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Abstract

Understanding age-mixing patterns in Human Immunodeficiency Virus (HIV) transmission

networks can enhance the design and implementation of HIV prevention strategies in sub-

Saharan Africa. Due to ethical consideration, it is less likely possible to conduct a bench-

mark study to assess which sampling strategy, and sub-optimal sampling coverage which

can yield best estimates for these patterns. We conducted a simulation study, using phylo-

genetic trees to infer estimates of age-mixing patterns in HIV transmission, through the com-

putation of proportions of pairings between men and women, who were phylogenetically

linked across different age groups (15–24 years, 25–39 years, and 40–49 years); and the

means, and standard deviations of their age difference. We investigated also the uncertainty

around these estimates as a function of the sampling coverage in four sampling strategies:

when missing sequence data were missing completely at random (MCAR), and missing at

random (MAR) with at most 30%—50%—70% of women in different age groups being in the

sample. The results suggested that age-mixing patterns in HIV transmission can be unveiled

from proportions of phylogenetic pairings between men and women across age groups; and

the mean, and standard deviation of their age difference. A 55% sampling coverage was

sufficient to provide the best values of estimates of age-mixing patterns in HIV transmission

with MCAR scenario. But we should be cautious in interpreting proportions of men phyloge-

netically linked to women because they may be overestimated or underestimated, even at

higher sampling coverage. The findings showed that, MCAR was the best sampling strat-

egy. This means, it is advisable not to use sequence data collected in settings where we can

find a systematic imbalance of age and gender to investigate age-mixing in HIV transmis-

sion. If not possible, ensure to take into consideration the imbalance in interpreting the

results.
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Introduction

An age-disparate relationship is defined as a relationship where the male partner is 5 or more

years older than the female partner [1]. At the population level, patterns of age-related sexual

partner choices are known as age-mixing patterns [1]. In the same way, patterns of Human

Immunodeficiency Virus (HIV) transmission across different age groups define the age-mix-

ing patterns in HIV transmission.

The inter-generational transmission of HIV infection can make it persistent within popula-

tions. As explained by Beauclair [1], the bridge width (number of years difference between the

maximum and the minimum partner age for someone in more than one sexual partnership)

can explain an individual’s ability to transmit HIV infection to different age groups or genera-

tions. Explicitly, at a time point when an HIV positive individual is in two or more discordant

relationships with large and small age-differences with his/her partners, this individual has the

potential to transmit the infection between the two generations. The same can happen for indi-

viduals who have transient relationships with different age preferences over time.

In sub-Saharan Africa (SSA), the overall age and gender stratified prevalence of HIV shows

a discrepancy between women and men [2, 3]. The fact that younger women of less than 25

years and those between 30–40 years have higher HIV prevalence rates than men of the same

age categories [4] raises a great deal of concern. If these trends persist they will impede the

efforts of having an HIV-free generation [4]. Age-disparate relationships can increase the risk

of HIV transmission to younger women [5], and this may explain why the incidence of HIV

infection among younger women in SSA is high [6].

To explain disproportionate prevalence observed in SSA among younger women, epidemi-

ological and sexual behavior survey data have been used to study age-mixing patterns in sexual

partnership and the risk of HIV transmission [7, 8]. However, the results of different studies

analyzing the relationship between age-disparate relationships and the risk of acquiring an

HIV infection in younger women have been contradictory.

On one hand, we have studies that concluded that there was no significant relationship

between age disparity and the risk of HIV acquisition: Harling et al. [9], Balkus et al. [10], and

Street et al. [11]. Harling et al. [9], they analyzed the sero-conversion data of a community-

based cohort of women aged between 15 and 29 years collected from January 2003 to June

2012 in KwaZulu Natal. The age-disparity analysis of each woman’s most recent sexual partner

at each round of HIV testing found that, it was not associated with subsequent HIV acquisi-

tion. Balkus et al. [10], they used data from 3789 South African women (18–45 years old)

enrolled in the Vaginal and Oral Interventions to Control the Epidemic (VOICE) clinical trial

between 2009 and 2012. The study found that reporting a partner>5 years older, or >10 years

older was not associated with HIV acquisition. Street et al. [11], they used secondary data of a

phase III multi-site, double-blinded, placebo-controlled trial, testing the safety and efficacy of

the microbicide CarraguardTM, for the prevention of HIV infection in 1355 women aged 16

years and above between 2004–2007 (a 24 month follow-up study). The authors concluded

that there was no significant relationship between age disparity and the risk of HIV

acquisition.

On another hand, we have studies suggesting that age-disparate partnerships are a risk fac-

tor for HIV infection, including Evans et al. [5] and Akullian et al. [12], together with a phylo-

genetic study by De Oliveira et al. [13], where they looked at the population level proportion of

transmission between age groups. With nationwide data sets from 2002, 2005, 2008, and 2012

for the South African National HIV Surveys, Evans et al. found that younger women with age-

disparate partners had greater odds of being HIV positive in each survey year [5]. De Oliveira

et al. [13], they performed a community-wide phylogenetic study in which the sequence data
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were collected in KwaZulu-Natal between June 2014 to June 2015. The results suggested that a

phylogenetic linkage between younger women and older men depicted a transmission cycle,

i.e., younger women obtained the infection from older men and once they became adults, they

transmitted the infection to men of the same age group, and these men, in turn, transmitted

the infection to other younger women. Thus, they continued the cycle. Akullian et al. [12],

they used a cohort data set from KwaZulu Natal (2004–2015), estimating the smoothed HIV

incidence rates across partnership age pairings between men and women, and the relative risk

of HIV acquisition by the partner. The study found that the age of the sexual partner was a

major risk factor for HIV transmission in both men and women. This confirmed the HIV

transmission cycle driven by age difference between men and young women in the study of De

Oliveira et al. [13].

A particular attention should be paid to the use of viral sequence data to bring a clear

understanding of age-mixing patterns as a major factor that increases the spread of HIV in

SSA [13]. It is an objective and promising approach as it reduces the bias associated with recall,

and sexual behavior surveys, mainly the social desirability biases [14–17].

The objective of this simulation study was to investigate whether age-mixing patterns in

HIV transmission can be inferred from phylogenetic trees through the computation of the

proportions of men/women of different age groups phylogenetically linked to women/men

known as pairings; and the means, and standard deviations of their age difference. In addition,

in the same way that sample size, and sampling strategy have effects on the estimates from sur-

veys, we explored how scenarios of missingness of sequence data (referred to sampling strate-

gies) and the sampling coverage (referred to sample size) affect the proportions of pairings,

and the mean, and standard deviation of age difference between men and women who are phy-

logenetically linked. That exploration, suggested the best sampling strategy (data missingness

scenario), and sub-optimal threshold of sampling coverage.

Materials and methods

In this simulation study, we considered a population of men and women within a generalized

HIV epidemic in a heterosexual network. The simulation was conducted using agent-based

models (ABMs) with Simpact Cyan 1.0 simulation tool [18], which simulated dynamic sexual

network, HIV transmission dynamic, and viral evolution across the transmission network.

More explicitly, the dynamic of sexual network is simulated through establishment and disso-

lution of sexual partnerships. Sexual partnership and dissolution events occurrence rates are

given by their hazard functions, which are mathematical quantities which depend mainly on

age of individuals, age of their partners, ongoing relationship if there is any, among others fac-

tors. Within the partnership network, HIV transmissions occur as a function of several factors,

i.e., the partner’s HIV status, viral load levels, antiretroviral treatment (ART) intervention, and

follow-up of the HIV positive partner. In addition to these mentioned events, other demo-

graphic events, including birth and death, were considered, and behaviours of infected indi-

viduals (diagnosis and ART intervention) were also recorded. The simulation platform

provided a full control of the data generation process and, hence, provided a platform to mea-

sure age-mixing patterns in HIV transmission network, and the uncertainty around estimates

of those patterns inferred from phylogenetic trees. More details on set of the Simpact Cyan 1.0

simulation tool, the simulation work-flow, parameters from events’ hazard functions and

related settings can be seen in the S1 Appendix. The first and second tables in the S1 Appendix

are a recapitulation of parameters, and key assumptions which were considered to produce the

sexual network, and HIV transmission network data. The third table in the S1 Appendix

describes the evolutionary dynamic of HIV in our simulation.
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HIV epidemic simulation

Simpact Cyan simulation framework has a lot of parameters which are set at default based on

common knowledge and evidence from the literature for sexual partnership, HIV transmis-

sion, and viral evolution. By tweaking some of these parameters we can be able to mimic differ-

ent epidemic trends, such as those observed in generalized HIV epidemic settings [19–21] and

some sexual behavior related to sexual partnership in Southern Africa [7, 8, 22, 23]. In our

case, an HIV epidemic was simulated in an age- and gender-structured population. With an

initial population of 10,000 men and 10,000 women, the simulation time was 40 years, and

HIV infection was introduced in the population at the 10th year among 10 randomly selected

individuals, whose age ranged between 20 and 50 years. During the simulation, different events

which controlled the interactions of agents occurred at different rates as described in the S1

Appendix. Treatment eligibility based on Cluster of Differentiation 4 (CD4) counts was gradu-

ally factored in the simulation as described in the S1 Appendix.

For molecular evolution, to simulate viral sequence data for infected individuals, we used a

full transmission tree of infected individuals and a root sequence data. Each seed individual

who introduced HIV has his/her own transmission network which was transformed in a trans-

mission tree using epi2tree function of the R package expoTree [24]. We combined recursively

all the transmission trees of the seed individuals (10), and built one transmission tree. We

transformed the new tree into a binary tree using the multi2di function of the R package phy-
tools [25]. The final tree was used for a forward simulation of substitutions of the viral

sequences (each per individual) using the GTR + Γ substitution model in Seq-Gen [26]. The

root sequence was an HIV-1 sub-type C [27], and for simplicity we considered only the poly-

merase (POL) gene [28].

In order to build time-stamped phylogenetic tree, we projected the simulation time to cal-

endar time by assuming that the simulation of sexual partnership started in 1977, and HIV

introduction was done in 1987, 10 years after, and the end of simulation was 2017, which was

40 years of simulation time.

At the time point of 40 years of simulation time (2017 of calendar time), the epidemic was

characterized by an increasing prevalence across low age groups in both men and women,

with women carrying a disproportionate burden (S1 Fig). And between 35–40 years of simula-

tion time, younger women (below 25 years) had higher incidence compared to men of the

same age group (S2 Fig).

Estimating HIV transmission network and proportions of HIV

transmission pairings

From simulated sequence data, after computing a time-stamped phylogenetic tree of a sampled

population using FastTree [29] software and the R package treedater [30], we identified trans-

mission clusters based on high support for the grouping and low within-cluster genetic dis-

tance using the Cluster Picker software [31].

Estimating the transmission network from the phylogenetic trees was based on estimating

HIV transmission pairings within transmission clusters, by using the time to the most recent

ancestor matrix (tMRCM) [32], and the characteristics of individuals in transmission clusters,

mainly gender and age [13]. We first computed the time to the most recent ancestor matrix

(tMRCA), which was a contingency matrix. Thereafter, we filtered this matrix by gender,

transmission cluster identifier, and a threshold value of tMRCA at 7 years [32]. Thus, we

obtained a pairing between individuals xi and xj if they were within same transmission cluster,

had different gender, and the tMRCA between them did not exceed 7 years. Note that an indi-

vidual can be connected to more than one individual.
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Similarly to De Oliveira et al. [13], the age groups we considered in this simulation study

were less than 25 years, 25–39 years, and 40–49 years for men and women. In our analysis, we

considered the proportions of women who were phylogenetically linked to men: (i) women

between 15 and 24 years and men of the same age group, (ii) women between 15 and 24 years

and men between 25 and 39 years, (iii) women between 15 and 24 years and men between 40

and 49 years, (iv) women between 25 and 39 years and men of same age group, and (v) women

between 25 and 39 years and men between 40 and 49 years. From men perspective, we com-

puted the proportions of men who were phylogenetically linked to women: (i) men between

15 and 24 years and women of the same age group, (ii) men between 25 and 39 years and

women between 15 and 24 years, (iii) men between 25 and 39 years and women of the same

age group, (iv) men between 25 and 39 years and women between 15 and 24 years, and

(v) men between 40 and 49 years and women between 25 and 39 years.

Besides, proportions of pairings, we computed also the means and standard deviations of

the age difference [33], between men and women in transmission clusters. To compute the age

difference, we considered the age difference between men/women in any age group (15–24,

25–39, and 40–49 years) and their pairs women/men phylogenetically linked together regard-

less of the age group. This provided information on the magnitude of age gap in HIV transmis-

sion across different age groups.

Age mixing patterns in sexual partnerships

To be able to evaluate our results, we computed true age-mixing patterns in sexual partner-

ships which made the sexual network across which HIV infection was transmitted. We simu-

lated age disparity relationship by setting age-gap preference parameters’ values for sexual

partnership. We assumed that age gap was drawn from a normal distribution with 10 years

and 5 years for the mean and standard deviation of the age gap, respectively, as shown in the

first table of parameters’ values in the S1 Appendix.

If a male individual with age i is (or has been) in sexual partnership with n women, with

each of them having age aji (with j 2 [1, n]), the age-mixing patterns within the general sexual

network can be explained by descriptive statistics of age difference, namely the average age dif-

ference (AAD) across relationships, and the standard deviation of these age difference

(SDAD). The AAD is the mean of age gap across men’s sexual partnerships, and the SDAD is

the standard deviation of age gap across men’s sexual partnerships. More than that, given the

nature of the sexual partnerships data (clustering data), we can use a Linear Mixed-Effects

Model (LMM) [34] to investigate the age-mixing patterns in sexual partnerships.

For any man i with n partnerships, there are n values of age gap preferences, thus, we had a

clustered data set where the clustering unit was the man. If we consider a linear mixed ran-

dom-effect model [34], to explain the variation of man’s age gap preference for his women

partners, for a man i, the fitted LMM model was

yij ¼ b0xij þ b1 þ bi þ �ij

where yij represents the age gap preference of woman j in sexual partnership with man i, and

xij was the predictor which was the age of the man i. The parameters β0 and β1 represented the

fixed effects, while bi parameters represented the random effects. We fitted the Linear Mixed-

Effects Models Using the R package lme4 [35].

Thus, from the model outputs, we have the within-subject standard deviation of age differ-

ences (WSD), the average variation of age gap within the clusters of men’s age gaps; the

between-subject standard deviation (BSD), the average variation of age gap between the
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clusters of men’s age gaps. The overall population level trend of age difference was also

depicted by the slope and intercept of the LMM model.

Data missingness scenarios

By assuming that the uncertainty around age-mixing (inferred from transmission clusters)

may be associated with sequence missingness, and low sampling coverage, we explored differ-

ent missingness scenarios and sampling coverage, to determine the best missingness scenario,

and a sub-optimal sampling coverage.

The missingness of sequence data is not like the missingness of a data point in a data table

[36], but some mechanisms of data points missingness can be applied to missingness of

sequence data. Thus, we considered two main mechanisms of data missingness scenarios for

viral sequence data: missing completely at random (MCAR) and missing at random (MAR)

[37]. Each missingness scenario explained a sampling strategy which can happen when collect-

ing sequence data. If sequence data are missing completely at random (MCAR), this means

that the missing observations (sequences) are a random subset of all observations. Missing

completely at random (MCAR) indicates that there was not a systematic procedure to make

certain sequence data more likely to be missing than others [37]. For sequence data missing at

random (MAR), there might be a systematic difference between these missing sequences and

the ones we observed in our sample. If sequence data are missing at random (MAR), condi-

tional on age and gender, then the distributions of missing and observed sequence data will be

similar among people of the same age and gender [37]. Thus, for missing at random (MAR),

we assumed there was differences of sample proportions among different age groups and gen-

der. We considered MAR scenarios where we had at most 30%, 50%, and 70% of women in

the sample in each of the three age groups (less than 25 years, 25–39 years, and 40–49 years).

Therefore, in total, we had 4 scenarios of data missingness: one for MCAR, and three for

MAR.

In each of the 4 sampling strategies (data missingness scenarios), we had 13 sampling cover-

ages (from 35% to 95% with an interval of 5%).

We compared the difference between estimates from the two types of sampling strategies

(MCAR and MAR) at different sampling coverages using the Wilcoxon test [38], since simula-

tion outputs were not normally distributed. The null hypothesis is that the vectors of the

parameter values in MCAR and MAR were from the same distribution. This was rejected

when the p-value was less than the 0.05 significance level. For the 2800 simulations, each

parameter had 4 vectors of values (one for MCAR, and three for MAR scenarios: with 30%,

50%, and 70%) at each sampling coverage. The use of the Wilcoxon test tells us whether the

median values of the two-by-two comparison of the parameter values were from same contin-

uous distribution or not. The comparison was made between the MCAR scenario and MAR

scenarios (having at most 30%, 50%, and 70% women in the sample).

The workflow of the study design was elaborated as follows: (i) we simulated an HIV epi-

demic within a heterosexual network, (ii) we simulated the evolutionary dynamics of the virus

across transmission networks, (iii) we defined a sampling strategy and constructed a phyloge-

netic tree of sequences from sampled individuals within a time interval of 35–40 years simula-

tion time, (iv) we computed the transmission clusters from the phylogenetic tree, (v) then, we

estimated a transmission network with pairings by filtering the entire time to the most recent

common ancestor (tMRCA) matrix from the phylogenetic tree by gender, transmission cluster

identifier, and time to most recent common ancestor, (vi) we computed the proportions of

men/women in different age groups in partnership with women/men of certain age groups

within the transmission clusters, (vii) we computed the age difference statistics (mean and
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standard deviation) of people within transmission clusters, (viii) we analyzed the best sampling

strategy and sub-optimal sampling coverage by computing the root mean square error

(RMSE), between true values of the proportions of pairings and age difference statistics

between (obtained at 100% sampling coverage), and those from inference.

To count for stochasticity, with the same parameter combination, we ran 2800 simulations.

To summarise the estimates of proportions of the pairings; mean, and standard deviation of

the age difference; and statistics of age-mixing in sexual partnership obtained in any of the 4

scenarios at any sampling coverage among the 13 (per scenario), we considered their median

values, since for each estimate at every sample coverage we had 2800 data points.

All estimates were computed from data sampled between 35–40 of simulation time in dif-

ferent sampling strategies, and sampling coverages. All scripts to reproduce the results, and

data generated, are publicly available at a GitHub repository (https://github.com/niyukuri/

age_mixing_patterns_phylogenetic).

Results

Proportions of phylogenetically linked pairings across age groups

Between 35 and 40 year of simulation time, the median values of number of true pairings

(number of pairs of men/women phylogenetically linked together to women/men) in the

transmission network for all HIV positive individuals were given in the Table 1. By descending

order of phylogenetic pairings in age groups, we have: men aged 25–39 years with women

aged 15–24 years (30 pairs), followed by men aged 40–49 years and women aged 15–24 years

(15 pairs), men aged 40–49 years and women aged 25–39 years (14 pairs), men aged in 25–39

years and women of the same age group (six pairs), and men aged 15–24 years and women of

the same age group (six pairs). We had zero median value for pairs between men aged 15–24

years and women aged 25–39 years, men aged 15–24 years and women aged 40–49 years, men

aged 25–39 years and women aged 40–49 years, and men aged 40–49 years and women aged

40–49 years.

At the top left hand side of Fig 1, for the MCAR sampling strategy, on average, the propor-

tion of women aged 15–24 years who were phylogenetically linked to men of the same age

group was low (around 10%) compared to the proportion of men aged 15–24 years who were

phylogenetically linked to women of the same age group (100%) at the the top right hand side.

At the same figure, across all sampling coverages, around 55% of younger women (15–24

years) were phylogenetically linked to men between 25 and 39 years, and 28% of these younger

women (15–24 years) were phylogenetically linked to men between 40 and 49 years old. But,

men aged 25–39 years and 40–49 years were phylogenetically linked to younger women (15–

24 years) at around 90% (the true value was around 80%) and 70% (the true value was around

50%) proportions, respectively. Although these values were 10% and 20% greater than the true

values, they had a steady trend from the 50% sampling coverage and above.

For women in the 25–39 years of age group, on average, around 67% of them were phyloge-

netically linked to men between 40 and 49 years old, and, on average, around 25% of these

Table 1. Phylogenetic pairings at 100% sampling coverage within 35–40 years of simulation time.

Women

15–24 years 25–39 years 40–49 years

Men 15–24 years 6 0 0

25–39 years 30 6 0

40–49 years 15 14 0

https://doi.org/10.1371/journal.pone.0249013.t001
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women were phylogenetically linked to men of the same age group (25–39 years). The propor-

tions of men aged 40–49 years, and 25–39 years who were phylogenetically linked to women

aged 25–39 years were on average around 27% and 7%, respectively, across all sampling cover-

ages, but the true values were 47% and 17%, respectively. The trend of the proportions of pair-

ings between women of the 25–39 years of age group and men aged 25–39 years and 40–49

years was quasi-symmetric.

By comparing the two figures of proportions of pairings between women and men across

age groups at the top of Fig 1, as the sampling coverage increased, the estimates were improved

towards the true values for the proportions of women of any age group phylogenetically linked

to men in any other age group. On average, starting at 55% of the sampling coverage, the pro-

portions of women phylogenetically linked to men were already close to the true values

observed at 100%. However, this was not the case for the proportions of men of any age group

who were phylogenetically linked to women, even at 95% of sampling coverage, the estimates

were far from the true values as observed at the right hand side on the top of Fig 1.

In terms of the magnitude of the proportion values for women phylogenetically linked to

men, on average, the first was for women between 25 and 39 years linked to men aged 40–49

years, followed by women aged 15–24 years linked to men aged 25–39 years, women aged

Fig 1. Median values of proportions of pairings in different age groups and precision error as a function of sample coverage. On the top left hand side is the

proportion of women in age group A phylogenetically linked to men in age group B, and on the right hand side is the proportion of men in age group B linked to

women in age group A. At the bottom left and right hand side, are the differences between the true values of the proportions of pairings at 100% coverage and those

obtained from different missing completely at random (MCAR) sampling coverages for different age group linkages between women and men.

https://doi.org/10.1371/journal.pone.0249013.g001
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15–24 years linked to men aged 40–49 years, women aged 25–39 years linked to men of the

same age group, and women aged 15–24 years linked to men of the same age group.

For the proportions of men phylogenetically linked to women, the highest magnitude was

for men aged 15–24 years linked to women of the same age group, followed by men aged 25–

39 years linked to women aged 15–24 years, men aged 25–39 years linked to women of the

same age group, men aged 40–49 years linked to women aged 25–39 years, and men aged 40–

49 years linked to women aged 15–24 years.

For the RMSE values, between the true proportions at 100% of the sampling coverage and

those in different sampling coverages of the MCAR sampling strategy, we observed a decreas-

ing trend as we increased the sampling coverage as seen at the bottom of Fig 1. The best perfor-

mance was for the proportions of women linked to men (left hand side at the bottom of Fig 1),

if we compared to men linked to women (right hand side at the bottom of Fig 1).

For the sampling strategy, where missing sequences were missing at random (MAR), the

trend of the proportion values across the sampling coverages in all three MAR scenarios (with

at most 30%, 50%, and 70% of women were in the samples) were different from the MCAR

scenario, which may be explained by the age group and gender imbalance in the samples. The

overall trends of the RMSE for the proportions decreased when the sampling coverage

increased in all three scenarios, where we assumed that at most 30%, 50%, and 70% of women

were in the sample.

The comparison between the median values of proportions of pairings in MCAR scenario

and in MAR three scenarios by the Wilcoxon test at Fig 2, showed that the majority of the

median values of the proportions of pairings across different age groups between men and

women were from different distributions.

Fig 2. Comparison of median values for proportions of pairings in different age groups for three sampling strategies as a function of sampling coverage. The P-

values of the Wilcoxon signed-rank paired test between the proportions of pairings across age groups at different sampling coverages between MCAR and missing at

random (MAR) missingness scenarios: MCAR and MAR with at most 30% of women in the sample (left hand side), MCAR and MAR with at most 50% of women in

the sample (in the middle), and MCAR and MAR with at most 70% of women in the sample (right hand side).

https://doi.org/10.1371/journal.pone.0249013.g002
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The Fig 2 shows that, at higher sampling coverages (above 65%), except for the proportions

of younger women (15–24 years) phylogenetically linked to men of the same age group in

MCAR and in MAR with at most 30% of the sample being women, the median values of the

other parameters were from distinct distributions in all comparisons. For comparisons with

sampling coverages below 65%, we found sporadic cases, where we could conclude that the

proportions of pairings came from same distributions. However, the predominant scenarios

were when we had proportions from different distributions. The cases where we have median

values of proportions of pairings from same distributions may be explained by sparse

sampling.

Age difference in phylogenetically linked pairings from transmission

clusters

In the MCAR sampling strategy, the trend of the mean age difference for women and men in

almost all age groups appeared to be steady across all sampling coverages. These estimates did

not greatly deviate from the true values as we can see at the top of Fig 3.

The highest magnitude of women’s age difference was observed for women aged 25–39

years, followed by women aged between 15 and 24 years, with their age gap being between 13

and 14 years. The lowest age difference was for women aged 40–49 years old (around 5 years).

Fig 3. Median values of means of age difference between pairings in different age groups as a function of sampling coverage. The values of the mean age

difference within pairings across age groups as a function of the sampling coverage (on the top) for MCAR sampling strategy. And the difference between true values

of the mean age difference at 100% coverage and those obtained from different MCAR sampling coverages (at the bottom) as a function of sampling coverage.

https://doi.org/10.1371/journal.pone.0249013.g003
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Compared to men, the highest mean age difference was for men aged 40–49 years old (around

20 years), followed by men aged 25–39 years old (around 11 years), and men aged 15–24 years

old (around 2 years).

Comparing the results to the true values of the mean age difference at 100% coverage, the

RMSE values showed a decreasing trend as we can see at the bottom of Fig 3. The decrease of

the error appeared to be faster for men compared to women in all age groups. The error associ-

ated to the age difference for women aged 40–49 years had sporadic behavior across the sam-

pling coverage but did decrease. The error values for the means of the age difference were

reported to be between 0 and 5 years, and 0 and 3 years for women and men, respectively (see

the bottom of Fig 3).

If we compare the means of the age difference across the age groups in the MCAR and

MAR scenarios (see Fig 4), We can see that the means age differences for men with 25–39

years of age and women of the same age group, and women below 25 years did not come from

the same distributions. However, for men aged 15–24 years and those aged 40–49 years of age,

and women with 40–49 years of age, the majority of their sampling coverage comparison dem-

onstrated that their means age difference values came from same distributions. But in those

age groups we had even small sampling coverage sporadic cases where the means age differ-

ence were from different distributions.

In the same sampling strategy for MCAR, the standard deviation of the age difference for

women and men in almost all age groups improved as we increased the sampling coverage

(top of Fig 5). Compared to women, men had the lowest standard deviation values in all age

groups. The standard deviation values showed the dispersion of the age difference. For

women, the highest magnitude of the standard deviation was for younger women (almost 7

Fig 4. Comparison of median values for means of age differences between pairings in different age groups as a function of sampling coverage. The P-values of

the Wilcoxon signed-rank paired test between the means of age difference in pairings at different sampling coverages between the MCAR and MAR missingness

scenarios: MCAR and MAR with at most 30% of women in the sample (left hand side), MCAR and MAR with at most 50% of women in the sample (in the middle),

and MCAR and MAR with at most 70% of women in the sample (right hand side).

https://doi.org/10.1371/journal.pone.0249013.g004

PLOS ONE Assessing the uncertainty around age-mixing patterns in HIV transmission inferred from phylogenetic trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0249013 March 25, 2021 11 / 20

https://doi.org/10.1371/journal.pone.0249013.g004
https://doi.org/10.1371/journal.pone.0249013


years), followed by women aged 25–39 years (around 5 years), and women aged 40–49 years

(around 2.5 years). For men, the highest magnitude of standard deviation was for men aged

25-39 years (around 4 years), followed by men aged 40–49 years (around 3.5 years), and youn-

ger men (around 1 year).

Compared to the true values of age difference standard deviations at 100% coverage, the

RMSE decreased as we increased the sampling coverage (bottom of Fig 5). However, as previ-

ously seen for the means of age difference, the error values of the age difference standard devia-

tion for women decreased slowly compared to men. The error values for the standard

deviation of the age difference were reported to be between 0 and 3 years, and 0 and 2 years for

women and men, respectively (the bottom of Fig 5).

If we compare the standard deviations of the age differences across age groups in the

MCAR and MAR scenarios (Fig 6) showed the same trend as the mean age difference. For

men with 25–39 years of age and women of the same age group, their standard deviations did

not come from the same distribution. However, certain other age groups: men of 15–24 years

of age, men of 40–49 years of age, and women of 40–49 years of age, the majority of the sam-

pling coverage showed that their standard deviation values came from the same distribution.

Fig 5. Median values of standard deviations of age difference between pairings in different age groups as a function of sampling coverage. The values of the

standard deviation of the age difference within pairings across age groups as a function of the sampling coverage (on the top) for MCAR sampling strategy, and the

difference between true values of the standard deviation of age difference at 100% coverage and those obtained from different MCAR sampling coverages (at the

bottom) as a function of sampling coverage.

https://doi.org/10.1371/journal.pone.0249013.g005
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Age-mixing patterns in sexual partnerships of infected individuals

In all 4 data missingness scenarios, the true median values of parameters of age-mixing in sex-

ual partnerships (of infected individuals) were computed from the recorded data for 5 years

(35–40 simulation years). The Table 2 shows the median value for the average age difference

(AAD) across sexual partnerships, the standard deviation of the age difference (SDAD), the

between-subject standard deviation of age differences (BSD), the within-subject standard devi-

ation of age differences (WSD), and the slope and the intercept from the linear mixed effect

model for age difference preference for men.

Across different sample coverages (35–95%), the parameters’ values of age-mixing patterns

in sexual partnership of infected individuals in MCAR scenario did not differ much with lower

and higher sampling coverage. We can see in the Table 2 that the true values at 100% sampling

coverage and those at different sampling coverage did not differ greatly except for the intercept

and the slope. But, this is not the case for MAR scenario, notable differences were observed

between the true parameters values at 100% sampling coverage and at lower coverage for all

parameters.

Discussion

In this simulation, we defined a priori higher age gap preference in sexual partnerships. From

the results, we can see that in the transmission network constructed from the phylogenetic

tree, age-mixing patterns in HIV transmission were depicted through proportions of phyloge-

netic pairings between men and women across different age groups; and the mean, and stan-

dard deviation of their age difference.

Fig 6. Comparison of median values for standard deviations of age differences between pairings in different age groups as a function of sampling coverage. The

P-values of the Wilcoxon signed-rank paired test between the standard deviations of the age difference in pairings at different sampling coverages between the MCAR

and MAR missingness scenarios: MCAR and MAR with at most 30% of women in the sample (left hand side), MCAR and MAR with at most 50% of women in the

sample (in the middle), and MCAR and MAR with at most 70% of women in the sample (right hand side).

https://doi.org/10.1371/journal.pone.0249013.g006
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The true pairings Table 1, showed that, overall we had not many transmission clusters. This

was due to the fact that we considered sampling at late stage of infection dynamic, 35–40 simu-

lation time (2012–2017 calendar time) whereas the infection was introduced at 10 simulation

time (1987 calendar time). In addition, starting 23 simulation time, there was ART interven-

tions implemented which increased the chance to many people to start ART and become non-

infectious. Furthermore, at 25, 28, 33, 36, 39 simulation times, eligibility to ART was improved

by implementing early treatment through the increase of CD4 eligibility threshold, which

increased the number of individuals on ART. Thus, having less infected individuals in that

period of time (2012–2017) was supported by empirical evidence which proved that ART has

the potential to decrease sexual transmission of HIV [39, 40]. The same table showed that, we

had some age groups with zero median value of pairings, older women and younger men, this

indicates that HIV transmission between these age groups was less likely to occur due to the

configuration of age-mixing in sexual partnerships, and also due to ART interventions.

Women aged 25-39 years had the highest magnitude of the mean age difference (around 14

years on average). When we looked at their proportion of pairings, almost 68% of them were

phylogenetically linked to men aged 40–49 years, and around 25% of these women were phylo-

genetically linked to men of the same age group (25–39 years). For men, the group of 40–49

years had the highest age difference magnitude (around 20 years), 70% (but the true value was

around 50%) of their proportion of pairings were phylogenetically linked to younger women

(15–24 years). The standard deviations of the age difference for younger women (15–24 years),

women aged 25–39 years, and men aged 40–49 years were around 7, 5, and 3 years,

Table 2. Parameters of age mixing in sexual partnerships of infected individuals at different sampling coverage (%) when missing individuals were missing

completely at random (MCAR), missing at random (MAR) with at most 30%, 50%, and 70% women in the sample.

Scenario Parameter 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% True at 100%

MCAR AAD 13.188 13.16 13.161 13.13 13.146 13.135 13.117 13.128 13.137 13.145 13.128 13.129 13.121 13.918

SDAD 6.346 6.386 6.372 6.401 6.378 6.387 6.402 6.419 6.431 6.429 6.427 6.431 6.429 6.201

BSD 1.752 1.751 1.738 1.758 1.756 1.75 1.745 1.744 1.752 1.744 1.746 1.752 1.752 2.298

WSD 1.684 1.691 1.696 1.706 1.694 1.7 1.702 1.699 1.701 1.699 1.706 1.702 1.705 1.787

Slope 0.26 0.259 0.258 0.26 0.26 0.26 0.259 0.257 0.259 0.26 0.258 0.26 0.259 0.333

Intercept -1.949 -1.921 -1.946 -1.95 -1.956 -1.948 -1.951 -1.95 -1.938 -1.941 -1.952 -1.956 -1.93 -2.581

MAR (30% women) AAD 11.203 11.449 11.673 11.85 11.992 12.156 12.236 12.347 12.461 12.514 12.61 12.703 12.779 13.918

SDAD 6.734 6.659 6.596 6.559 6.507 6.476 6.436 6.404 6.392 6.386 6.385 6.4 6.401 6.201

BSD 1.487 1.519 1.533 1.548 1.557 1.583 1.587 1.6 1.613 1.633 1.643 1.664 1.685 2.298

WSD 1.667 1.67 1.667 1.671 1.671 1.67 1.671 1.675 1.676 1.679 1.681 1.688 1.693 1.787

Slope S 0.201 0.208 0.212 0.219 0.222 0.227 0.23 0.233 0.235 0.238 0.241 0.245 0.247 0.333

Intercept -0.871 -1.006 -1.108 -1.207 -1.283 -1.352 -1.406 -1.483 -1.517 -1.569 -1.616 -1.686 -1.742 -2.581

MAR (50% women) AAD 10.689 10.883 11.079 11.258 11.43 11.596 11.724 11.819 11.965 12.048 12.167 12.235 12.329 13.918

SDAD 6.82 6.797 6.777 6.718 6.666 6.623 6.569 6.555 6.525 6.496 6.456 6.43 6.407 6.201

BSD 1.425 1.436 1.469 1.489 1.523 1.537 1.551 1.544 1.565 1.576 1.589 1.59 1.601 2.298

WSD 1.661 1.659 1.665 1.669 1.668 1.674 1.672 1.67 1.676 1.669 1.669 1.67 1.678 1.787

Slope 0.188 0.191 0.197 0.202 0.207 0.214 0.218 0.218 0.221 0.224 0.228 0.23 0.231 0.333

Intercept -0.655 -0.72 -0.799 -0.897 -1.002 -1.082 -1.159 -1.205 -1.274 -1.304 -1.365 -1.395 -1.455 -2.581

MAR (70% women) AAD 10.362 10.414 10.504 10.56 10.647 10.732 10.792 10.969 11.113 11.178 11.28 11.44 11.548 13.918

SDAD 6.859 6.875 6.873 6.856 6.85 6.82 6.805 6.79 6.757 6.744 6.705 6.672 6.645 6.201

BSD 1.378 1.375 1.41 1.404 1.423 1.407 1.443 1.458 1.473 1.493 1.5 1.513 1.511 2.298

WSD 1.646 1.638 1.656 1.659 1.658 1.661 1.664 1.668 1.671 1.679 1.664 1.67 1.672 1.787

Slope 0.178 0.181 0.18 0.185 0.186 0.187 0.192 0.198 0.2 0.202 0.204 0.208 0.211 0.333

Intercept -0.515 -0.539 -0.541 -0.591 -0.61 -0.663 -0.708 -0.799 -0.849 -0.887 -0.949 -1.005 -1.031 -2.581

https://doi.org/10.1371/journal.pone.0249013.t002
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respectively. Younger women (15–24 years) had a mean age difference around 13 years and

more than 50% and 25% of them were phylogenetically linked respectively to men aged 25–39

years, and 40–49 years. More than 90% of men aged 25–39 years were phylogenetically linked

to younger women (15–24 years). This showed that men aged 40–49 years were extensively

connected to younger women (15–24 years), and with a non-negligible link to women between

25 and 34 years. Moreover, younger women (15–24 years) were also much connected to men

aged 25–39 years who had a mean age difference around 11 years on average (between 10 and

12 years). The mean age difference for men aged 15–24 years was below 2 years and almost

100% of them were phylogenetically linked to younger women (15–24 years old). This showed

that younger men could not play a significant role in cross-generational transmissions.

Given the mean and standard deviation of age difference across age groups, we can see that

the higher age gap in sexual partnership presented in the Table 2 can be depicted in age differ-

ence of phylogenetic pairings between men and women in different age groups.

Proportion values of phylogenetic pairings between men and women, together with mean

and standard deviation of age difference, showed that younger women (15–24 years), women

aged 25–39 years, older men aged 40–49 years, and men aged 25–39 years were key age groups

to maintain a transmission cycle. But more importantly, younger women (15–24 years) and

older men (40-49 years) were the main drivers of this transmission cycle. Referring to Fig 7,

we can say that when younger men (15–24 years) grow-up and reach 25–39 years, higher pro-

portion of them will be linked to younger women (15–24 years), same younger women to

whom will be linked many older men (40–49 years). When younger women (15–24 years)

grow-up and reach (25–39 years), many of them will be linked to older men (40–49 years).

The results proved that the proportions of phylogenetic pairings together with the means

and standard deviations of the age difference between phylogenetically linked men and

women could explain how younger women and women between 25 and 39 years together with

Fig 7. Representation of age-mixing patterns in HIV transmission. Solid and dashed arrows represent the proportions of women linked to men, and men linked to

women respectively, the three values in each vector at these arrows are inferred proportions values at 55%, and 95% sampling coverage, and true value at 100%. The

first column of matrices values represents the mean of age difference, and the second column represents standard deviation of age difference, between men and women

who are phylogenetically linked.

https://doi.org/10.1371/journal.pone.0249013.g007
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older men (40–49 years) were the key age groups that would make the infection to persist.

These findings showed that, when age-mixing patterns in HIV transmission exist in any popu-

lation, we can be able to unveil these patterns through proportions of pairings between men

and women, and age difference statistics across different age groups. These results are in agree-

ment with evidence from empirical studies [13, 33], which proved that we can get insights on

age-mixing patterns in HIV transmission by computing proportions of pairings; and mean,

and standard deviation of age difference from phylogenetic trees.

Understanding the patterns of age-mixing in HIV transmission through a phylogenetic lens

adds value to intervention design. Proportions of pairings show the magnitude of connected-

ness of pairs of HIV infections between different age groups. The mean, and standard devia-

tion of the age gap between men and women (pairings) show on average the age difference

between men and women in different age groups, and the magnitude of its dispersion. Con-

cerns regarding age-mixing in HIV transmission come when the mean age difference is higher

with narrow or wider standard deviation, and also when relatively small mean age differences

occur with higher standard deviations.

The comparison of proportions of men phylogenetically linked to women showed that they

were greatly below or above the true values even at higher sampling coverage. This implies

that, we may be cautious in interpreting proportions of men phylogenetically linked to women

because they maybe overestimated or underestimated when inferring them from transmission

clusters computed from phylogenetic trees.

The comparison between estimates values obtained with MCAR and MAR scenarios at

sampling coverages, showed that there were differences. Overall, the median values of propor-

tions of pairings, and age difference statistics were from different distributions. Reported cases

where we have same distributions, they were likely cases where we had sparse sampling.

When we compared the true parameter values of the age mixing patterns in sexual partner-

ships at 100% to those obtained at different sampling coverages (35%–95%) for MCAR, they

were all relatively close. However, if we compared these true values at 100% to those obtained

at different sampling coverages (35%–95%) for MAR, there were some notable discrepancies.

This implies that, if we are able to depict age mixing patterns in HIV transmissions using con-

jointly proportions of phylogenetic pairings between men and women, and their age differ-

ence, it is worthy to consider the MCAR sampling strategy. Thus, for studies regarding age-

mixing patterns in HIV transmissions with sequence data, we should avoid data collected

from a part of the population where we may find a systematic imbalance of age and gender in

the sample. We should not use sequence data from antenatal care (ANC) or sex-worker pro-

grams, but community survey data are encouraged. If we use sequence data from ANC or/and

sex workers programs together with community data, we should take into account the age-

gender imbalance in our results.

To estimate the proportions of pairings, on average a sampling coverage between 50% and

55% was sufficient in MCAR scenario, except for proportions of men where, even at 95% sam-

pling coverage, the values were slightly below or above the true values. Thus, for proportions

of women phylogenetically linked to men, and for the age gaps of men and women, we can use

lower sample coverage, which makes such studies affordable in settings like SSA.

Our findings suggested that both sampling strategy, and sampling coverage have effect age-

mixing estimates, and this support the finding from the study by Kusejko et al. [33] which

proved that the mean age difference of pairs in the phylogenetic tree was influenced by sam-

pling coverage. The comparison of the proportions and age gap estimates at different sampling

coverages from MCAR and MAR (with at most 30%, 50%, and 70% women in the sample for

any age group) with the Wilcoxon test showed that, in general there was a difference. Although

we had sporadic scenarios where where we could not see differences, this might be due to
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gender imbalance, which made samples to become sparse. The same patterns in comparison

was seen also for means and standard deviations of age differences. This may demonstrates

one of the limitations of the study: for MAR, we assumed that we would obtain a certain per-

centage of women in the sample and across all age groups (e.g., 70% of women in all age

groups: 15–24 years, 25–39 years, and 40–49 years), and it happened that we found small pro-

portions of women or men in the populations due to the female:male ratio. This may be viewed

as a technical artifact. We also have a limitation based on the population size: we could not

increase the population size too much due to the limited computation time and memory avail-

able for the simulation, given the many simulations we intended to run.

Conclusion

The proportions of phylogenetic pairings between men and women are important features of

the age-mixing patterns in HIV transmission, as they show the magnitude of the connected-

ness between men and women in the transmission network across different age groups. The

means and standard deviations of the age difference of men and women in these pairings

across different age groups provide details on the magnitude of the age gap between infected

individuals across all age groups in the transmission network. This is a kind of information

that we can not obtain from any other source of data, except from phylogenetic trees. Trans-

mission network being a subset of sexual network, hence, age difference in transmission clus-

ters also reflected, to an extent, the sexual partnership age difference. For the sampling

strategy, if sequences were missing completely at random, the results were more reliable. The

more we increased the sequence coverage the more we improved the estimates; however,

although the higher the sampling coverage the better estimates we get, we did not require

higher coverage in order to have insight on age-mixing patterns in HIV transmission.

The main limitations of the study were mostly based on the fact that we used synthetic data

with idealistic assumptions, particularly for molecular evolution. We know that certain evolu-

tionary dynamics could change the structure of phylogenetic trees, which may change the

inferences in reality. But, if we focus on between-host evolutionary dynamic, the results still

informing us on age-mixing patterns in HIV transmission. The proportions of men and

women phylogenetically linked together; and the means, and standard deviations of the age

difference provided insights on the age mixing patterns in transmission. In real life, given the

complexity of the transmission network based on social structures, these estimates may also

tell a part of the story. These limitations together with artifacts due to the artificial age and gen-

der imbalance in the MAR and the reduced population size can not be dismissed. Nevertheless,

the approach we used to estimate HIV transmission network allowed us to investigate with

improved information the age-mixing patterns in HIV transmission and cross-generational

transmissions.

Therefore, the use of phylogenetic tree data has shown to be a good approach to assess age-

mixing patterns in HIV transmission networks. By linking pairs of individuals in the transmis-

sion clusters, we can infer different age groups with close genetic relatedness. This approach

informs us about the connectedness between men and women in the transmission network

and the age difference between individuals.
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S1 Fig. Point prevalence of HIV infection at 40 year simulation time. The point prevalence

of HIV infection at 40 year of simulation time in an age- and gender-structured population.

(TIF)
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S2 Fig. Incidence of HIV infection in 35–40 years simulation time. The incidence of HIV

infection in five years interval in an age- and gender-structured population.

(TIF)

S1 Appendix. Simpact Cyan simulation model. Details about the simulation work-flow and

parameters from events’ hazard functions and related settings.

(ZIP)
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