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Abstract

The red fox is a highly adaptable mammal that has established itself world-wide in many dif-
ferent environments. Contributing to its success is a social structure based on chemical sig-
nalling between individuals. Urine scent marking behaviour has long been known in foxes,
but there has not been a recent study of the chemical composition of fox urine. We have
used solid-phase microextraction and gas chromatography-mass spectrometry to analyze
the urinary volatiles in 15 free-ranging wild foxes (2 female) living in farmlands and bush in
Victoria, Australia. Foxes here are routinely culled as feral pests, and the urine was collected
by bladder puncture soon after death. Compounds were identified from their mass spectra
and Kovats retention indices. There were 53 possible endogenous scent compounds, 10
plant-derived compounds and 5 anthropogenic xenobiotics. Among the plant chemicals
were several aromatic apocarotenoids previously found in greater abundance in the fox tail
gland. They reflect the dietary consumption of carotenoids, essential for optimal health. One
third of all the endogenous volatiles were sulfur compounds, a highly odiferous group which
included thiols, methylsulfides and polysulfides. Five of the sulfur compounds (3-isopentenyl
thiol, 1- and 2-phenylethyl methyl sulfide, octanethiol and benzyl methyl sulfide) have only
been found in foxes, and four others (isopentyl methyl sulfide, 3-isopentenyl methyl sulfide,
and 1- and 2-phenylethane thiol) only in some canid, mink and skunk species. This indicates
that they are not normal mammalian metabolites and have evolved to serve a specific role.
This role is for defence in musteloids and most likely for chemical communication in canids.
The total production of sulfur compounds varied greatly between foxes (median 1.2, range
0.4-32.3 ug ‘acetophenone equivalents’/mg creatinine) as did the relative abundance of dif-
ferent chemical types. The urinary scent chemistry may represent a highly evolved system
of semiochemicals for communication between foxes.

Introduction

The red fox (Vulpes vulpes, ‘fox’) is a highly successful animal that has a world-wide distribu-
tion and has adapted to a great variety of natural landscapes, from temperate and boreal for-
ests, to deserts and arctic tundra, as well as agricultural and urban areas [1, 2]. Underlying this
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success is a complex social structure [3, 4] that supports co-operative activity leading to a rate
of population increase that can be very high under favourable conditions [5]. Foxes can flour-
ish in proximity to humans, exploiting the abundance of shelter and food, and achieving a
larger body size and population density than in the wild [2, 6, 7].

Increasing fox numbers have brought ecological, economic and health problems [1, 8].
Foxes eat a wide variety of food including insects, reptiles and other wildlife, farm and domes-
tic animals, various fruits and other plant materials and food scraps [2, 9-15]. Their ecological
impact is profound in Australia, where they have spread throughout the continent since their
introduction in the 19® century [16]. They are a major cause of wildlife decline [1], and their
great mobility leads to seed dispersal, often of pest species [17, 18]. Foxes are vectors for many
zoonoses, including rabies, nematodes, and mites [19, 20]. When they become accustomed to
humans, other nuisance behaviour such as bin-raiding and biting can occur [2].

Foxes are solitary foragers that can also live in groups [21, 22]; they travel long distances
[18] and both defend [23] and share [4] territory. Studies in many other mammalian species
have shown that communication between individuals relies on the production of odourant
chemicals (semiochemicals) that can be detected by the olfactory system of conspecifics [24-
27]. Semiochemicals are released in external secretions and excreta, and elicit responses related
to the social, kinship, health, and reproductive status of the source animal.

The structure of fox society is also likely to depend on chemical signalling. Olfaction in
most mammals involves two complementary systems, the main olfactory system and the vom-
eronasal system (VNS), which is particularly associated with reproductive behaviours and
maternal recognition [28, 29]. Recently the anatomy and function of the fox VNS has been
found to be well-developed and suited to assess the reception and recognition of semiochem-
icals [30]. In further evidence of their chemical signalling, foxes exhibit marking behaviour
with urine [31-33] and faeces [34], and have an aromatic supracaudal tail gland [35] whose
scent chemicals have recently been described [36].

It is over four decades since Jorgenson et al. [31] first identified scent chemicals in the urine
of the red fox. Here we use the term “scent chemicals” for odourants whose signalling role has
not been established. These authors noted earlier reports of apparent olfactory communication
in foxes and other wild canid species and suggested that the compounds they found may serve
this function.

Non-volatile compounds can also act as semiochemicals but require direct contact with the
sensing animal to access the receptors of the VNS [37]. Volatile compounds, which act at a dis-
tance, are the focus of this study, which aims to update knowledge of fox urinary volatiles. The
findings will inform future behavioural investigations into fox chemical communication. This
in turn could enable the development of novel and improved methods of understanding and
managing wild and urban fox populations.

Materials and methods
Animals and sample collection

Foxes are a declared pest species in Australia and are regularly culled by licensed hunters to
protect livestock and native animals. The Animal Experimentation Ethics Committee of the
University of Tasmania advised that there are no ethical issues in taking samples from animals
that had already been legally killed by licensed hunters. Foxes were obtained during winter
(July and August) from three farming (grazing and agriculture) regions in Victoria: the Ander-
son Peninsula, Skipton, and Koo Wee Rup.

Samples were taken as soon as possible (mostly within 30 min) after death, by syringe from
the bladder after its exposure by an abdominal incision. The urine was immediately placed in a

PLOS ONE | https://doi.org/10.1371/journal.pone.0248961 March 30, 2021 2/24


https://doi.org/10.1371/journal.pone.0248961

PLOS ONE

Volatile scent chemicals in the urine of the red fox

glass vial with PTFE-sealed cap and kept on ice until frozen later that day. Afterwards, samples
were stored at -80°C until being thawed for analysis. The 15 foxes were adults, 13 males and 2
females, with no obvious indications of ill-health.

Overview of analyses

The initial analyses used gas chromatography-mass spectrometry (GC-MS) and solid-phase
microextraction (SPME) to identify volatile compounds in the headspace above fox urine. The
relative abundance of each compound was determined as the fraction (%) of the total area of
all measured peaks. These relative percentage values are interdependent, and it is more mean-
ingful to measure the concentrations (eg as pug/ml urine) as these are independent of each
other. Concentrations vary with water intake and urine flow, but can be standardised as the
ratio to the concentration of creatinine, which enables meaningful comparisons to be made
between individuals. This is the standard used for clinical urinary measurements [38].

This study was conceived as exploratory, and was not designed to quantitate the com-
pounds found, which were mostly unknown. Quantitation of GC-MS analyses requires the
addition of an internal standard to the urine sample before analysis. The finding that acetophe-
none was present in all urine samples, usually as the major constituent, indicated that its con-
centration could be determined and then used to estimate the concentration of other
compounds in ‘acetophenone equivalents’. This approximation ignores the expected differ-
ences between compounds in their extraction, chromatography and detection, but does avoid
the problem of the interdependence of relative abundances.

Quantitation of acetophenone required another GC-MS analysis, with the addition of dg-
acetophenone as internal standard. These analyses showed that, after more prolonged storage,
the amounts of some other compounds were reduced. Therefore, only acetophenone was ana-
lysed in the quantitative GC-MS analysis, and its concentration used with the peak area data
from the first analysis to calculate the concentrations of other compounds in ‘acetophenone
equivalents’. Creatinine was determined by liquid chromatography-mass spectrometry
(LC-MS), and the ratio of concentrations of compound/creatinine calculated.

This approach to quantitation was a consequence of the progressive development of our
knowledge of the urinary compounds, and is neither conventional nor completely satisfactory,
but does provide approximate data in biologically meaningful units. Given the provisional
nature of the quantitative analysis, it has only been applied to the sulfur compounds which
seem to be the most interesting group in the fox urine.

Analysis by gas chromatography-mass spectrometry (GC-MS)

Solid-phase microextraction (SPME) used an automated system, Gerstel Multipurpose Robotic
Sampler, (Gerstel GmbH, Mullheim, Germany) fitted to a Varian CP-3800 gas chromatograph
coupled to a Briiker 300-MS triple quadrupole mass spectrometer. The SPME fibre was a
3-phase 50/30 um DVB/CAR/PDMS Stableflex (Supelco Analytical) and was conditioned
before use at 270°C for 30 min in the GC injector.

Urine samples were thawed at room temperature, centrifuged and 0.5 ml placed in a 20 ml
glass headspace tube closed with a PTFE-sealed magnetic screw cap. Kovats retention indices
(KI) were determined by addition of a mixture of alkanes (C¢-C,7; Supelco Analytical) in 10 ul
dichloromethane:hexane, 4:1. The concentration of acetophenone was determined by addition
of an internal standard (dg-acetophenone, Sigma-Aldrich), 300 ng in 10 pl ethanol.

The tubes were heated to 40°C, and after 5 min pre-incubation the fibre was inserted into
the headspace. The extraction proceeded for 30 min at 40°C while the tube contents were
mixed by repeated cycles of 400 rpm rotation for 5 s followed by 1 s rest.
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Chromatography used an Agilent DB-5MS column, 30 m x 0.25 mm, with 0.25 pm phase
thickness. The GC conditions were: injector 270°C, He 1.2 ml/min, split 10:1 for 5 min then
20:1, oven 40°C for 4 min, then 6°C/min to 80°C, 8°C/min to 250°C, 25°C/min to 290°C for 0
min (total time 33.52 min). Electron ionisation (EI) mass spectra were recorded in full scan
mode using operating conditions described previously [39].

Samples were initially analyzed within 4 months of collection, and the acetophenone was
quantitated subsequently. Some samples had been collected before the automated apparatus
was available (foxes 1-8), and their initial analyses used manual extraction and injection meth-
ods previously described [40]. For all samples, acetophenone was quantitated using the auto-
mated method as described in Overview of analyses.

Four fox samples were also analyzed after extraction of urine with polydimethylsiloxane
(PDMS) coated stir-bars (Twister™, Gerstel), following the method described by Zhang et al.
[41]. This enabled some less volatile compounds to be identified, but they were not
quantitated.

Identification of compounds

Compounds were initially identified from matches of their mass spectrum (MS) and Kovats
retention index (KI) with the searchable database in the NIST library [42]. Some compounds
eluted before hexane, and their KI values were estimated by extending the KI-retention time
plot with the early-eluting acetone and dichloromethane and using their literature KI values.
Water blank samples showed several extraneous peaks, mainly Si compounds from the SPME
fibre and, occasionally, traces of laboratory solvents; these were ignored.

Structures were confirmed by comparison with standards (obtained from Sigma Aldrich),
when available, as well as by interpretation of their mass spectra where this gave characteristic
ions. In particular, sulfur compounds were characterized by ions with the **S isotope, two dal-
tons heavier than the corresponding **S ion and with about 4% of its abundance for each sulfur
atom in the molecule [43]. Loss of the sulfur moiety (-SH, -SCH3, -CH,SCHj radicals, and
related whole molecules) produced ions that distinguished thiols from methyl sulfides, and the
1- and 2-thio-substituted phenylethane isomers from each other.

Analysis by liquid chromatography-mass spectrometry (LC-MS)

Creatinine was determined in diluted (1:1000) urine by LC-MS, with the addition of d;-creati-
nine (Santa Cruz Biotechnology, CA, USA), 5 ng/ml. The instrument, column and general
operating conditions have been described previously [44]. The mobile phase was 0.1% v/v for-
mic acid (98%): acetonitrile (2%) with flow rate 0.3 ml/min. The compounds eluted at 1.37
min. The mass spectrometer used positive electrospray ionization with multiple reaction mon-
itoring, and the transitions for quantitation were m/z 114.1—44.0 (creatinine) and m/z
117.1—47.0 (d5-creatinine).

Quantitation and statistical analysis

From the SPME-GC-MS chromatograms, compound abundances were determined by peak
area, measured as total ion current (TIC), and expressed as the percentage of the total area of
all peaks measured in each fox. In cases of co-elution, a good quality mass spectrum was found
for each compound, from which up to three characteristic (and non-interfering) ions were
selected. The total abundance of these quantitative ions (QI) in the mass spectrum was divided
by the total of all ions (TIC) giving the ratiogyric. Thereafter, a selective chromatographic plot
of quantitative ions gave a QI peak from which the expected TIC peak area was calculated
(TIC4rea = Qlarea/ratiogy/ric)-
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The GC-MS chromatograms showed that the TIC peaks for acetophenone and its dg-isomer
did not completely resolve. Their abundances were measured by ion plots of m/z 120 + 105
+ 77 for acetophenone (comprising 0.802 TIC) and m/z 128 + 110 + 82 for dg-acetophenone
(0.783 TIC). The response factor acetophenone/dg-isomer was 0.962.

The concentrations of sulfur compounds were estimated as ‘acetophenone equivalents’.
This was calculated from the ratio of their peak areas to that of acetophenone, whose concen-
tration (pg/ml) was determined from the ratio of its peak area to that of the internal standard,
dg-acetophenone.

The relative amounts of compounds varied greatly, indicating that the data are best
described by non-parametric statistics. The median was used as the most robust measure of
the central value, and the maximum and minimum values to show the range. Compounds not
found were considered as missing rather than zero values. The frequency of occurrence was
expressed as the number of foxes in which the compound was found out of the total samples
analyzed (N = 15 for SPME and 4 for stir bar extractions).

Occurrence of compounds found in other mammals

We considered that the most interesting compounds, and the most likely to act as semiochem-
icals, would be those that are found most exclusively in foxes. Therefore, the literature was
searched for reports of the presence of the fox volatiles in other mammals. The search used Sci-
Finder (https://scifinder.cas.org/), with search terms including CAS no., scent, odourant, pher-
omone, urine, faeces, anal, gland, and secretion. The compounds were also searched for in the
human metabolome database (https://hmdb.ca/) [45], whether in excreta, blood or normal
metabolism. General information about sources and uses of chemicals was obtained from the
Pubchem database (https://pubchem.ncbi.nlm.nih.gov/#).

Results

Analysis by SPME-GC-MS produced a chromatogram with many peaks, illustrated in Fig 1
Examination showed 68 compounds of interest, and these are listed in Table 1 together with
the internal standard (no. 31). Sixty compounds were found by SPME analysis and another 8
after stir-bar extraction. Fifty-three compounds were possible endogenous scent chemicals
and the relative abundances of 47 were determined. There were also 10 plant-derived chemi-
cals (abundances determined for 8) and 5 anthropogenic xenobiotics (abundances determined
for 4). Ethyl acetate, although a known endogenous scent compound, is also a commonly used
laboratory solvent making its quantitation unreliable without special precautions against
contamination.

Table 1 summarizes the findings with compounds numbered and listed in order of elution
by Kovats index, uniquely identified by CAS number, and assigned to informal chemical
groups based on carbon skeleton and functionality. Fig 2 shows the number of foxes in which
each compound was found. This varied from 1 to 15 (median 3), while the number of com-
pounds found in individual foxes varied from 8-36 (median 19). Fig 3 summarizes the relative
amounts of each compound found (as % total) as the quartiles (lower, 25%; median, 50%;
upper, 75%) and range.

The results of the literature search are presented in Table 1 as findings in excreta and exter-
nal glands in foxes, other canids, other mammals, and the human metabolome. Note that diet
influences urinary composition, and many studies used captive animals whose diet may have
differed significantly from that in the wild. The references for Table 1 are listed separately in
the S1 Text.
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Fig 1. SPME-GC-MS analysis of urine of a male fox (no. 6). The peak numbers refer to compounds in Table 1, and
C6 and C14 are hexane and tetradecane, respectively (both artifacts). Unlabelled peaks are fibre-related or other
artifacts.

https://doi.org/10.1371/journal.pone.0248961.9001

Fig 4 shows the relative amount of each compound found in individual foxes. Acetophe-
none (33) was the only volatile compound found in all foxes, and in most (13/15) it was the
most abundant of the compounds whose peaks were measured (median 66.7, range 4.2-95.4%;
Fig 3). It is commonly found in mammalian urine (Table 1). L-Phenylalanine is metabolized
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Table 1. Compounds found in fox urine and their reported findings in foxes, other canids and other mammals.

Compound Reports in canids® Reports in other
mammals®
No. | Chemical name KI | R*or |CAS Chemical |Fox Wolf |Coyote |Dog |African Black Species, site, reference Reports in
KI lit. | no. group® Ref 10 wild dog backed no. If more than 3, the | HMDB?
Ref 14 Jackal Ref | no. of Spp. and site but
14 no ref no.
1 | Methanethiol 474 | 473 |74-93- | AS Mouse U15, human Ul6 | N, U, F
1
2 | 2-Propanone 500 R 67-66- | K Ue6,7 19} Ull Mouse U15, human U17 | N, U, F
1 Al2
3 | Dimethylsulfide 520 R |75-18- | AS U7 A8 Al2 5Spp. U F
3
4 | 1-Propanol 551 R | 71-23- | Alc u7 Al2 Mouse F18
8
5 | 2-Butanone 595 R 7893 |K 18[9 1) Ull 4 Spp. U U,F
3 Al2
6 | 2-Methyl-3-buten-2-0ol | 607 R | 115- Alc Mouse U19, African
18-4 elephant U20
7 | Ethyl acetate® 610 R | 141- E T1 Al2 Ubiquitous in eukaryotes | N, U, F
78-6
8 | 2-Pentanone 688 R | 107- K U6 1) 7 Spp. U U,F
87-9
9 | 3-Pentanone 696 R 96-22- | K U6 4 Spp. U
0
10 | S-Methylthioacetate 699 R |1534- | ASE Lion U21, mink A22 F
08-3
11 | 3-Hydroxy-2-butanone | 706 | 707 |513- K, Alc Mouse U19, tree shrew U,F
86-0 U23, human U24
12 | 3-Isopentenyl alcohol 729 R | 763- I, Alc U Mouse U19, bobcat U25, | F
32-6 deer U26
13 | 4-Methyl-2-pentanone | 730 R |108- K U6 Deer mouse U27, deer U, F
10-1 U26, African elephant
U20
14 | Dimethyl disulfide 742 | R |624- | AS u7, |U Ull, |F 4 Spp. U, mink A22 U, F
92-0 A8 Al2
15 | 3-Isopentenyl thiol 794 - 58156- | IS U2
49-3
16 | 4-Heptanone 871 R 123- K U2,3,4 | U6 7 Spp. U U,F
19-3
17 | Isopentyl methyl sulfide | 877 R [ 13286- | IS U24 |U67 |U U1l
90-3
18 | Styrene 888 R | 100- Ph T1 U6 F9 UF 4Spp.U,28pp.F,1Sp. | F
42-5 A, 3 Spp. G
19 | 2-Heptanone 889 R 110- K U2 U6 A8 | U F 8 Spp. U N, U, F
43-0
20 | 3-Isopentenyl methyl 896 | 883 |5952- | IS U2,3,4 | U6 18] Mink A22
sulfide 75-0
21 | 4-Butanolide 907 | 908 |96-48- |L UF Lion U28, H U29, bat N, F
0 odour 30
22 | Dimethylsulfone 914 R |67-71- | AS UF F Mouse U15, cheetah U31 | N, U
0
23 | Benzaldehyde 952 R 100- Ph, Ald U3,4 U6 A8 UFA FA 6 Spp. U U,F
52-7 T1 F9
24 | Dimethyl trisulfide 963 R [3658- | AS U7 A8 | U UF Human Ul6 F
80-8
25 | Phenol 980 R 108- PhOH U2 Ue,7 UFA FA 7 Spp. U, mouse F18 U,F
95-2 A8 F9
(Continued)
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Table 1. (Continued)

Compound Reports in canids® Reports in other
mammals®
No. | Chemical name KI | R*or |CAS Chemical |Fox Wolf |Coyote |Dog |African Black Species, site, reference Reports in
KI lit. | no. group® Ref 10 wild dog backed no. If more than 3, the | HMDB*
Ref 14 Jackal Ref | no. of Spp. and site but
14 no ref no.
26 | 6-Methyl-5-hepten- 983 R | 110- LK U23 | U6 6 Spp. U F
2-one 93-0 T1
27 | B-Myrcene 990 | 990 | 123- Terp T1 U Mouse U45 F
35-3
28 | Octanal 999 R 124- Ald T1 U UF FA 7 Spp. U F
13-0
29 | Carbitol 1008 | 1007 |111- AX, Alc, Exposed workers U32
90-0 Ether
30 | 2,6,6-Trimethyl- 1031 R 2408- Apo, I, K T1
cyclohexanone® 37-9
31 | d8-Acetophenone 1055| R | 19547- | AX,Ph,K
(internal standard) 00-3
32 | 1-Phenylethanol 1056 | R | 98-85- | Ph, Alc UF Lion U28, tree shrew
1 U23, H exposed workers
U33
33 | Acetophenone 1061 R |98-86- | Ph,K U234 | U67 |U U47 |UF 11 Spp. U F
2 F9
34 | 4-Methylphenol 1071 | 1070 | 106- PhOH U2 U7 F9 UF F 7 Spp. U U F
44-5
35 | Nonanal, branched 1087 - Ald U UF
36 | Linalool 1096 | R | 78-70- | Terp U2 4 Spp. U U
6
37 | Nonanal, n- 1101 R | 124- Ald T1 6] UF 10 Spp. U, springbok G34 | N, U
19-6
38 | 1-Phenylethane thiol 1121 | R | 6263- |PhS U2 Striped skunk A35
65-6
39 | 1-Octanethiol 1122 R | 111- AS
88-6
40 | Benzyl methyl ketone® | 1125 | 1124 | 103- Ph, K 6 Spp. U
79-7
41 | Benzoic acid 1154| R | 65-85- | Ph U7 A8 16) UFA FA 4Spp. U N, U, F
0
42 | Benzyl methyl sulfide 1161 | 1167 | 766- PhS
92-7
43 | Ethyl benzoate 1166 | R |93-89- |Ph,E U2 Hamster U36, deer G37,
0 mandrill G38
44 | 2-Phenylethane thiol 1174 R | 4410- |PhS U2 Hooded & spotted skunk
99-5 A39
45 | 1-Benzothiophene 1190 R 95-15- | AX, S
8
46 | 1-Phenylethyl methyl 1196 - 13125- | PhS U2
sulfide 70-7
47 | Dimethyl tetrasulfide 1215 | 1215 | 5756- | AS Human Ul6
24-1
48 | B-Cyclocitral 1218 R | 432- Terp, Ald | U2T1 U
25-7
49 | trans-Geraniol® 1254 | R | 106- Terp, Alc U2 4Spp. U
24-1
50 | Nonanoic acid, n- 1260 R | 112- FA T1 16) A Tree shrew U23, lynx
05-0 U40, tiger U41
(Continued)
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Table 1. (Continued)

Compound Reports in canids® Reports in other
mammals®
No. | Chemical name KI | R*or |CAS Chemical | Fox Wolf |Coyote |Dog |African Black Species, site, reference | Reports in
KI lit. | no. group® Ref 10 wild dog backed no. If more than 3, the | HMDB?
Ref 14 Jackal Ref | no. of Spp. and site but
14 no ref no.
51 | 2-Phenylethyl methyl 1280 - 5925- | PhS U234
sulfide 63-3
52 | Indole 1280 R | 120- Amine U2 U7 A8 UF FA 6Spp. U N, F
72-9 F9
53 | Unknown A 1299 - - Unk
m/z 41, 69, 123, 155
54 | 2-Amino- 1300 | 1299 | 551- Ph, K, Ferret U A42, bat odour
acetophenonef 93-9 Amine 30
55 Z—Methquuinolinef 1309 | 1308 |91-63- | Q U234 | U7 U13 4 Skunk spp. A39, deer
4 mouse U27, ferret U42
56 | Ethyl hydrocinnamate | 1346 | 1347 | 2021- |Ph,E Red deer ventral G U37
28-5
57 | Decanoic acid, 1348 - 334- FA 18] 4Spp. U F
branched 48-5
58 | Texanol isomer’ 1376 | 1380 | 74367- | AX, E, Alc Mouse U34, human U33,
34-3 tree shrew U23
59 | Unknown B m/z 43, 69, | 1404 - Unk
71,135, 168
60 | 2-Methylquinoline, 1443 - 826- Q
8-hydroxy 81-3
61 | trans-Geranyl acetone | 1451 R | 3796- | Terp,K U2,3 7 Spp. U, springbok G34,
70-1 T1 mouse G43
62 | B-Ionone and its 1489 | R | 14901- | Apo,L,K T1 Both in flying squirrel
5,6-epoxide 07-6 F44, B-ionone in human
U24
63 | Unknown C m/z 41, 69, | 1490 - Unk
136, 155
64 | 2,4-Di-tert-butyl phenol | 1511 R | 96-76- | AX, PhOH 4Spp. U U,F
4
65 | Dihydroactinidiolide 1536 | 1538 | 17092- | Apo,I, L T1,5
92-1
66 | 4-Dodecanolide’ 1680 | 1681 |2305- |L Siberian hamster U36,
05-7 tiger U41
67 | 5-Dodecanolide’ 1711 | 1710 | 713- L Tiger U41
95-1
68 | Octasulfur 2057 | 2055 | 10544- |S F9 Al2 Cheetah U31, tiger U41,
50-0 lynx U40, possum G46
69 | Bisphenol A 2173 | 2108 | 80-05- | AX,PhOH |T1 Mandrill G38 N, U
7

“Identification confirmed by a reference standard (R) or literature KI value (KI lit). A dash (-) indicates that no literature KI value was found,

PChemical groups: Alc, alcohol; Ald, aldehyde; Amine; Apo, apocarotenoid; AS, alkyl sulfur compound; E, ester; FA, fatty acid; I, isoprenoid or norisoprenoid; IS, (nor)
isoprenoid sulfur compound; K, ketone; L, lactone; Ph, phenyl compound; PhOH, phenol; PhS, phenyl sulfur compound; Q, quinolone compound; S, sulfur compound;
Terp, terpenoid; Unk, unknown; AX, anthropogenic xenobiotic.

“Scientific species names (ICZN) may be found in the references cited. Sites where compounds were found: U, urine; F, faeces; A, anal sac or gland; T, tail gland; G,
other glands; blank, not found.

Reference numbers are given after the site, or at the head of the column. The references are listed in SI Text. References for Table 1.

YHMDB, Human Metabolome Database, https://hmdb.ca/, used here as a supplement to the reports in the general published literature. Additional abbreviation: N,
normally found in human body or excreta (including xenobiotics from plants or commercial products).

°Ethyl acetate is ubiquitous in eukaryotes and a frequent urinary finding. It was not quantitated because it is also a commonly used laboratory solvent liable to
contaminate SPME analyses.

fOnly found in stir bar analyses, whose relative quantitative data could not be combined with those from SPME analyses.

https://doi.org/10.1371/journal.pone.0248961.t001
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Fig 2. Number of foxes in which each compound was found. Only acetophenone (compound no. 33) was found in all 15 foxes. The internal standard (31) was
only present when added, and 8 compounds were only found in stir bar (SB) analyses which were conducted on 4 samples. The colours indicate the chemical
groups in Table 1.

https://doi.org/10.1371/journal.pone.0248961.9002

to acetophenone and 1-phenylethanol (32) in plants [46] and diet may be the source of these
compounds in foxes. The median acetophenone concentration was 6.0 (range 0.3-31.7) pg/ml.
The fox (no. 6) in which acetophenone was least abundant (4.2%; Fig 4) had greatest relative
amounts of three sulfur compounds: dimethyl disulfide (14, 33%), dimethyl trisulfide (24,
15%) and S-methylthioacetate (10, 13%). This illustrates the limitation in using relative per-
centages as a surrogate for quantitation: the values are interdependent. Unlike acetophenone,
for nearly every other compound found the median was closer to the minimum than the maxi-
mum value, indicating that for most compounds there were only a few foxes in which there
was a high relative abundance.

Sulfur compounds were the most significant findings in fox urine, accounting for 32% (17/
53) of the endogenous scent compounds, and including the second most frequently found
compound, 3-isopentenyl methyl sulfide (20), present in 14/15 foxes. Five sulfur compounds
have only been found in foxes: 3-isopentenyl thiol (15), octanethiol (39), benzyl methyl sulfide
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Fig 3. The relative abundance (%total) of each compound in all foxes. Boxes show the lower, median and upper
quartiles, and the line gives the range of values. The number of foxes in which each compound was found is given in
Fig 2. Eight compounds were only found in stir bar analyses and their amounts were not included. The colours
indicate the chemical groups in Table 1 and Fig 2.

https://doi.org/10.1371/journal.pone.0248961.g003

(42), and 1- and 2-phenylethyl methyl sulfide (46 and 51) (Table 1). Five others have only been
reported in one or two other species: methanethiol (1, mouse and human), S-methylthioace-
tate (10, lion and mink), 1-phenylethane thiol (38, striped skunk), 2-phenylethane thiol (44,
hooded and spotted skunk) and dimethyl tetrasulfide (47, human). Isopentyl methyl sulfide
(17) has only been found in canids, 3-isopentenyl methyl sulfide (20) in canids and mink, and
dimethyltrisulfide (24) in canids and humans.

Elemental sulfur (68) has been reported in urine of several carnivores: canids (wolf and
dog) and felids (cheetah, tiger and Eurasian lynx), and also in the paracloacal glands of the her-
bivorous brushtail possum. Unlike the other animals that excrete elemental sulfur, the felids
did not excrete any sulfur compounds. The lactones have also been reported in felid urine:
4-butanolide (21) in the lion and 4- and 5-dodecanolide (66 and 67) in the tiger, which also
excreted many other lactones [47].

The sulfur compounds are grouped in Table 1 according to similarities in their carbon skel-
eton or its absence: isoprenoid (IS), other alkyl (AS), phenyl (PS) and octasulfur (S). Each
grouping may indicate a metabolic relatedness. For each fox, the relative amount of each
group as a fraction of total sulfur compounds is shown in Fig 5. The individual variation in
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Fig 5. Sulfur compounds found in the urine of 15 foxes. Amounts are expressed as the percentage of all sulfur
compounds in each fox, then grouped as in Table 1: alkyl (AS), isoprenoid (IS), phenyl (PhS) and elemental sulfur (S).
Foxes 12 and 13 were female, and fox 10 produced no detectable sulfur compounds.

https://doi.org/10.1371/journal.pone.0248961.g005
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these proportions is striking, as is the absence of detectable sulfur compounds in one
individual.

Urinary concentrations vary with the flux of water but can be adjusted to reflect the meta-
bolic production of individual compounds. Creatinine is a protein degradation product that is
produced and excreted in urine at an approximately constant rate, dependent on muscle mass
but regardless of urine volume [48]. Urinary concentrations expressed as the ratio to creatinine
give an amount that is independent of urine volume although it can be affected by body
weight, age, or recent meals. This correction is routinely applied to normalize urinary concen-
trations of endogenous and xenobiotic compounds and enables meaningful comparisons
between individuals. The median urinary concentration of creatinine in foxes was 0.73 (range
0.32-2.85) mg/ml, similar to that reported in dogs [48]. The corrected urinary concentration
of acetophenone, the most abundant compound, was: median 4.6 (range 0.3-30.7) pg/mg
creatinine.

The total concentration of endogenous sulfur compounds in each animal was estimated
from the ratio of their total peak areas to that of acetophenone. This is only an approximation,
as extraction and response factors differ between compounds. The total urinary concentration
of sulfur compounds varied greatly between foxes: median 1.1 (range 0.2-11.2) pg/ml in aceto-
phenone equivalents. Division by creatinine concentration gave amounts that varied even
more, and showed that the metabolic production of sulfur compounds varied greatly between
foxes, even when fox no. 10 (in which none was detectable) was excluded: median 1.2 (range
0.4-32.3) ug ‘acetophenone equivalents’/mg creatinine. Fox 10 had the lowest urinary creati-
nine concentration (0.32 mg/ml) but its acetophenone concentration was 8.0 pg/ml, higher
than the median for all foxes (6.0 pg/ml). After correction, its concentration per mg creatinine
was still high (25.3 pg acetophenone/mg creatinine).

Another chemical theme was the presence in fox urine of many isoprenoids and related
compounds that are well-known as plant chemicals. Several have also been found in the fox
tail gland: 2,6,6-trimethylcyclohexanone (30), B-cyclocitral (48), B-ionone and its 5,6-epoxide
(which co-eluted, 62) and dihydroactinidiolide (65) [36]. Other plant chemicals are commonly
occurring urinary metabolites: 3-isopentenyl alcohol (12), trans-geraniol (49), trans-geranyla-
cetone (61), and the terpenes B-myrcene (27) and linalool (36).

2-Aminoacetophenone (54) has only previously been found in ferret urine and faeces [41],
and in the body odour of the Mexican bat, Tadarida brasiliensis [49]. 2-Methylquinoline (55)
is found in anal sacs of 4 species of skunk [50] and the urine of another musteloid, the ferret
[41], as well as urine of fox, wolf and dog (Table 1). Its 8-hydroxy-derivative (60) has only been
found in the fox and may be an oxidized metabolite.

There were five compounds of human origin that may have been present in foxes due to
their ingestion of contaminated plants, food scraps or ground water.

Carbitol (29), 2-(2-ethoxyethoxy)ethanol, is a synthetic chemical used in many products
including pesticides and cleaners. It was found in only 3 foxes and has been reported in the
urine of exposed workers [51], but not previously in wild animals.

Texanol B (58) is a monoester of isobutyric acid and 2,2,4-trimethyl-1,3-pentanediol,
mostly used as an undefined mixture of the two isomers. Annual production in the USA is 45-
113 thousand metric tons, and it has multiple uses in domestic and industrial products, includ-
ing paints, adhesives and coatings. It has been found in waste water from agricultural [52] and
household sources [53]. It was present in all four stir bar fox urine analyses, and has been
found in urine of humans and captive animals but not in wildlife, presumably due to their lack
of exposure.

2,4-Di-tertiary-butylphenol (64, 2,4-DTBP) is an antioxidant used in foods and plastics
from which it leaches out into the environment [54]. It was present in 9/15 fox urines and has
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been found at high levels in human urine; unexpectedly more than its 2,6-isomer, also a
widely-used antioxidant, that has been the isomer of most concern [55]. In captive mice, sepa-
rate urinary studies have found either the 2,4-isomer [56] or the 2,6-isomer [57]. The latter
was also found in the urine of captive lions [58] and tree shrews [59] and the sternal gland of
mandrills [60].

Bisphenol A (69, 4-[2-(4-hydroxyphenyl)propan-2-yl]Jphenol; BPA) is used in many prod-
ucts, including polycarbonate and other plastics (importantly, food packagings), building
materials and paper coatings [61]. Annual production in 2011 was 5.5 million metric tons, and
it leaches into the environment, where it now has a world-wide distribution in water and efflu-
ents [62]. It was present in most fox urine and was previously found in their tail gland [36]; it
is also frequently found in humans and aquatic animals but has not been reported in wild ter-
restrial mammals. There is one report of BPA in the sternal gland of the mandrill, held in cap-
tivity [60].

1-Benzothiophene (45) is an environmental pollutant from petroleum [63] but it has also
been found to be a plant defence chemical, being produced by maize (Zea mays) in response to
fungal infections [64]. It has not been previously reported in mammals, although has been
found in farm-raised catfish [65]. We consider that the fox urinary benzothiophene is
exogenous.

The remaining compounds found were mostly frequent occurrences in mammalian urine,
faeces or glandular secretions, although this does not preclude them from being fox semio-
chemicals. A few have been characterized as mammalian signalling compounds: 4- and 2-hep-
tanone (16 and 19), acetophenone (33), 4-methylphenol (34), benzoic acid (41) and
4-dodecanolide (66) [26].

There were three compounds that could not be identified although they were significant
findings in several foxes (Figs 2 and 3). Unknown A (53) had a KI of 1299 and showed ions at
m/z 155.2 (80%), 123.2 (21%), 101.2 (13.2%), 68.2 (15%), 69.2 (100%), 67.2 (26%) and 41.1
(44%). Unknown B (59) had a KI of 1404 and showed ions at m/z 168.2 (21%), 135.2 (43%),
109.2 (47%), 82.2 (46%), 71.2 (100%), 69.2 (81%) and 43.1 (40%). Unknown C (63) had a KI of
1490 and showed ions at m/z 155.2 (17%), 136.3 (25%) and 69.2 (100%).

Discussion

This study has extended our knowledge of the volatile scent compounds in fox urine and has
indicated areas for further investigation. Although urine and its constituents have a well-estab-
lished role in chemical signalling between conspecifics [24], the primary role of urine produc-
tion is for metabolic homeostasis, by excretion of waste products and maintenance of normal
body salt and water levels [38]. Wastes include the end products of metabolism (eg creatinine
from amino acids), surpluses of salts and water, and xenobiotics without nutritional value,
such as plant secondary metabolites and anthropogenic synthetic chemicals. Animals learn to
associate particular odours with characteristics of the emitting animal, for example detecting
dietary-related compounds [66] or microbial products in a conspecific [67] or identifying
predator or prey species [68]. Pheromones seem to have arisen when an odourant compound
emitted by one animal became a cue to a property of significance to a receiving conspecific,
followed by co-evolution of the chemical structure and olfactory receptors to produce an
innate system that is both sensitive and specific [24, 69, 70].

Thus responses to signalling compounds can be learned or innate, and in the absence of
behavioural studies it is not possible to exclude a signalling role for any of the compounds
found in fox urine. Indeed, it may be a combination of chemicals that conveys a signal [24]
although it has been argued that a single compound is more likely [71, 72]. Considering the
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many different responses that are associated with semiochemicals [26, 73] it seems likely that a
number of chemical constituents are involved.

Mammals share a common basic metabolism and resultant urinary composition, so it is not
surprising that many of the volatile compounds found in fox urine are also present in other
mammals. However, there are several compounds found only in foxes or in few other mam-
mals, indicating that they are not normal mammalian metabolites and that their production
has evolved to serve a functional role in foxes.

In particular, a third of fox urinary volatiles are sulfur compounds, a notoriously odiferous
group, with a limited distribution amongst other animals. Three different carbon groups
(alkyl, isopentyl and phenylethane) formed the sulfur compounds indicating distinct meta-
bolic pathways in their synthesis. Once formed as thiols, subsequent methylation can readily
produce the corresponding sulfide. Pheromone diversity can evolve from such small chemical
changes [74].

The phenylethane group is present in 1- and 2-phenylethane thiol, which are only otherwise
found in three skunk species where they are produced in secretory glands that line the anal
sacs [50, 75]. Skunks use the foul-smelling sac contents as a defensive spray.

The corresponding methyl sulfides of 1- and 2- phenylethane thiol have only been found in
fox urine. It is not known where the four phenylethane sulfur compounds are produced in the
fox, whether the liver or kidney or some unknown gland. Lions and other big cats produce a
marking fluid containing many scent compounds that can be voided with urine [76, 77], but
this has not been investigated in canids.

Isopentyl methyl sulfide and its unsaturated cogener, 3-isopentenyl methyl sulfide, share
the same branched 5-carbon group and have only been found in the urine of three other canids
and the anal sac of the mink, a musteloid related to skunks [78]. Minks can expel the contents
of their anal sacs and use this for defence and to mark territory. The corresponding 3-isopente-
nyl thiol has only been found in fox urine, while the related 3-isopentenyl alcohol is found in
several other mammals.

S-Thiomethyl acetate has also been found in mink anal sacs [78], and in the lipid-based
marking fluid which is voided with lion urine [58]. It is formed by acetylation of methanethiol.
It was found in the largest proportion in the one fox in which the precursor methanethiol was
also present.

Skunks are sparing in their use of their defensive spray, as it is only slowly replenished [79,
80]. This is likely to be due to a limited supply of metabolic precursors. Cysteine and other sul-
fur-containing amino acids (SAAs) are precursors of glutathione and other defence chemicals
[81, 82]. Production of glutathione is limited by SAA availability and plant proteins tend to be
deficient in SAAs [83]. Animal diets are a better source of sulfur compounds [84].

All but one of the fox urine samples contained a suite of sulfur compounds, although the
total amount was highly variable. Dietary-related compounds can represent a reliable or “hon-
est” signal of good nutritional status, which can influence attractiveness and mate choice [66].
If sulfur compounds are required for a high quality diet, then their abundance in urine could
indicate just such an honest signal to foxes.

The acetophenone finding may be quite significant, since in no other animal has it been
found in such abundance. Acetophenone has been found in all previous fox urine studies but
only sometimes found in the urine of other species, suggesting that its production is variable.
It has been found in other canids (Table 1), and in wolf urine it comprised 1-2% total volatiles
[85]. The excretion of acetophenone was sex-dependent in wolves, being greater in females
and castrated males [86, 87]. Recently acetophenone has been reported in dog urine where it
increased during oestrous and apparently acts as a semiochemical with complex effects on
mating behavior [88, 89]. Although acetophenone is not usually reported in human urine, in
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one study its excretion was found to increase after the experimental induction of inflammation
[90].

Most of the urinary isoprenoids are known plant products and could originate in the fox’s
diet that, as discussed above, can have a significant plant content. Isoprenoids are synthesized
in plants from A3-isopentenyl diphosphate, and include terpenoids, carotenoids and steroids
[91]. Mammals synthesize steroids the same way, but only plants can produce terpenoids and
carotenoids. However, mammals can synthesize the C5-carbon skeleton required for the three
sulfur-containing isoprenoids found in fox urine: 3-isopentenyl thiol, 3-isopentenyl methyl
sulfide and isopentyl methyl sulfide, as well as 3-isopentenyl alcohol.

Terpenoids are produced from an early branch of the isoprenoid chain development [92].
The terpenoids, B-myrcene, linalool, B-cyclocitral, trans-geraniol and trans-geranyl acetone,
are volatile C10-13 scent compounds present in leaves and flowers [93], and are frequent uri-
nary findings in herbivores and omnivores. 6-Methyl-5-hepten-2-one (sulcatone) is a terpe-
noid commonly found in animal urine and human body odour where it acts as an attractant to
mosquitoes that have adapted to human prey [94]; it is also common in insect secretions [95,
96].

Carotenoids are C40 plant pigments that colour fruits and flowers [97, 98]. Their break-
down products, apocarotenoids, are plant signalling and defence molecules [99, 100]. Low
molecular weight volatile apocarotenoids are potent odourants that attract pollinating insects,
and include B-ionone, B-ionone-5,6-epoxide, 2,4,6-trimethylcyclohexanone and dihydroacti-
nidiolide [98, 101]. 6-Methyl-5-hepten-2-one and B-cyclocitral can also be formed by caroten-
oid degradation [98, 101].

These and other apocarotenoids were also found in the fox tail gland secretions [36], but
are not known in other mammals. Animals require carotenoids and apocarotenoids for vision
(eg retinoids) and reproductive and general health, and obtain them by eating plants or, for
carnivores, eating herbivores [101, 102]. Thus, their expression as odourant molecules may act
as a reliable olfactory signal of good nutrition. Many birds advertise the quality of their carot-
enoid consumption by using the pigments to colour their feathers or skin, and this enhances
their attractiveness for mating [102-104]. In foxes, considering their nocturnal and covert life-
style and well-developed VNS, an olfactory signal would be more effective than a visual one.

The absence of these compounds in other canids may reflect the difference in their diets.
Foxes eat a significant amount of plant material [10], especially fruits [17, 105], which are a
good source of carotenoids [102, 106]. The grey wolf, Canis lupus, is mainly carnivorous in the
wild with a small proportion (5-10%) of fruit in its diet [107]. However, detailed comparisons
cannot be made, as although the fox studies cited in Table 1 were based on wild animals, only
one of the wolf studies [108] used wild animals, and all the others as well as the coyote and
domestic dog studies used captive animals fed an artificial diet whose composition is not deter-
mined by animal choice.

The finding of several anthropogenic chemicals in fox urine shows that foxes, although liv-
ing in the wild state, are not free from human impacts when they forage around farms and
human habitation, especially as their diet is omnivorous. Similarly, the other reported findings
of texanol B, 2,4-DTBP and BPA were in captive animals rather than those living freely away
from human activities (Table 1 references, S1 Text).

BPA and the other phenolic, 2,4-DTBP, are mostly excreted as their glucuronide conjugates
[55, 62] that would not be detected by our analysis of urinary volatiles. This indicates that the
mostly low levels found in fox urine were an underestimate of the total amount. It is also possi-
ble that our findings were artifactual, given the prevalence (especially of BPA) in the environ-
ment. However, the samples were stored in glass/PTFE containers and only briefly exposed to
plastic in the urine collection syringe; also, BPA and DTBP were not present in every fox
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sample, and the highest levels (7 and 6% total) were quite significant; therefore we consider
that these compounds were present in fox urine.

Several urinary compounds are synthetic commercial chemicals that are also natural prod-
ucts and sometimes found as environmental contaminants, so they have several possible
sources, not necessarily mutually exclusive. 2- Aminoacetophenone is a plant product and can
also be produced endogenously in mammals from tryptophan via kynurenine [109]. 2-Methyl-
quinoline is an environmental pollutant present in petroleum and many commercial products
[110, 111]. It has been found in several animals, notably canids and 5 musteloid species, and it
may also have endogenous sources. Compound 60, 8-hydroxy-2-methylquinoline, could be
formed by oxidation of 2-methylquinoline but it is also a widely-used compound itself which
has been found in landfill leachate [112]. Texanol is another synthetic compound that may be
also produced naturally, as it has been reported in the plant metabolome [113] and in volatiles
from Italian cherry plums [114].

In most cases the effects of anthropogenic xenobiotics on wildlife are unknown and, except
for potent toxins with obvious effects, in practice unknowable. There have been many studies
of compounds of low toxicity and high use but their actual risk to wildlife remains uncertain.
For example, BPA is of concern because of its prevalence and potential endocrine, mutagenic
and carcinogenic effects; nevertheless its toxicity to humans at current levels of exposure
remains uncertain, and data on mammalian wildlife are lacking [61, 62, 115].

Conclusions

Sixteen sulfur compounds were detected in fox urine: 5 have only been found in foxes and 4
others only in some canids and musteloids. Given that this exclusivity shows they are not usual
mammalian metabolites and considering that there is a cost in producing any metabolites, it is
proposed that they have a beneficial function, most likely as semiochemicals for communica-
tion between foxes. Notably, both the total amount of sulfur compounds produced, and their
relative proportions, varied greatly between individuals. Based on these findings, we hypothe-
size that this represents a highly evolved system of semiochemicals for communication within
fox communities. From studies with other mammalian species, the possible signalling is likely
to include information on an individual’s identity and its nutritional, health, social and repro-
ductive status.

The plant metabolites found in urine indicate the importance of plants in the fox diet.
Together with their presence in the tail gland, they may also contribute to chemical signalling.
In particular, the apocarotenoids signal a significant consumption of plant carotenoids, essen-
tial for mammalian health, possibly acting as an honest sign of good nutrition, as has been
observed in bird species.

Taken together, the abundance of scent compounds suggests that future behavioural inves-
tigations may be able to exploit a semiochemical approach to better manage fox populations in
the wild.

The presence of several anthropogenic chemicals in fox urine is further evidence of their
pervasiveness in the environment and, given their actual and potential toxicity, the need to
monitor their levels and control their release.
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