1/K* and K, respectively, where K is the ratio of two different
technologies [21]. From the table we can see that the area efficiency of the proposed hardware
is very high as compared to the layered MS implementation in [10] and [22]. whereas, the area
of the proposed decoder is also comparable to the improved variants of the hard-decision BF
algorithm. Due to a high achieved frequency and reduced average iterations of MS-IC-APP
algorithm, the throughput measured at a FER of 1x107 is 68.37 Gbps which is 4 times as com-
pared to the MS decoder in [10]. The throughput is also high as compared to the PGDBF algo-
rithm, which is the best available implementation of the improved BF algorithm in terms of
error performance. The authors in [23] have proposed a variable-node-shift architecture
(VNSA) based approach for implementing the PGDBF algorithm. Their implementation
results in a high throughput hardware, however, with an increase in the area as compared to
the implementations in [17]. We have also given the throughput to area ratio (TAR) in the last
column of Table 1. Apart from GDBF algorithm, the proposed implementation has the highest
TAR as compared to the PGDBF and MS implementations. These results show the high area-
efficiency and throughput performance of the proposed implementation.

For comparing the error performance of the layered MS-IC-APP algorithm, we have given
the FER results of the proposed and state of the art implementations in Fig 6. The result of the
proposed decoder is given for g = 7 bits and a scaling factor o< = 0.5. From the figure we can
see that the layered MS implementation has the best error correction performance, whereas,
the GDBF performance is low than all other algorithms. From the figure we can see that the
layered MS implementation has the best error correction performance, whereas, the GDBF
performance is low than all other algorithms. The MS-IC-APP algorithm error performance is
close to the LESR-PGDBEF algorithm till FER of 1x10™% whereas, at low FERs the performance
of the MS-IC-APP algorithm is better than the LFSR-PGDBF and IVRG-PGDBF. E.g. there is
a difference of § = 0.006 at a FER of 1x10~® between MS-IC-APP and LESR-PGDBF with
S =4Zand p0 = 0.7 (please refer to [17, 23] for details of S and p0, respectively) and hence
shows a coding gain of 2.5 as compared to the LESR-PGDBF. The improvement in the perfor-
mance is due to the fact that the MS-IC-APP algorithm works on the soft-decision LLRs from
the channel instead of hard-decision bits from the receiver for BSC in case of GDBF, PGDBF
and VNSA-PGDBF. The MS-IC-APP algorithm performance is low as compared to the MS
algorithm as reasoned in section 2.2. However, at low values of cross-over probability, the aver-
age number of iterations for the MS-IC-APP is very low (as given in Table 1, average iterations
is 1.39 at a FER of 1x10~°) and therefore, the performance becomes close to MS algorithm as
shown in the figure. The performance is even better for the cross-over probability of 0.01
which shows the good error correction performance of MS-IC-APP.

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 9/12

https://doi.org/10.1371/journal.pone.0249269

PLOS ONE An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

100 ' SRR R CEE EEE Y
i GDBF
; IVRG-PGDBF, S=4Z 1
107 F | —%— LFSR-PGDBF, S=4Z, p0=0.5 3
i LFSR-PGDBF, S=4Z, p0=0.7]
2| O— MS i
10°F | —o— ms-C-APP, @=05
= | —#%— VNSA-IM-PGDBF, p0=0.7 .
I o3k VNSA-PGDBF, p0=0.7 i
= g]
©
o -]
5 10 ;
b E]
w ;]
()
5L _
5107
(18 r J
100 F E
107 ¢ E
108 ' «————20 ' —
103 102 107

BSC Crossover Probablity

Fig 6. Comparison of error correction performance of layered MS-IC-APP algorithm with state of the art implementations for
(648,1296) QC-LDPC code.

https://doi.org/10.1371/journal.pone.0249269.9006

6. Conclusion

In this work, we analyzed the low complexity variant of a different class of LDPC code decod-
ing algorithm called the MS-IC-APP algorithm. We proposed an area-efficient and high
throughput hardware implementation of the MS-IC-APP algorithm. We used the lay-ered
scheduling of the MS-IC-APP in order to eliminate the CTV message memory and also per-
formed some other optimizations in the hardware in order to optimize the area-efficiency of
the decoder. The layered scheduling also results in increasing the throughput of the decoder.
We presented the synthesis and simulation results of the proposed decoder for a (648,1296)
regular QC-LDPC code and compared the results with the state of the art implementations of
hard-decision BF algorithms and the standard MS algorithm for the same code. Results show
that the proposed implementation has 6.5 times less area and 4 times high throughput as com-
pared to the layered MS implementation, whereas, the area and throughput is comparable to
the LESR-PGDBF implementation. The simulation results show that the layered MS-IC-APP
achieves a coding gain of 2.5 at a FER of 1x10~® over the LEFSR-PGDBF.

Supporting information

S1 Algorithm. MATLAB code to generating the (648,1296) matrix by using QC-LDPC
matrix.
(DOCX)

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 10/12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249269.s001
https://doi.org/10.1371/journal.pone.0249269.g006
https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

Acknowledgments

The authors would like to thanks the Director General, National Institute of Electronics (NIE),
for giving permission to use the IC Design Center in NIE. The authors would also like to
thanks the staff of IC Design Center for their support and guidance to use the synthesis tool.

Author Contributions

Conceptualization: Hasnain Raza, Syed Azhar Ali Zaidi.
Data curation: Hasnain Raza.

Formal analysis: Hasnain Raza, Aamir Rashid.

Investigation: Hasnain Raza.

Methodology: Hasnain Raza.

Software: Hasnain Raza, Syed Azhar Ali Zaidi.

Supervision: Syed Azhar Ali Zaidi, Shafiq Haider.

Validation: Hasnain Raza.

Visualization: Hasnain Raza.

Writing - original draft: Hasnain Raza, Syed Azhar Ali Zaidi.
Writing - review & editing: Syed Azhar Ali Zaidi, Shafiq Haider.

References

1. Gallager RG. Low-density parity-check codes. IRE Trans Information Theory. 1962; 8(1): 21-28.
https://doi.org/10.1109/TIT.1962.1057683

2. MacKay DJC, Neal RM. Near Shannon limits performance of low-density parity-check codes. Electron
Lett. 1996; 32(18):1645. https://doi.org/10.1049/el:19961141

3. OHTSUKIT. LDPC Codes in Communications and Broadcasting. IEICE Trans on Communications.
2007; E90-B(2):440-453. https://doi.org/10.1093/ietcom/e90-b.3.440

4, Zaidi SAA, Tuoheti A, Martina M, Masera G. FPGA Accelerator of Algebraic Quasi Cyclic LDPC Codes
for NAND Flash Memories. IEEE Design & Test. 2016; 33(6):77-84. https://doi.org/10.1109/MDAT.
2015.2497322

5. Fossorier MPC, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity
check codes based on belief propagation. in IEEE Transactions on Communications 1999 May. 47
(5):673—-680. https://doi.org/10.1109/26.768759

6. ChenJ, Fossorier MPC. Density evolution for two improved BP-Based decoding algorithms of LDPC
codes. IEEE Communications Letters 2002 May. 6(5):208-210. https://doi.org/10.1109/4234.1001666

7. ChenJ, Fossorier MPC. Near optimum universal belief propagation based decoding of LDPC codes
and extension to turbo decoding. Proceedings of IEEE International Symposium on Information Theory
(IEEE Cat.No.01CH37252); 2001 june 29-29; Washington, DC, USA, 2002. https://doi.org/10.1109/
ISIT.2001.936052

8. Kschischang FR, Frey BJ. lterative decoding of compound codes by probability propagation in graphical
models. IEEE Journal on Selected Areas in Communications. 1998; 16(2): 219-230.

9. Hocevar DE. A reduced complexity decoder architecture via layered decoding of LDPC codes. IEEE
Workshop on Signal Processing Systems; 2004 Oct 13—15; Austin, TX, 2004: 107—112. https://doi.org/
10.1109/SIPS.2004.1363033

10. Nguyen-Ly TT, Gupta T, Pezzin M, Savin V, Declercq D, C Sorin. Flexible, Cost-Efficient, High-
Throughput Architecture for Layered LDPC Decoders with Fully-Parallel Processing Units. Euromicro

Conference on Digital System Design (DSD); 2016 Sep; Limassol, 2016. https://doi.org/10.1109/DSD.
2016.33

11. Boncalo O, Kolumban-Antal G, Amaricai A, Savin V, Declercq D. Layered LDPC Decoders With Effi-
cient Memory Access Scheduling and Mapping and Built-In Support for Pipeline Hazards Mitigation. In

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 11/12

https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1049/el%3A19961141
https://doi.org/10.1093/ietcom/e90-b.3.440
https://doi.org/10.1109/MDAT.2015.2497322
https://doi.org/10.1109/MDAT.2015.2497322
https://doi.org/10.1109/26.768759
https://doi.org/10.1109/4234.1001666
https://doi.org/10.1109/ISIT.2001.936052
https://doi.org/10.1109/ISIT.2001.936052
https://doi.org/10.1109/SIPS.2004.1363033
https://doi.org/10.1109/SIPS.2004.1363033
https://doi.org/10.1109/DSD.2016.33
https://doi.org/10.1109/DSD.2016.33
https://doi.org/10.1371/journal.pone.0249269

PLOS ONE

An area efficient and high throughput implementation of layered MS-IC-APP LDPC decoder

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

IEEE Transactions on Circuits and Systems I: Regular Papers. 2019; 66(4): 1643—1656, April 2019,
https://doi.org/10.1109/TCSI.2018.2884252

Ghanaatian R, et al. A 588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing. in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. 2018; 26(2): 329-340, https://doi.org/
10.1109/TVLSI.2017.2766925

Blanksby AJ, Howland CJ. A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder.
IEEE J. Solid-State Circuits. 2002; 37 (3): 404—412.

Schlafer P, When N, Alles M, Lehnigk-Emden T. A new dimension of parallelism in ultra high throughput
LDPC decoding. in Proc. IEEE Int. Workshop Signal Process. Syst; 2013. pp. 153—-158.

Jiang M, Zhao C, Shi Z, Chen Y. An improvement on the modified weighted bit flipping decoding algo-
rithm for LDPC codes. IEEE Communications Letters. 2005; 9(9):814-816. https://doi.org/10.1109/
LCOMM.2005.1506712

Wadayama T, Nakamura K, Yagita M, Funahashi Y, Usami S, Takumi |. Gradient descent bit flipping
algorithms for decoding LDPC codes. In 2008 International Symposium on Information Theory and lts
Applications; 2008 Dec 7—10; Auckland; 2008 p. 1-6. https://doi.org/10.1109/ISITA.2008.4895387

Le K, Ghaffari F, Declercq D, Vasi‘c B. Efficient Hardware Implementation of Probabilistic Gradient
Descent Bit-Flipping. IEEE Transactions on Circuits and Systems I: Regular Papers 2017 April; 64
(4):906—917. https://doi.org/10.1109/TCSI.2016.2633581

Kasparis C, Evans BG. Gradient Projection Decoding of LDPC Codes. IEEE Communications Letters.
2007 March; 11(3):279-281. https://doi.org/10.1109/LCOMM.2007.061780

Kasparis C, Beaudonnet M, Gyftodimos E, Evans BG. Gradient projection decoding of LDPC codes
and algorithmic variations. in IET Communications. 2010 January; 4(2):223-233. https://doi.org/10.
1049/iet-com.2009.0094

Wey C, Shieh M, Lin S. Algorithms of Finding the First Two Minimum Values and Their Hardware Imple-
mentation. IEEE Transactions on Circuits and Systems |: Regular Papers. 2008 Dec; 55(11):3430—
3437. https://doi.org/10.1109/TCSI.2008.924892

Dennard RH, Gaensslen FH, Yu H, Rideout VL, Bassous E, LeBlanc A.R. Design of ion-implanted
MOSFET'’s with very small physical dimensions. in IEEE Journal of Solid-State Circuits. 1974 Oct; 9(5):
256—268. https://doi.org/10.1109/JSSC.1974.1050511

Usman S, Mansour M. An Optimized VLSI Implementation of an IEEE 802.11n/ac/ax LDPC Decoder.
In proceedings of IEEE international Symposium on Circuits and system, ISCAS, Sevilla, Spain 2020.
Khoa L.E, Declercq D, Ghaffari F, Kessal L, Boncalo O, Saven V. Variable-Node-Shift Based Architec-

ture for Probabilistic Gradient Descent Bit Flipping on QC-LDPC Codes. IEEE Transactions on Circuits
and Systems. 2018; 65: 2183-2195.

PLOS ONE | https://doi.org/10.1371/journal.pone.0249269 March 29, 2021 12/12

https://doi.org/10.1109/TCSI.2018.2884252
https://doi.org/10.1109/TVLSI.2017.2766925
https://doi.org/10.1109/TVLSI.2017.2766925
https://doi.org/10.1109/LCOMM.2005.1506712
https://doi.org/10.1109/LCOMM.2005.1506712
https://doi.org/10.1109/ISITA.2008.4895387
https://doi.org/10.1109/TCSI.2016.2633581
https://doi.org/10.1109/LCOMM.2007.061780
https://doi.org/10.1049/iet-com.2009.0094
https://doi.org/10.1049/iet-com.2009.0094
https://doi.org/10.1109/TCSI.2008.924892
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1371/journal.pone.0249269

