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Abstract

“Principal Component Analysis” (PCA) is an established linear technique for dimensionality

reduction. It performs an orthonormal transformation to replace possibly correlated variables

with a smaller set of linearly independent variables, the so-called principal components,

which capture a large portion of the data variance. The problem of finding the optimal num-

ber of principal components has been widely studied for offline PCA. However, when work-

ing with streaming data, the optimal number changes continuously. This requires to update

both the principal components and the dimensionality in every timestep. While the continu-

ous update of the principal components is widely studied, the available algorithms for

dimensionality adjustment are limited to an increment of one in neural network-based and

incremental PCA. Therefore, existing approaches cannot account for abrupt changes in the

presented data. The contribution of this work is to enable in neural network-based PCA the

continuous dimensionality adjustment by an arbitrary number without the necessity to learn

all principal components. A novel algorithm is presented that utilizes several PCA character-

istics to adaptivly update the optimal number of principal components for neural network-

based PCA. A precise estimation of the required dimensionality reduces the computational

effort while ensuring that the desired amount of variance is kept. The computational com-

plexity of the proposed algorithm is investigated and it is benchmarked in an experimental

study against other neural network-based and incremental PCA approaches where it pro-

duces highly competitive results.

Introduction

Data is streaming from all areas of our live. The data streams are often available in large quanti-

ties and have a high dimensionality. Applying machine learning algorithms to high-dimen-

sional data streams is a challenging task. This task requires the use of efficiently applicable

online machine learning algorithms and memory storage [1]. A few algorithms, e.g. kernel

methods [2, 3], are well suited to work under these conditions. However, working in a
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high-dimensional space comes at a price in form of an increased prediction error, impaired

interpretability and higher computational costs [4]. In order to solve this problem, online

dimensionality reduction is necessary so that a larger variety of machine learning algorithms

can be applied to the lower-dimensional stream of data. Dimensionality reduction is the task

of transforming high-dimensional data into a lower-dimensional representation [5]. The

reduced representation has ideally a dimensionality close to the intrinsic dimensionality of the

data stream. The intrinsic dimensionality describes how many variables are needed to generate

a good approximation. In that way, online dimensionality reduction methods mitigate the

curse of dimensionality, reduce the computational effort of machine learning algorithms, and

facilitate the visualization of high-dimensional data streams.

Problem statement

Determining the optimal number of dimensions, e.g. principal components in PCA, is rou-

tinely applied for offline dimensionality reduction, but not for online dimensionality reduction

with streaming data. Streaming data is possibly subject to noise, drift or other influences, so

that the optimal dimensionality has to be adjusted continuously in order to maintain the

desired amount of variance in PCA. Therefore, for an online method to be effective, it is neces-

sary to continuously add or remove dimensions with each data point when appropriate [6].

Existing methods in neural network-based PCA [7] and incremental PCA [8, 9] are limited to

an increment of one and are therefore unable to account for abrupt changes in data variance.

When the dimensionality is too small, the quality of the reconstructed signal suffers. On the

other hand, training many unnecessary components increases the computational effort. There-

fore, the efficient adjustment of dimensionality by an arbitrary number after the presentation

of each data point is necessary.

Objectives and structure

The contribution of this work is the continuous dimensionality adjustment in neural network-

based PCA by arbitrary steps, without the constraint to learn all principal components at every

timestep. Therefore, stopping rules previously not directly applicable to neural network-based

PCA are extended for online learning. Being able to adjust the dimensionality by more than

one at every data point presentation, lets the PCA respond faster to changes in data variance.

This leads to a better data representation. To achieve this, a novel algorithm that exploits natu-

ral characteristics of neural network-based PCA is proposed. The method is an extension to

neural network-based PCA.

In this paper, a comprehensive experimental study is carried out. The goal is to demonstrate

that the proposed online algorithm determines the correct number of meaningful principal

components long before all data points are presented. In order to rate the quality appropri-

ately, the chosen (freely available) data sets vary in their characteristics over a wide range.

The paper is organized as follows: First, an overview of state of the art algorithms for

dimensionality reduction on data streams and in particular neural network-based and incre-

mental PCA is given. Then it is shown why the stopping rules for offline PCA are not directly

applicable to neural network-based PCA. As a consequence, a novel approach to solve this

problem is presented. A comprehensive experimental study is carried out that shows the suc-

cessful application to a variety of data sets. Furthermore, different versions of the proposed

algorithm are benchmarked against each other. Afterwards, the improved robustness and

adaptation speed is demonstrated by benchmarking the proposed algorithm against (1) an

alternative neural network-based and (2) an incremental PCA approach. Lastly, conclusions

are given in the final section.
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State of the art

Traditional methods for dimensionality reduction are of linear nature [10]. These methods lin-

early map high-dimensional data into a lower-dimensional form. They are capable of preserv-

ing a wide range of data features of interest, e.g. covariance, correlation between data sets and

the input-output relationship. The most used family of linear dimensionality reduction tech-

niques is based on orthogonal projections [10]. These methods are popular because of their

simple geometrical interpretation and the low-dimensional view of high-dimensional data.

One orthogonal projection method is “Principal Component Analysis” (PCA) [11, 12].

PCA is a method that transforms the data by projecting it onto a set of orthogonal axes.

Removing the second-order dependencies yields an orthonormal basis the directions of which

are uncorrelated. PCA is suitable when the dimensions in the original data space are related to

each other so that it is possible to describe the relationships using fewer dimensions than are

actually present. While PCA is maximizing the variance of the projected data, another objec-

tive is to maximize the scatter of the projections. This approach is pursued in “Multidimen-

sional Scaling” (MDS) [13] under the expectation that maximizing the scatter yields the most

informative data projection. While the mapping is not necessarily linear, it is commonly

assumed. The linear techniques for dimensionality reduction described above use an orthogo-

nal mapping, while other methods simplify further to an unconstrained optimization. “Inde-

pendent Component Analysis” (ICA) [14] belongs to this family of linear dimensionality

reduction methods. ICA specifies the data as a mixture of unknown and independent sources.

It finds the demixing matrix so that the independent sources are recovered. In cases where the

full set of dimensions is preserved, no dimensionality reduction is performed. The case of

interest is therefore the undercomplete ICA [15, 16].

All presented and many more [10] linear methods score through their simplicity and have

efficient online applicable versions [17, 18], enabling dimensionality reduction on a data

stream. In addition, they have fast computation times, have only a few hyper-parameters to

tune and are easy to interpret. When it comes to describing non-linear data sufficiently, linear

approaches for dimensionality reduction can be combined with local methods, e.g. clustering,

to describe non-linear data with local linear models [19, 20]. In this way the dimensionality of

each subspace can be adjusted individually, resulting in an improved representation of the

data.

However, when dealing with highly non-linear data, non-linear methods for dimensionality

reduction are often chosen [21]. The method with the greatest surge in use for non-linear

dimensionality reduction is the “Autoencoder” (AE) [22]. AE are unsupervised artificial neural

networks that first compress (encode) the data into a low-dimensional subspace and then

reconstruct (decode) the data back into the original space. This method is online applicable

and well able to represent complex non-linear data with a low prediction error. On the down-

side, it is costly to update non-linear methods continuously and they have many hyperpara-

meters to tune. Therefore, linear techniques are preferable for many applications, and the

focus of this work lies on further improving linear methods, in particular in a streaming setting

in which the subspace is updated without knowledge of the data history [23].

The foundation of incremental PCA and incremental SVD are classical numerical methods

in which the set of eigenvalues and eigenvectors is updated incrementally [8, 24]. The learning

paradigm is based on solving the intermediate eigenproblem repeatably for every training sam-

ple [25]. By observing sample by sample and not the entire data set at once, both the memory

usage and computational complexity are reduced [26]. Most approaches are free of directly

recalculating the covariance matrix, further reducing the computational complexity. Still, most

methods assume a fixed mean when updating the eigenvalues and eigenvectors or that the data
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is inherently zero-mean. Only in works based on [8, 27] the change of mean is considered.

Therefore, it is unnecessary to accumulate data before performing an update and an updated

mean is always available to incorporate new data. In addition, at each data point presentation,

a model with a dimensionality increased by one is estimated [8], and a forgetting factor may be

used [26, 27] to either keep or discard past observations.

Online PCA algorithms which rely on principles from neural computation, also referred to

as neural network-based PCA, are an efficient approach to update the principal components

after each presentation of a data point. A variety of neural network-based PCA learning algo-

rithms were proposed of which the Hebbian and Oja’s learning rules [25, 28, 29] are the foun-

dation. In these rules, each principal component corresponds to a neuron and is defined by

the input weights of the corresponding neuron. The Hebbian learning rule is biologically

inspired so that synaptic weights adapt in proportion to the correlation between the presynap-

tic and postsynaptic signals. To prevent divergence during the training process, the weights are

normalized to unity with each presentation of data. This normalized form of the Hebbian rule

[30] is the basis for many other algorithms, such as Oja’s rule. In Oja’s learning rule, a weight

decay term is added to the Hebbian rule for stabilization. PCA algorithms such as Hebbian

rule-based algorithms can be derived by optimizing an objective function using the gradient-

descent method. Both the Hebbian and Oja’s algorithm are sensitive to their hyperparameters,

e.g. learning rate, so that tuning these parameters to achieve a fast convergence speed while

maintaining stability is difficult. To overcome this drawback, approaches based on recursive

least squares (RLS) have been suggested [31]. All RLS-based PCA algorithms exhibit fast con-

vergence, stability and high tracking accuracy, and are suitable for slowly varying non-station-

ary vector stochastic processes. This approach was further extended towards robust recursive

least squares (RRLS) algorithms in which increasing the number of neurons does not affect the

previously extracted principal components [32]. The Hebbian and Oja rules are closely related

to the RRLS-algorithm by a suitable selection of the learning rates. According to [32], the

RRLS-algorithm provides the best performance in terms of convergence speed as well as

steady-state error. The neural network-based PCA algorithms mentioned so far do not include

the eigenvalue estimation in the update equations of the weights. In coupled learning rules for

neural network-based PCA, eigenvalues and eigenvectors are simultaneously estimated [33].

This approach solves the speed/stability problem that exists in non-coupled PCA, so that the

speed is the same in all directions and mainly depends on the principal eigenvalues of the

covariance matrix. The online neural network-based PCA applied in this work is a RRLS-algo-

rithm [34] with an adaptive learning rate control in which the eigenvalues and eigenvectors

are trained based on their value in a descending order (S1 Appendix). In the following, the

terms neural network-based PCA and online PCA are used synonymously for the sake of

simplicity.

Materials and methods

In the context of data analysis with big data [35, 36], dimensionality reduction methods [37,

38] are typically applied to reduce the set of attributes while preserving important data fea-

tures. One of the approaches most used for dimensionality reduction is “Principal Component

Analysis” (PCA).

PCA in an offline or batch setting

The basic idea of PCA is to preserve maximal variance for a data set with a minimal set of lin-

ear descriptors. High-dimensional data sets are projected onto a smaller number of dimen-

sions maximizing the variance on the new axes. These components are orthogonal to each
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other. Fig 1a) shows an example of a three-dimensional distribution. The PCA would deter-

mine the three axes of the distribution in descending order of the variances of the data projec-

tions. The first principal component is the linear descriptor which represents the largest

proportion of the overall data variance. With the value of the first principal component, the

following principal components will represent the most additional variance. In the given

example it might be sufficient to represent a data point by using only the value of the first two

principal components (Fig 1b). Hence, an application of PCA is dimensionality reduction.

Classical offline PCA or batch-PCA [11, 12] applies an orthonormal transformation to

transform a possibly correlated set of data into a set of linearly independent variables. High-

dimensional pattern with n dimensions can be approximated by a lower-dimensional subspace

of m dimensions IRn! IRm. A PCA model describes the subspace with m principal compo-

nents (with m� n). In the following, the n ×m matrix W denotes the estimated normalized

eigenvectors wi, i = 1, . . ., m of the data covariance matrix, with one vector per column. These

eigenvectors are identical to the principal components. The variance of the projection of the

data distribution on the ith principal component wi is equal to the eigenvalue λi. All eigenvalues

λi are stored in a diagonal matrix Λ with a size of m ×m in descending order. An estimation of

the remaining eigenvalues in the n −m minor eigendirections can be derived from the residual

variance σ2 [39, p. 93]. Additionally, a center vector c 2 IRn is required to center the PCA. This

allows to represent multivariate data only with the matrices W, Λ, the vector c and σ2.

PCA in a streaming setting

A streaming setting in PCA is characterized by sequentially arriving data points over a period

of time during which the parameters describing the subspace are repeatedly updated. Over a

period of time, the covariance matrix or the subspace can vary, so that tracking and reacting to

such changes is necessary to maintain a best possible approximation. PCA algorithms capable

of updating its set of parameters continuously without knowledge of the history of data are

referred to as online PCA. Popular types of algorithms that fall under the term of online PCA

Fig 1. Dimensionality reduction process performed with a PCA: (a) Data distribution in a three-dimensional input

space and the corresponding principal components; (b) Projection of the data into the two-dimensional space with the

PC1, PC2 axes.

https://doi.org/10.1371/journal.pone.0248896.g001
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are: incremental PCA [8] or incremental SVD [40] and neural network-based PCA [41]; the

focus of this work lies on the latter.

Neural network-based PCA. Neural network-based PCA [25, 28, 42, 43] refers to typi-

cally unsupervised methods that estimate the eigenvalues λi and eigenvectors wi online from

the input data stream x 2 Rn. These methods are particularly useful for high-dimensional data

streams since they avoid the computation of the large covariance matrix. In addition, they can

track non-stationary data (i.e. data with a slowly changing covariance matrix). While the devel-

opment of neural network-based PCA is described in the previous section, it is the focus of

this section to provide a more technical view of the neural network-based PCA that is extended

and benchmarked in this work [34]. The PCA extended in this work by an adaptive

dimensionality adjustment is based on a robust recursive least square algorithm (RRLSA) [32]

with interlocking of learning and Gram-Schmidt orthonormalization [34]. In this method, the

eigenvectors are updated in a hierarchically way: The eigenvector with the largest eigenvalue is

obtained using a single-unit learning rule applied to the original data. In order to obtain the

next eigenvector corresponding to the second largest eigenvalue, the projection of the first

eigenvector is subtracted from the data, so that a second single-unit network can be trained

with these deflated vectors. Repeating this procedure yields up to n eigenvectors. However, the

procedure can be stopped at any desired number. The update of each eigenvector wi is

obtained by

wi ¼
Xi

j¼1

ðqi;jwj þ pixÞ ð1Þ

where the interlocked learning method recursively updates qi,j and pi. The equation is derived

from a Gram-Schmidt orthonormalization procedure [34]. The corresponding eigenvalues λi
are calculated by

l
2

i ¼ ðdliÞ
2
þ cyið2dliyi þ cdiyiÞ ð2Þ

with yi ¼ wT
i ðx � cÞ, di ¼ di� 1 � y2

i� 1
; d1 ¼ jjx � cjj2. The scalars δ and ψ = 1 − δ are learning

rates. The proper choice of the learning rates is crucial since values which are too large cause

oscillations, and values which are too small cause the learning algorithm to be caught in local

minima. Nevertheless, most learning rates are chosen as simple constants or exponentially

decaying terms in neural network-based PCA [17]. In contrast, the learning rate control for δ
and ψ used in this work is based on a variance match between the eigenvalues λi and the neu-

ron output yi. A full derivation is given in S1 Appendix. The change in the center point

c ¼ cþ dðx � cÞ ð3Þ

also depends on the adaptive learning rate δ.

An alternative way to continuously update the set of eigenvectors, eigenvalues and center is

the incremental PCA, which is briefly described in the following.

Incremental PCA. Incremental PCA algorithms [8, 40] are capable of updating the set of

eigenvectors and eigenvalues incrementally. On each data point presentation, the intermediate

eigenproblem is solved for that data point. In [8], an incremental PCA approach with adaptive

dimensionality adjustment is presented. While a full derivation is out of scope of this work, a

brief introduction is necessary to understand the following benchmark. The model is

described by an eigenspace model ω = {c, W, Λ, N}, with c being the center point, W the matrix

containing the eigenvectors in each row, Λ the diagonal matrix containing the eigenvalues,

and N the continuously increasing count of presented data points. The subspace
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dimensionality is denoted by m. Whenever a new data point x is presented, the current model

is updated without having access to old observations nor their covariance matrix. If necessary,

the incremental approach has to be able to increase the dimensionality to o = m + 1 to achieve

a best possible fit. Therefore, the incremental method updates the eigenspace model ω = {c, W,

Λ, N + 1} to an output dimensionality o. The eigenspace model is an approximate solution to

the eigenproblem

CW ¼WΛ ð4Þ

with C being the covariance matrix that is at least conceptually continuously updated by

C ¼
N

N þ 1
Cþ

N
ðN þ 1Þ

2
ξξT ð5Þ

with ξ = x − c. However, the covariance matrix C is never explicitly computed, only the eigen-

space is updated as shown later. The mean is updated continuously as well by

c0 ¼
1

N þ 1
Ncþ xð Þ ð6Þ

¼
N

N þ 1
cþ

1

N þ 1
x ð7Þ

where the impact of new data points x decays over time to ensure convergence in (5)-(7). The

new eigenvectors with an increased dimensionality of o = m + 1 must be the result of a rotation

R 2 Ro�o
of the latest eigenvectors W complimented by an orthogonal unit vector. This unit

vector is chosen to be the residual vector

h ¼ ξ � WWTξ ð8Þ

which is further normalized to ĥ ¼ h
jjhjj2

for all h 6¼ 0 and ĥ ¼ 0 otherwise. The new eigenvec-

tors

W ¼ ½W; ĥ�R ð9Þ

are the rotated old eigenvectors complemented by the residual vector. By substituting (5) and

(9) into the eigenproblem (4), the rotation matrix R and the eigenvalues Λ are obtained

N
N þ 1

Λ 0

0T 0

" #

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ro�o

þ
N

ðN þ 1Þ
2

yyT gy

gyT g2

" #

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ro�o

0

B
B
B
B
@

1

C
C
C
C
A
R ¼ RΛ ð10Þ

with y = WT ξ and g ¼ ĥTξ (shown in [8]). The rotation matrix R can be used in (9) to obtain

the new eigenvectors, while the eigenvalues Λ are directly obtained from (10). Based on a

given stopping rule, it can be determined if the newly added dimension is necessary or can be

discarded.

Stopping rules in offline PCA

Stopping rules are used for offline PCA to find the optimal number of principal components.

The eigenvalues λi are for the following notations stored in a set V = {λ1, λ2, . . ., λm}. One of

the most popular methods to determine the optimal number of meaningful dimensions m is
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the eigenvalue-one criterion [44]. The approach follows the idea to keep all eigenvalues λi with

a value greater than one. Every eigenvalue λi that fulfills this condition is kept, all eigenvalues

λi below that threshold are discarded. The characteristic that makes this method so popular is

its simplicity. With the set of eigenvalues V = {λ1, λ2, . . ., λm}, the optimal number of dimen-

sions

m ¼ jfb 2 V j b > 1gj ð11Þ

is the number of eigenvalues greater than one. The method results often in retaining the cor-

rect number of dimensions when applied to a small data set. In [45], the accuracy of the eigen-

value-one criterion is investigated and it is recommended to apply the method on tasks with

30 or less variables. A problem associated to this method is that the difference between the

eigenvalues is not taken into account. For example, if a component has a value of 1.01 and the

following has a value of 0.99, the first component is retained while the second is removed. Gen-

erally it can be said, that this method is useful for a quick analysis without the requirement of

much insight.

Another approach towards finding the optimal number of meaningful components m is to

retain all eigenvalues greater than the average 1

n

Pn
i¼1
li. Each eigenvalue λi that is greater than

the average is kept. This method has the same complexity as the eigenvalue-one criterion, just

with a different threshold. The output dimension

m ¼ jfb 2 V j b >
1

n

Xn

i¼1

lig j ð12Þ

is defined as the number of eigenvalues λi stored in the set V = {λ1, λ2, . . ., λm} that are larger

than the average.

A more complex method to find the optimal number of meaningful principal components

is to keep all eigenvalues that are larger than a predefined proportion of the total variance

ltotal ¼
Pn

i¼1
li. In the following, η 2 [0, 1] is used to define the proportion of the total vari-

ance λtotal. This factor is used to check if an eigenvalue is larger than Z
Pn

i¼1
li. This method is

more complex than the previous two methods due to the extra parameter η. It has to be taken

into account that the optimal parameter choice depends on the dimension n of the data set

and the eigenvalue distribution. For example, when working with a ten-dimensional data set

with an exponential eigenvalue decline, the parameter is completely different from a thousand

dimensional data set with a linear eigenvalue decline. The optimal output dimensionality

m ¼ jfb 2 V j b > Z
Xn

i¼1

ligj ð13Þ

is the number of eigenvalues λi of the set V = {λ1, λ2, . . ., λm} that are greater than the prede-

fined proportion η of the total variance λtotal.

The last reviewed stopping rule is also based on the relative impact of each eigenvalue.

Instead of retaining all eigenvalues greater than a certain proportion of the total variance (13),

this method is based on the cumulative percentage of the total variance. Therefore, the param-

eter is introduced θ 2 [0, 1] that is chosen depending on the required fit and the acceptable

complexity. A factor towards one would keep almost all components, while a factor close to

zero only retains very few components. The optimal number of meaningful components

m ¼ argmin
z
fz 2 f1; . . . ; ng j

Xz

i¼1

li � y
Xn

i¼1

lig ð14Þ
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is the smallest z that fulfills the above inequality, with the eigenvalues λi and the complexity

parameter θ. Please note that the eigenvalues λi have to be sorted by size in descending order

for this criterion. In general, the computation time of all stopping rules is sped up when the

eigenvalues are sorted. Once an eigenvalue is below a stopping-rule-specific threshold, all fol-

lowing eigenvalues are as well below that threshold. In this way the computational overhead is

minimized.

Adaptive online dimensionality adjustment

In traditional offline PCA, the principal components are computed as the eigenvectors of the

covariance matrix, which is computationally inefficient for large data sets. Based on the eigen-

vectors, a stopping rule is applied (11)-(14) to find a lower dimensionality m� n. Since the

entire data set is presented at once, the optimal dimensionality m is determined only once.

When working with a data stream, the optimal dimensionality may change continuously,

requiring a continuous update of m to achieve a good fit. While different approaches were pre-

sented to continuously adapt the dimensionality m [7, 8, 46], they are all limited to an incre-

ment of one per presented data point. This prevents the online PCA to take abrupt changes in

the data into account. The algorithm proposed in the following is able to adjust the dimension-

ality by an arbitrary step size in a computationally efficient way; the exact computational com-

plexity is later investigated. To achieve this, it exploits several natural features of neural

network-based PCA and properties of the data distribution. The first feature of neural net-

work-based PCA is that the eigenvalues λi are naturally sorted in a descending order. Second,

the components are trained in a hierarchical order, ensuring that the most relevant component

is trained first. A third characteristic related to real world data is that the variance is not evenly

distributed over all principal components. It is more likely that only some features carry vari-

ability and a major part is negligible.

The first characteristic is exploited by initializing the PCA output dimensionality with

m = 2 for the first training cycle. In this way only the two most relevant principal components

are trained and the initial matrix size is reduced to n × 2 for W and 2 × 2 for Λ. The two princi-

pal components are trained with a neural network-based PCA approach [34]. This PCA

method supports the second characteristic by learning the eigenvalues with the highest vari-

ance first. In the following, an estimate of the remaining n −m eigenvalues has to be obtained.

Previous work has shown that eigenvalues λ exhibit a behavior which is close to linear in the

logarithmic scale on many real-world data sets [47, 48]. This enables the use of a linear regres-

sion model to predict the values of the remaining n −m eigenvalues.

In order to estimate the remaining n −m eigenvalues, the trained eigenvalues λi (i 2 {1, . . .,

m}) contained in the set V = {λ1, λ2, . . ., λm} are first converted into log-eigenvalues

~li ¼ logðliÞ ð15Þ

with ~V ¼ f~l1;
~l2; . . . ; ~lmg being the set of log-eigenvalues (Fig 2a). In the following the tilde

Fig 2. Extended neural network-based PCA workflow with adaptive dimensionality adjustment.

https://doi.org/10.1371/journal.pone.0248896.g002
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denotes logarithmic values. Based on the log-eigenvalues ~l i contained in the set ~V , the slope α
and the offset β of a least-squares regression line in the logarithmic scale are calculated (Fig

2b). To obtain an approximation of the missing n −m eigenvalues the regression line is

extended

~l�i ¼ aiþ b ð16Þ

with i 2 {m + 1, . . ., n} and the slope α and the offset β of the regression line in the logarithmic

scale. The star denotes values estimated by the linear regression line. The estimated n −m log-

eigenvalues ~V � ¼ f~l�mþ1
; ~l�mþ2

; . . . ; ~l�ng, generated in step Fig 2c, are supplemented with the

original set ~V ¼ f~l1;
~l2; . . . ; ~lmg containing the first m trained eigenvalues

~U ¼ ~V [ f~l�mþ1
; . . . ; ~l�ng: ð17Þ

The elements of the extended set ~U ¼ f~l1;
~l2; . . . ; ~lm;

~l�mþ1
; . . . ; ~l�ng are converted back in

step Fig 2d to the non-log domain by applying the exponential function

l
�
¼ expð~l�Þ ð18Þ

to all real and estimated log-eigenvalues of the set ~U . This yields the set

U ¼ fl1; l2; . . . ; lm; l
�

mþ1
; . . . ; l

�

ng in the original space. In the last step (Fig 2e) a chosen stop-

ping rule can be applied to the set U to obtain the optimal dimensionality m.

The process for an eight-dimensional synthetic data set is illustrated in Fig 3. The sorted

eigenvalues in normal and logarithmic scale are shown in Fig 3a and 3b. In the initial step with

m = 2, the line of best fit is a simple line through the first two trained logarithmic eigenvalues

(Fig 3c) and the estimated log-eigenvalues are transformed back into the normal scale (Fig 3d).

Based on these estimations, the dimensionality m is adjusted by one of the stopping rules. The

newly added eigenvalues (two in this example, thus m = 4) are initialized with the estimated

values l
�

i according to the line of best fit and the corresponding eigenvectors with a random

Fig 3. Application of the algorithm to an eight-dimensional Gaussian artificial data set. The real eigenvalues are

represented by a star and the estimations by circles: (a-d) 1st step with m = 2; (e-f) 2nd step with m = 4.

https://doi.org/10.1371/journal.pone.0248896.g003

PLOS ONE Adaptive dimensionality reduction for neural network-based online PCA

PLOS ONE | https://doi.org/10.1371/journal.pone.0248896 March 30, 2021 10 / 32

https://doi.org/10.1371/journal.pone.0248896.g003
https://doi.org/10.1371/journal.pone.0248896


orthonormal system. The dimensionality adjustment process is sped up by adding several

dimensions at once, giving the method a clear advantage over competing neural network-

based and incremental PCA approaches. If the contribution of one or more principal compo-

nents is not needed to stay above the stopping-rule-specific threshold, the unnecessary dimen-

sions are discarded. The regression parameters are updated based on the extended set after a

specific training period (Fig 3e and 3f). With the proposed technique, classical offline stopping

rules can be extended for the use in neural network-based PCA.

Stopping rule online extension

The presented stopping rules (11)-(14) can be rewritten with the proposed method. Therefore,

the already trained m eigenvalues, with an initial m = 2, and the regression parameters α and β
obtained from the m trained log-eigenvalues are needed. The total variance is approximated

using

ltotal ¼
Xn

i¼1

li �
Xm

i¼1

li þ s
2

ð19Þ

by the already trained m eigenvalues λi and the residual variance σ2 [39], both getting updated

in every PCA update step.

In case of the eigenvalue-one criterion, (11) can be rewritten by

m ¼ jfb 2 U j b > 1gj ð20Þ

as an equation based on the extended set U instead of the fully trained set V. All real eigenval-

ues λi and the eigenvalue approximations l
�

i that are larger than one are kept and will be

trained further.

The same process is applied to the approach of keeping all eigenvalues larger than the aver-

age (12). The output dimensionality

m ¼ jfb 2 U j b >
1

n
ltotalgj ð21Þ

depends on the extended set U and the adapting average (19). Instead of the static threshold

used in the offline version (12), the average 1

nltotal is updated with every PCA step. Due to the

moving threshold, this method is more complex than the extended eigenvalue-one criterion

(20).

For the approach of keeping all eigenvalues greater than a proportion η of the total variance

(19), the output dimensionality becomes

m ¼ jfb 2 U j b > Zltotalgj: ð22Þ

The factor η offers the possibility to move the threshold at will. The complexity increases due

to the moving total variance and the parameter η.

In the last case, the dimensionality

m ¼ arg min
z
fz 2 f1; . . . ; ng j

Xz

i¼1

Ui � yltotalg ð23Þ

can be rewritten as an inequality depending on the already trained m eigenvalues λi and the

associated reconstructions expressed by the line of best fit parameters α and β. The method

(23) is able to represent all possibly occurring principal component distributions in a robust
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manner, as long as the eigenvalues are sorted in descending order (which lies in the nature of

hierarchical online PCA algorithms).

One extreme would be a fully symmetric data distribution with all dimensions carrying the

same variance. Based on the first two principal components, a line of best fit with a slope α of

zero would perfectly estimate the remaining principal components. On the other hand, a dis-

tribution with all variance located in one dimension is also easy to estimate. A large negative

slope α in combination with the behavior of the exponential function would estimate a value

close to zero for all other principal components. In this way, a simple line in a logarithmic

scale can approximate many possibly occurring eigenvalue distributions in the normal scale.

Influence of the eigenvalue distribution

With the presented approach, stopping rules were extended towards neural network-based

PCA. Due to the initialization of the eigenvalues λ1,2 with a random value and the weights of

the eigenvectors with a random orthonormal system, the stopping rules cannot be applied

right away. The immediate application of the dimensionality adjustment to the random eigen-

values would yield a random output dimension m. Therefore, the neural network-based PCA

has Γ update steps in the beginning to train the two initial eigenvalues λ1,2, before the

dimensionality adjustment is activated. This hyperparameter is equal to a pretraining on a

small batch data set and does not require special tuning.

To show the possible error potential in the beginning and the necessity of Γ an example is

given in Fig 3. It is assumed that the two initial eigenvalues λ1,2 are not fully trained when the

dimensionality adjustment is activated. In the first scenario in Fig 4a, the two initial eigenval-

ues, represented by circles, are not trained correctly when the dimensionality adjustment is

activated. This results into a sharply declining line of best fit in the logarithmic scale (Fig 4b).

The algorithm now assumes that all approximations contribute less variance than they actually

do. Depending on the stopping rule applied this has different effects. In case of the eigenvalue-

one criterion (20) fewer eigenvalues would be above the threshold of one. This leads to a slow

Fig 4. Occurrence of over- or underestimations due to not fully trained eigenvalues λ1,2. The real eigenvalues are

represented by a star (�) and the estimations by circles (o): (a)-(b) shows an underestimation which results in a sharply

declining line of best fit; (c)-(d) shows an overestimation which results in an almost flat line of best fit.

https://doi.org/10.1371/journal.pone.0248896.g004
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adjustment process. The same holds for the percentage of total variance criterion (22) because

fewer eigenvalues would be above the specific threshold η. On the other hand, a sharp declin-

ing line would result in a drastically increase in dimensionality for the eigenvalue-average cri-

terion (21). With less variance attributed, more dimensions are required to reach a certain

threshold of the total variance λtotal. The same effect is seen for the cumulative percentage of

total variance criterion (23) since more eigenvalues are needed to represent a certain amount

of the total variance.

In Fig 4c another initial distribution is shown which leads to an almost flat line of best fit

(Fig 4d). In this case too much variance is attributed to the eigenvalues. This leads to a behav-

ior that is exactly the opposite compared to the sharply declining line.

This demonstrates that the dimensionality adjustment process is sensitive to a premature

start, which will be in depth investigated in the comprehensive study carried out in this work.

The impact of the two initial eigenvalues λ1,2 presented in Fig 4 shows the need of Γ PCA

update steps before the activation of the dimensionality adjustment.

The quality of the linear regression model in the logarithmic scale is limited by the underly-

ing data distribution. The best fit is achieved when the eigenvalues have an exponential decline.

This leads to a straight line in the logarithmic scale. Nevertheless, there is no perfectly expo-

nentially declining eigenvalue distribution and therefore a small error between real eigenvalues

and estimations is expected.

Algorithm 1 Online PCA dimensionality adjustment procedure based on (15)-(23)
Input: current dimensionality m, current eigenvectors W, current
eigenvalues Λ, current center c, new input x
Output: updated dimensionality m, updated eigenvectors W, updated
eigenvalues Λ, updated center c
1: c, W, Λ  Online PCA(c, W, Λ, x, m) ⊳ [34]
2: if κ > Γ then
3: procedure m  DIMENSIONALITY ADJUSTMENT(Λ)
4: ~V  Log Transformation ðdiag� 1

ðLÞÞ ⊳ (15)
5: a;b Linear Regression ð~VÞ ⊳ (16)
6: ~U  Log Eigenvalue Estimation ða; bÞ ⊳ (17)
7: U  Normal Transformation ( ~U) ⊳ (18)
8: m  Stopping Rule (U) ⊳ (20)-(23)
9: end procedure
10: end if
11: κ = κ + 1

Algorithm overview

To provide an overview of the proposed method for adaptive dimensionality adjustment in

neural network-based PCA: The algorithm 1 has as input parameters the current dimensional-

ity m (which is initially set to 2), the current eigenvectors W, the current eigenvalues Λ, the

current center c and the new input data x. Outputs are the updated dimensionality m, the

updated eigenvectors W, the updated eigenvalues Λ and the updated center c. The function is

called when-ever a new data point x is presented. With this data point a full training cycle κ 2
K is carried out by first updating the PCA parameters and then applying the dimensionality

adjustment approach. In the first step, the hierarchical PCA model parameters are updated

[34] and then the presented approach for adaptive dimensionality adjustment is applied. How-

ever, in the beginning the initial dimensionality is set to two, and the first two principal com-

ponents λ1,2 are trained for Γ training cycles, before dimensionality adjustment is activated for

the first time. This hyperparameter is introduced to make the initial training phase more stable

and is comparable with a pretraining with a batch PCA on a small data set. Therefore, this
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parameter does not require any special tuning. Once this initial learning phase is over, the

dimensionality adjustment procedure is started. Based on the set of log-eigenvalues ~V (15), the

linear regression parameters α, β are updated (16), (17). The parameters are used in the follow-

ing to approximate the remaining n −m eigenvalues in the logarithmic scale and merge them

with the already existing m log-eigenvalues (18). The presented stopping rules are applied on

the non-log set U (20)-(23), providing an updated dimensionality m.

In the following, neural network-based PCA with the extended stopping rules and the adap-

tive dimensionality adjustment are applied to a variety of data sets. In order to rate the quality

of each stopping rule, the data sets were chosen to be different from each other in as many

aspects as possible. The obtained results are presented in a comprehensive study. The algo-

rithms performance is additionally benchmarked against a competitive incremental PCA

approach.

Results and discussion

In the following it is tested if the presented approach can adaptively estimate the correct final

dimensionality for different data sets. All extended stopping rules (20)-(23) are considered in

this study. A goal of this comprehensive experimental study is to demonstrate the quality of

the online PCA with the extended stopping rules on a variety of data sets. The data sets

(Table 1) differ from each other e.g. in dimensionality and eigenvalue distribution, covering a

broad spectrum of data characteristics occurring in real world applications.

The first two data sets are grayscale images of a cameraman [49] and circles [49]. The

images with a size of 256 × 256 pixel are decomposed into 1024 non-overlapping blocks with a

size of 8 × 8. The 64-dimensional images are used to test the proposed algorithm (n1,2 = 64).

The PHM08 data set [50] is a real world data set containing several sensor channels (n3 = 26)

describing the degradation of a turbofan engine. The CareerCon19 data set [51] contains ori-

entation, velocity and acceleration data (n4 = 10) of a real robot driving over a surface. The

fifth data set contains synthetic waveform data [52]. The data set is augmented by 19 Gaussian

noise dimensions. It is distinguished between the full data set (n5 = 40) called waveform and a

modified version waveform2 without the noise dimensions (n6 = 21).

The data sets are treated as if the data points x occur online in a random order and a data

point only occurs once. The number of total training cycles K is the number of instances a data

set has. A single training cycle κ 2 {1, . . ., K} consists of the online PCA update step and the

dimensionality adjustment. All online stopping rules (20)-(23) are tested on each of the pre-

sented data sets (Table 1). The dimensionality adjustment process is activated Γ training cycles

after the start, which means that the online PCA has Γ training cycles to train the randomly ini-

tialized eigenvalues λ1,2. Due to the small number of instances contained in the PHM08 data

set, the parameter Γ is smaller compared to the Γ used for all other data sets. Using a Γ = 100

for the PHM08 data set would falsify the results because the dimensionality adjustment process

Table 1. Data set properties and training parameters.

Data set Dimensionality (n) Instances (K) Parameter Γ Type

Cameraman [49] 64 1024 100 Image

Circles [49] 64 1024 100 Image

PHM08 [50] 26 321 10 Sensor

CareerCon19 [51] 10 1280 100 Sensor

Waveform [52] 40 5000 100 Synthetic

Waveform2 [52] 21 5000 100 Synthetic

https://doi.org/10.1371/journal.pone.0248896.t001
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would start after a third of the data points has already been presented. The parameters keep

their values for all stopping rules and only vary over the data sets. Every stopping rule and data

set combination is tested and repeated 100 times with the same parameter set.

The extended stopping rules using a linear regression model in logarithmic scale are com-

pared to a standard offline PCA based on singular value decomposition together with the clas-

sical offline stopping rules. The eigenvalues and weights are updated with an hierarchical

online PCA [34] algorithm. The aim is to estimate the correct final dimensionality long before

all data points are represented. Hence, it is tested if the different online stopping rule

approaches are able to determine the correct dimensionality m before all data points (25%,

50%, 75%, 100%) of a data set are presented. The stopping rules are tested in the order of

increasing complexity. The results are presented with the mean μ and the corresponding stan-

dard deviation s calculated over 100 repetitions. It is assumed that the calculated final

dimensionality is correct if the standard deviation s is adequately small and within the differ-

ence of the mean μ and the offline PCA reference. The results are additionally benchmarked

against competing algorithms.

Eigenvalue-one criterion

The first approach tested on the data sets (Table 1) is the online version of the eigenvalue-one

criterion (20). The results of the online dimensionality adjustment process with the online

eigenvalue-one criterion (20) are compared to the classical offline PCA with the eigenvalue-

one criterion (11). Additionally, it is observed how many data points x have to be presented to

predict the correct final dimensionality m. The eigenvalue-one criterion is straightforward in

contrast to the other methods by comparing the existing eigenvalues λi and the approxima-

tions l
�

i with the fixed threshold of one. Every eigenvalue larger than the threshold of 1 is fur-

ther trained. The results are presented in Table 2.

The two image data sets (Table 2a and 2b) both only have one eigenvalue larger than the

threshold. In both cases, the correct final dimensionality with a standard deviation of s = 0 is

achieved after 25% of the data points are presented. It has to be noted, that the calculation of

the line of best fit needs at least two eigenvalues. This means, that the algorithm recommends

to use only one, but actually keeps the second eigenvalue for further approximations.

For the sensor data sets (Table 2c and 2d), the online eigenvalue-one criterion estimates a

correct mean with a sufficiently small standard deviation for the CareerCon19 data set. For

the higher-dimensional PHM08 data set the correct final dimensionality was not achieved

due to the characteristic of the approach of only training eigenvalues larger than the thresh-

old. With certain underlying data distributions the regression model may overestimate the

eigenvalues (Fig 4) and therefore a stopping rule takes less components than actually needed.

The same effect is seen for the synthetic waveform data sets (Fig 5e and 5f). In both cases the

approximated dimensionality is below the real dimensionality which indicates that the linear

regression model is resulting in a sharply declining line approximating a value below the

threshold of one. Additionally, it is assumable that the logarithmic eigenvalue distribution is

not linear.

The adjustment process for all data sets is shown in Fig 5. Early on, when the first eigenval-

ues λ1,2 are not fully trained, the dimensionality seems to overshoot on some data sets (e.g. Fig

5c). Once the online PCA has seen enough points to correctly update the eigenvalues, the

dimensionality approximation adapts quickly to its final value.

In summary, the overall quality of the online dimensionality adjustment in combination

with the eigenvalue-one stopping rule seems to get worse, the higher the dimensionality of the

data set is. This is related to the underlying data distribution and the fixed threshold.
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Eigenvalue-average criterion

The second approach tested is the extended eigenvalue-average criterion (21). In comparison

to the offline eigenvalue-average criterion (12), the online version of the eigenvalue-average

criterion has a moving threshold that is updated in every training cycle κ. In this way, the

online eigenvalue-average criterion also differs from the previously analyzed eigenvalue-one

criterion with a fixed threshold. The results are presented in Table 3, comparing the online cri-

terion combined with the online PCA against the offline versions.

The results show that the criterion estimates a mean μ close to the correct final dimension-

ality, with a sufficiently small standard deviation s for all but the waveform data set. The wave-

form data set is augmented by 19 Gaussian noise dimensions reducing the efficiency of the

linear regression model in log scale. This affects the average and thus the threshold. Due to the

error between true and approximated eigenvalues and the underlying data distribution, the

correct dimensionality could not be obtained for the waveform data set. The eigenvalue-aver-

age criterion was able to calculate the final dimensionality before all data points are presented.

Already after 25% the estimated dimensionality was close to the real dimensionality (shown by

Table 2. Results obtained with the online eigenvalue-one criterion compared with the offline version.

Data set μ ± s
a) Cameraman25% 1.0±0.0

Cameraman50% 1.0±0.0

Cameraman75% 1.0±0.0

Cameraman100% 1.0±0.0

Offline PCA 1

b) Circles25% 1.0±0.0

Circles50% 1.0±0.0

Circles75% 1.0±0.0

Circles100% 1.0±0.0

Offline PCA 1

c) PHM0825% 13.9±8.2

PHM0850% 13.1±8.7

PHM0875% 12.0±8.7

PHM08100% 11.2±8.7

Offline PCA 8

d) CareerCon1925% 3.3±1.7

CareerCon1950% 2.8±0.9

CareerCon1975% 2.8±0.8

CareerCon19100% 2.9±0.8

Offline PCA 3

e) Waveform25% 8.6±2.2

Waveform50% 7.4±2.0

Waveform75% 6.5±1.8

Waveform100% 6.2±1.6

Offline PCA 20

f) Waveform225% 3.6±0.8

Waveform250% 3.5±0.7

Waveform275% 3.3±0.6

Waveform2100% 3.2±0.4

Offline PCA 12

https://doi.org/10.1371/journal.pone.0248896.t002
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the small remaining standard deviation s) proving the fast adaptation process and robustness,

as long the noise dimensions contribute a small portion of the total variance.

The adjustment process is shown in Fig 6. A small overshot occurs after activating the

dimensionality adjustment for all data sets but is corrected quickly. In all cases, the process is

quickly moving towards a final dimensionality which is then held with only small or no

variation.

In comparison to the eigenvalue-one criterion analyzed previously, the moving threshold

improves the quality drastically. While the online eigenvalue-one criterion had problems to

approximate the correct dimensionality due to its simplicity, the results obtained with the

online eigenvalue-average criterion shows a mean close to the real dimensionality with a suffi-

ciently small standard deviation for all but the waveform data set.

Percentage of total variance criterion

The next stopping rule that is extended towards online PCA keeps all eigenvalues that contrib-

ute more than a certain percentage of the total variance (22). In comparison to the approaches

considered before, this stopping rule increases the complexity further by adding an extra factor

η to the moving threshold. The results are shown in Table 4, only keeping the eigenvalues

larger than η = {0.01, 0.025, 0.05} of the total variance.

For the image data sets, the approximated dimensionality converged to a mean μ that is

smaller than correct dimensionality. The PHM08, CareerCon19 and waveform2 results are

within the correct range and have a small remaining standard deviation. The only wrong

dimensionality prediction is found at the waveform data set with a factor of η1 = 0.01. The 19

noise dimensions together contribute more than 1% of the total variance. Hence, the eigen-

value distribution changes abruptly and the linear regression model yields a big error between

true values and approximations. If the approximations underestimate the true values, it may

occur that they fall below that 1% threshold and are not trained further. Once the contribution

of each noise dimension falls below the threshold η, a correct dimensionality approximation is

achieved.

Fig 5. Visualization of the dimensionality adjustment process for the online eigenvalue-one criterion: (a-f)

Adjustment process corresponds to the results in Table 2. Each data point in each time series is the mean value of all

100 repetitions. The horizontal reference line represents the optimal dimensionality.

https://doi.org/10.1371/journal.pone.0248896.g005
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For most data set and η combinations, the correct final dimensionality is achieved way

before all data points were presented, demonstrating that this online stopping rule in combina-

tion with the linear regression model in logarithmic scale is well applicable.

The dimensionality adjustment process is shown in Fig 7. In nearly all data set and parame-

ter combinations, the method is immediately heading towards the final dimensionality. In

some cases a small overshot is noticeable, whereas in other cases the dimensionality is slowly

adapting without an overshot. This can be explained by the impact of the two initial eigenval-

ues in the first training cycle κ after activating the dimensionality adjustment process (Fig 4).

It has to be noted that the first plot in row Fig 7e is showing convergence towards the wrong

final dimensionality due to the noise dimensions.

In comparison to the two online stopping rules previously analyzed, this method has a

smoother adjustment process. In more cases is the correct final dimensionality achieved.

Additionally, the final value is in a smaller range which is proven by the small standard devia-

tion s.

Table 3. Comparison of the online eigenvalue-average criterion with the offline version.

Data set μ ± s
a) Cameraman25% 1.8±1.0

Cameraman50% 1.7±0.5

Cameraman75% 1.6±0.5

Cameraman100% 1.6±0.4

Offline PCA 1

b) Circles25% 1.7±1.0

Circles50% 1.3±0.5

Circles75% 1.2±0.5

Circles100% 1.1±0.4

Offline PCA 1

c) PHM0825% 2.2±0.4

PHM0850% 2.0±0.1

PHM0875% 2.0±0.0

PHM08100% 2.0±0.0

Offline PCA 3

d) CareerCon1925% 2.8±0.7

CareerCon1950% 2.5±0.6

CareerCon1975% 2.6±0.5

CareerCon19100% 2.6±0.6

Offline PCA 3

e) Waveform25% 5.2±0.6

Waveform50% 5.2±0.6

Waveform75% 5.2±0.6

Waveform100% 5.2±0.5

Offline PCA 2

f) Waveform225% 2.4±0.7

Waveform250% 2.4±0.6

Waveform275% 2.3±0.5

Waveform2100% 2.4±0.5

Offline PCA 2

https://doi.org/10.1371/journal.pone.0248896.t003
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Cumulative percentage of total variance criterion

The last investigated stopping rule is the percentage of total variance criterion (23). It has the

same structure as the previous stopping rule (22).

The approach is applied to the given data sets (Table 1) with different proportions θ = {0.7,

0.8, 0.9, 0.99}. The results are presented in Table 5. For all four predetermined proportions the

approach gets close to the correct final dimensionality for the image data sets. Nevertheless,

the standard deviation s for the circle data set with θ = 0.99 is comparatively large. This behav-

ior occurs when a large number of eigenvalues represent the same variance. The approxima-

tion is less stable in this situation. The results for the PHM08 data set are flawless with a

correct final dimensionality in all repetitions and a remaining standard deviation s close to

zero. For the cases θ = [0.7, 0.8] the suggested dimensionality is one, but a second component

is kept for the regression model. For the other three data sets the calculated dimensionality

gets very close to the correct value of one. It is noticeable that the dimensionality has almost

fully converged after presenting 25% of the data. Additionally, the standard deviation s is small

compared to the other stopping rules.

Fig 8 shows the dimensionality adjustment process for the different data sets and propor-

tion combinations. Overall, the adjustment process is smooth. Depending on the underlying

data distribution, a small overshot occurs sometimes, e.g. for the CareerCon19 (Fig 8d) data

set. After the initial overshot, the final dimensionality is quickly reached. For other data sets,

e.g. the waveform data set in Fig 8e, a smaller but steady rise towards the final dimensionality

is shown. It is noticeable that the dimensionality is often increased in larger steps, speeding up

the adjustment process.

In comparison to the towards online PCA extended stopping rules that were reviewed pre-

viously, the cumulative percentage of total variance criterion yields the best results. It is the

only approach that successfully determines the correct final dimensionality regardless of the

underlying data distribution, the dimensionality and noisy dimensions.

Fig 6. Visualization of the dimensionality adjustment process for the online eigenvalue-average criterion applied on

the presented data sets (Table 1): (a-f) Adjustment process corresponds to the results in Table 3. Each data point in

each time series is the mean value of all 100 repetitions. The horizontal reference line represents the optimal

dimensionality.

https://doi.org/10.1371/journal.pone.0248896.g006
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Benchmark comparison with competing algorithms

The novel approach presented in this work uses a linear regression model in the logarithmic

scale to continuously estimate the number of meaningful principal components on a data

stream for neural network-based PCA. The presented results demonstrated that the adaptation

process is fast and robust. To the best knowledge of the authors, continuously adapting the

dimensionality has been rarely applied to neural network-based PCA [7, 46]. Nevertheless, this

topic is more frequently mentioned in the field of incremental PCA [8, 9]. Therefore, the pro-

posed method is benchmarked both against the directly related neural network-based method

[7] and against an incremental approach [8].

Comparison to incremental PCA. The following benchmark is performed on the incre-

mental PCA [8]. The method is in the following benchmarked on all data sets (Table 1), using

the cumulative percentage of total variance stopping rule, as suggested by [8]. The results are

shown in Table 6, with the same presentation as in all benchmarks before, and can be therefore

directly compared.

Table 4. Percentage of total variance criterion with different threshold accuracies: η1 = 0.01, η2 = 0.025, η3 = 0.05.

Data set μ ± s
η1 η2 η3

a) Cameraman25% 2.6±1.3 1.3±0.6 1.0±0.2

Cameraman50% 2.0±0.7 1.2±0.4 1.0±0.0

Cameraman75% 2.0±0.6 1.2±0.4 1.0±0.0

Cameraman100% 2.0±0.6 1.2±0.4 1.0±0.0

Offline PCA 5 3 2

b) Circles25% 2.3±1.8 1.4±0.8 1.2±0.7

Circles50% 1.6±1.0 1.0±0.2 1.0±0.1

Circles75% 1.5±0.6 1.0±0.2 1.0±0.0

Circles100% 1.4±0.5 1.0±0.2 1.0±0.0

Offline PCA 3 3 1

c) PHM0825% 2.7±1.0 2.4±1.1 2.2±0.5

PHM0850% 2.6±0.5 2.1±0.3 2.0±0.1

PHM0875% 2.6±0.5 2.0±0.2 2.0±0.0

PHM08100% 2.6±0.5 2.0±0.1 2.0±0.0

Offline PCA 2 2 2

d) CareerCon1925% 6.2±1.2 5.0±0.8 3.9±1.3

CareerCon1950% 5.9±0.8 4.8±0.8 3.8±1.1

CareerCon1975% 5.9±0.9 4.8±0.7 3.9±1.2

CareerCon19100% 5.8±0.8 4.7±0.5 3.8±1.1

Offline PCA 5 5 3

e) Waveform25% 22.2±1.9 2.4±0.7 2.0±0.0

Waveform50% 22.2±1.9 2.4±0.7 2.0±0.0

Waveform75% 22.2±1.9 2.5±0.7 2.0±0.0

Waveform100% 22.2±1.9 2.3±0.7 2.0±0.0

Offline PCA 40 2 2

f) Waveform225% 20.5±1.0 2.8±0.6 2.2±1.1

Waveform250% 20.7±0.8 2.9±0.5 2.0±0.2

Waveform275% 20.8±0.6 2.9±0.7 2.0±0.2

Waveform2100% 20.9±0.5 2.9±0.5 2.0±0.2

Offline PCA 20 2 2

https://doi.org/10.1371/journal.pone.0248896.t004
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For low percentages of the total variance, such as θ = {0.7, 0.8}, the incremental PCA

method achieves highly accurate and competitive results. However, on higher thresholds, the

accuracy suffers and the correct dimensionality is rarely achieved. In addition, the adjustment

process (Fig 9) shows that the method is highly sensitive in the early phase of learning. This

can be explained by the exponential decaying term N
ðNþ1Þ2

in the learning rule (10), leading to an

over-sensitive behavior in the initial learning phase. In comparison to the method proposed in

this work, incremental PCA achieves comparable results on lower thresholds but not on higher

ones.

Comparison to neural network-based PCA. The approach [7] consists of three main

steps that are described as follows:

1. Initialization: Set the dimensionality to m = 1, the eigenvalue λ1 to a random value and the

corresponding eigenvectors to a random orthonormal system.

Fig 7. Visualization of the results achieved with the online percentage of the total variance criterion. The first plot

in each row has an accuracy factor of η1 = 0.01, the middle plot η2 = 0.025 and the right plot η3 = 0.05: (a-f) shows the

results obtained on each data set, with the data set order corresponding to Table 4. Each data point in each time series

is the mean value of all 100 repetitions. The horizontal reference line represents the optimal dimensionality.

https://doi.org/10.1371/journal.pone.0248896.g007
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2. Training: Present a data point x and update the parameter set.

3. Dimensionality adjustment: Check if the stopping rule condition is fulfilled or not. Either

add m = m + 1 or remove m = m − 1 one dimension.

4. Repeat: Continue with step 2.

This approach optimizes the dimensionality by adding or removing one dimension when-

ever a new data point is collected. The approach is compared with the novel approach pre-

sented in this work. For this purpose, the competing approach [7] is tested on some of the data

sets (Table 1). The benchmark is limited to a slightly modified version of the cumulative per-

centage of total variance stopping rule (14), which was used in [7]. If the predefined cumulative

percentage of the total variance is not described with the current number of principal compo-

nents, one dimension is added and vice versa.

The achieved results are visualized in Fig 10. The reference dimensionality m = 5 is calcu-

lated with an offline PCA. The competing approach immediately overshoots and then drops

Table 5. Cumulative percentage of total variance: θ1 = 0.7, θ2 = 0.8, θ3 = 0.9, θ4 = 0.99.

Data set μ ± s
θ1 θ2 θ3 θ4

a) Cameraman25% 1.0±0.2 1.7±0.9 3.4±1.6 16.0±1.8

Cameraman50% 1.0±0,0 1.4±0.5 2.9±1.7 26.2±1.2

Cameraman75% 1.0±0.0 1.3±0.5 2.6±1.1 24.3±1.6

Cameraman100% 1.0±0.0 1.3±0.4 2.6±1.0 29.4±1.4

Offline PCA 1 1 4 30

b) Circle25% 1.1±0.3 1.4±0.7 2.2±1.4 9.4±3.0

Circle50% 1.0±0.0 1.1±0.3 1.8±1.0 17.6±6.5

Circle75% 1.0±0.0 1.0±0.1 1.7±0.5 20.3±11.1

Circle100% 1.0±0.0 1.0±0.0 1.9±0.5 22.0±12.5

Offline PCA 1 1 2 23

c) PHM0825% 1.0±0.0 1.0±0.0 2.0±0.1 2.6±0.7

PHM0850% 1.0±0.0 1.1±0.0 2.0±0.0 2.0±0.2

PHM0875% 1.0±0.0 1.0±0.0 2.0±0.0 2.0±0.0

PHM08100% 1.0±0.0 1.0±0.0 2.0±0.0 2.0±0.0

Offline PCA 1 1 2 2

d) CareerCon1925% 2.3±0.5 3.1±0.8 3.4±0.7 5.0±0.0

CareerCon1950% 2.2±0.4 2.8±0.5 3.1±0.4 5.0±0.0

CareerCon1975% 2.0±0.3 2.9±0.5 3.0±0.2 5.0±0.0

CareerCon19100% 2.0±0.2 2.9±0.5 3.0±0.2 5.0±0.0

Offline PCA 2 3 3 5

e) Waveform25% 18.4±2.5 26.1±2.1 33.6±3.6 39.7±0.8

Waveform50% 19.1±2.0 26.4±1.9 33.6±1.8 39.8±0.8

Waveform75% 19.1±2.0 26.4±1.9 33.6±1.8 39.8±0.7

Waveform100% 19.0±2.1 26.3±1.9 33.6±1.8 39.8±0.7

Offline PCA 18 25 33 40

f) Waveform225% 6.0±1.6 11.0±0.6 16.1±0.3 21.0±0.1

Waveform250% 5.9±1.5 11.0±0.2 16.1±0.3 21.0±0.1

Waveform275% 6.0±1.4 11.0±0.2 16.0±0.2 21.0±0.0

Waveform2100% 5.8±1.1 11.0±0.1 16.0±0.1 21.0±0.0

Offline PCA 6 11 16 21

https://doi.org/10.1371/journal.pone.0248896.t005
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below the optimal dimensionality. For the rest of the training process the approach is unable

to achieve the correct dimensionality. In comparison, the novel approach presented in this

work adapts quickly towards the optimal dimensionality and keeps it.

The results showcased are supported by a larger experimental study that is too extensive to

be shown in this work. In conclusion, the novel approach presented in this work is superior to

the competing approach [7] in many ways. While the competing approach is only capable of

adding or removing one dimension, the novel algorithm is able to add or remove any number

of dimensions per training cycle. Additionally, the adaptation process is faster and more robust

against initial overshoots. Most importantly, the correct final dimensionality is reached and

held more reliably.

Fig 8. Visualization of the results achieved with the online cumulative percentage of total variance criterion. The

first plot in each row has a proportion of θ1 = 0.70, the left-middle plot of θ2 = 0.80, the right-middle plot of θ3 = 0.90

and the right plot of θ4 = 0.99: (a-f) shows the results obtained on each data set, with a data set order corresponding to

Table 5. Each data point in each time series is the mean value of all 100 repetitions. The horizontal reference line

represents the optimal dimensionality.

https://doi.org/10.1371/journal.pone.0248896.g008
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Investigation on the computational complexity

Applied machine learning is often limited by available memory and resources. Hence, it is nec-

essary to consider the computational complexity. The computational complexity is used to

describe to which function the computation time is asymptotically proportional. For PCA

algorithm, it is always considered in connection with an input dimensionality n and the

amount of considered data points N. In the following, the complexity of offline PCA, neural

network-based PCA, the proposed extension, and incremental PCA are compared to each

other.

In offline PCA, the eigenvalues Λ and eigenvectors W are obtained with the eigenvalue

decomposition of the covariance matrix. As preparation, the data X 2 Rn�N
are first centered.

In the next step, the centered data are multiplied with its transpose to obtain the covariance

matrix. This matrix multiplication is computationally expensive ((n × N) and (N × n)) leading

to a computational complexity of OðnN minðn;NÞÞ for the covariance estimation. Decompos-

ing the eigenvalues of the covariance matrix costs in a worst case scenario with a n × n matrix

Table 6. Results of the incremental PCA [8] on the cumulative energy stopping rule: θ1 = 0.7, θ2 = 0.8, θ3 = 0.9, θ4 = 0.99.

Data set μ ± s
θ1 θ2 θ3 θ4

a) Cameraman25% 64.0±0.0 64.0±0.0 64.0±0.0 64.0±0.0

Cameraman50% 1.±0. 1.±0. 5.3±3.4 23.8±7.1

Cameraman75% 1.0±0.0 1.0±0.0 1.0±0.0 3.5±2.5

Cameraman100% 1.0±0.0 1.0±0.0 58.8±1.3 53.8±2.1

Offline PCA 1 1 4 30

b) Circle25% 1.4±2.0 1.7±2.5 4.4±11.6 7.8±1.6

Circle50% 1.0±0.0 1.0±0.0 1.1±0.3 1.4±1.6

Circle75% 1.0±0.0 1.0±0.0 1.1±0.3 1.2±0.7

Circle100% 1.0±0.0 1.0±0.0 5.7±1.0 2.2±7.6

Offline PCA 1 1 2 23

c) PHM0825% 1.0±0.0 1.0±0.0 8.0±1.6 11.6±5.5

PHM0850% 1.0±0.0 1.0±0.0 17.1±10.1 23.6±3.2

PHM0875% 1.0±0.0 1.0±0.0 2.0±0.1 23.6±3.2

PHM08100% 1.0±0.0 1.0±0.0 1.9±0.1 7.8±8.2

Offline PCA 1 1 2 2

d) CareerCon1925% 2.3±0.6 3.4±2.5 5.4±4.0 4.1±3.9

CareerCon1950% 2.1±1.0 3.4±3.1 5.1±4.2 3.7±3.9

CareerCon1975% 1.8±0.5 2.0±1.1 3.7±3.3 3.2±3.6

CareerCon19100% 1.7±1.0 1.7±1.3 1.9±0.9 2.5±2.9

Offline PCA 2 3 3 5

e) Waveform25% 19.8±0.3 26.2±0.4 19.8±5.7 13.6±5.5

Waveform50% 19.0±0.0 25.8±0.7 15.4±6.9 9.1±5.2

Waveform75% 20.5±0.5 26.7±1.3 14.3±7.5 7.3±5.2

Waveform100% 20.3±0.9 25.8±1.0 13.3±7.7 6.6±5.2

Offline PCA 18 25 33 40

f) Waveform225% 6.0±0.2 10.6±2.4 3.0±0.8 3.4±1.3

Waveform250% 6.0±0.0 7.7±2.9 2.7±0.6 2.8±0.8

Waveform275% 6.0±0.2 7.4±3.5 2.7±0.6 2.7±0.8

Waveform2100% 6.0±0.0 6.9±3.3 2.7±0.6 2.6±0.7

Offline PCA 6 11 16 21

https://doi.org/10.1371/journal.pone.0248896.t006
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Oðn3Þ. Thus, the total complexity for offline PCA is OðnNminðn;NÞ þ n3Þ, which can be fur-

ther reduced [17].

However, the classical PCA described above is performed on all training data simulta-

neously, which requires to have all data in advance. This is not the case in an online case,

Fig 9. Incremental PCA [8] on the cumulative percentage of total variance stopping rule. The first plot in each row

has a proportion of θ1 = 0.70, the left-middle plot of θ2 = 0.80, the right-middle plot of θ3 = 0.90 and the right plot of

θ4 = 0.99: (a-f) shows the results obtained on each data set 1 corresponding to Table 6.

https://doi.org/10.1371/journal.pone.0248896.g009
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where data are processed sequentially. Therefore, the eigenvalues and eigenvectors have to be

updated whenever a new data point is presented. Neural network-based PCA is an approach to

continuously update the eigendirections after each data point representation [41]. Given a

data point dimensionality n and a reduced dimensionality m, then the complexity is given with

O(nm) [17]. A robust extension (RRLSA) [32] exhibits faster convergence and higher stability,

but the complexity increases to O(nm2). Integrating a Gram-Schmidt orthonormalization into

the RRLSA maintains the same complexity O(nm2) [34], despite more elementary operations

are required. The new method for adaptive dimensionality adjustment presented in this work

performs a linear regression based on the reduced set of m eigenvalues. Generally, a linear

regression has a computational complexity of O(mp2 + p3) for a m × p matrix, due to the

matrix multiplication and inversion. Since the linear regression used here only relies on a vec-

tor containing the first m eigenvalues, the computational complexity reduces to O(m). Despite,

is O(nm2) always growing faster, so that the impact of the linear regression is omitted. Incre-

mental PCA, as presented in [8, 40], is capable of incrementally updating a eigenspace model

with a complexity of O(nm2). Thus, overall both incremental and neural network-based PCA

offer computationally efficient ways of updating the eigendirections.

Investigation of a double-logarithmic approach

The results achieved in the previous sections demonstrated it is possible to accurately predict

eigenvalues with a linear regression model in the logarithmic scale, if combined with a hierar-

chical online PCA. While the results in section showed the benefit of the proposed algorithm

compared to a competing approach, it is the goal of this section to clarify if operating in the

double-logarithmic scale is a viable alternative.

The idea to observe the eigenvalue in a double-logarithmic scale was discussed for offline

PCA [47]. The double-logarithmic transformation faces the same problem as the single-loga-

rithmic transformation in offline PCA because the error between real and approximated

Fig 10. Dimensionality adjustment process on the CareerCon19 [51] data set with different approaches and θ =

0.99. The horizontal line is a reference dimensionality calculated with an offline PCA. The solid line is the

dimensionality adjustment process with the novel approach presented in this work, while the dashed line represents

[7]. Each data point in the other two line is the mean of 100 repetitions.

https://doi.org/10.1371/journal.pone.0248896.g010
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eigenvalues is too large to make a precise approximation. Due to the continuous eigenvalue

training this problem does not exist in hierarchical online PCA.

Using a double-logarithmic scale, the values of the remaining n −m eigenvalues are deter-

mined via

~l�i ¼ a logðiÞ þ b; ð24Þ

l
�

i ¼ expð~l�i Þ ð25Þ

with i 2 {m + 1, . . ., n}. Instead of testing all stopping rules, the comparison is limited to the

cumulative percentage of total variance stopping rule because this method achieved the best

results. The results are presented in Table 8.

In the low-dimensional area with θ = [0.7, 0.8], the double-logarithmic approach is in most

cases able to predict the correct final dimensionality with slightly higher standard deviations s
compared to the single-logarithmic approach. For the image data sets, the approach cannot

correctly estimate the dimensionality for θ = 0.99. Additionally, the standard deviation in the

upper area of θ� 0.9 is consistently larger than in the single-logarithmic approach.

This additional experiment was carried out to test if using the double-logarithmic scale to

estimate the eigenvalues is superior to using the single-logarithmic scale. However, the results

demonstrate that this method yields worse results on the given data sets and applied stopping

rule.

Conclusion

Driven by the technological developments in all areas of our live and the explosion in available

heterogeneous data, the further advancement of dimensionality reduction methods is highly

relevant. The method proposed in this work enhances neural network-based PCA by an algo-

rithm to accurately determine the optimal number of meaningful principal components on

data streams.

Therefore, neural network-based PCA was extended by an algorithm that is capable of

adjusting the dimensionality in large step size at every timestep. The algorithm takes advantage

of natural characteristics of neural network-based PCA.

The approach for adaptive dimensionality adjustment in neural network-based PCA was

tested on a variety of data sets. The criteria to rate the adjustment quality were firstly the accu-

racy (Tables 2–8) and secondly the convergence speed (Figs 5–8). Different stopping rules

were explored: (1) The eigenvalue approximation in combination with the eigenvalue-one cri-

terion was not able to find the correct dimensionality when the data set is augmented with

many noise dimensions. (2) In contrast, combining the eigenvalue estimation with the

Table 7. Comparison of algorithmic complexity regarding computation time and memory consumption for each

data point presentation.

Method Memory storage Computational time

Batch (EVD) O(Nn) O(Nn�min(N,n))

NN-PCA O(nm) O(nm)

NN-PCA (orth.) O(nm) O(nm2)

RRLSA O(nm) O(nm2)

RRLSA (orth.) O(nm) O(nm2)

RRLSA (orth.) with Dim. adjustment O(nm) O(nm2)

Incremental PCA O(nm) O(nm2)

https://doi.org/10.1371/journal.pone.0248896.t007
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eigenvalue-average stopping rule through replacing the fixed threshold with a moving thresh-

old, already yielded better results. The adaptation process was faster and the remaining stan-

dard deviation was lower. (3) For the percentage of total variance criterion, an extra factor η
was introduced, which defines the minimal represented variance to be preserved by the princi-

pal components. The algorithm showed its strength by accurately predicting n −m eigenval-

ues. In this way, the quality of the results could be further increased. (4) The cumulative

percentage of total variance criterion correctly calculated the dimensionality in all but one

combination of data set and parameter θ. All in all, the proposed algorithm for eigenvalue esti-

mation and adaptive dimensionality adjustment proved to be applicable to online PCA and

correctly approximated the final dimensionality long before all data points were presented.

The approach was in the following benchmarked against existing neural network-based

and incremental PCA algorithms for adaptive dimensionality adjustment, both methods being

limited to an increment of one dimension per data point. The methods were compared on the

cumulative percentage of total variance stopping rule. However, the newly proposed method

achieved considerably better results in terms of accuracy and speed.

Table 8. Cumulative percentage of total variance with double-logarithmic eigenvalue approximation, θ1 = 0.7, θ2 = 0.8, θ3 = 0.9, θ4 = 0.99.

Data set μ ± s

θ1 θ2 θ3 θ4

a) Cameraman25% 1.1±0.3 1.7±0.9 6.1±4.1 16.4±7.1

Cameraman50% 1.0±0,0 1.4±0.5 5.9±5.1 9.6±9.6

Cameraman75% 1.0±0.0 1.2±0.4 5.7±6.3 8.7±9.6

Cameraman100% 1.0±0.0 1.2±0.4 6.0±6.9 13.5±11.0

Offline PCA 1 1 4 30

b) Circle25% 1.1±0.4 1.3±0.6 3.4±2.5 11.8±6.5

Circle50% 1.0±0.0 1.1±0.3 3.3±3.0 11.0±9.1

Circle75% 1.0±0.0 1.0±0.1 4.2±6.7 9.0±9.3

Circle100% 1.0±0.0 1.0±0.0 4.3±8.7 9.8±8.7

Offline PCA 1 1 2 23

c) PHM0825% 1.0±0.1 1.1±0.3 1.8±0.5 2.5±0.8

PHM0850% 1.0±0.0 1.1±0.0 1.9±0.3 2.0±0.4

PHM0875% 1.0±0.0 1.0±0.0 1.9±0.3 1.9±0.3

PHM08100% 1.0±0.0 1.0±0.0 2.0±0.2 1.9±0.3

Offline PCA 1 1 2 2

d) CareerCon1925% 2.4±0.6 2.9±0.8 3.6±0.8 4.9±0.4

CareerCon1950% 2.2±0.6 2.8±0.7 3.2±0.4 4.9±0.4

CareerCon1975% 2.1±0.3 2.9±0.5 3.1±0.3 5.0±0.0

CareerCon19100% 2.0±0.2 2.9±0.4 3.0±0.2 5.0±0.0

Offline PCA 2 3 3 5

e) Waveform25% 17.9±2.1 26.1±2.9 33.2±1.4 39.6±1.9

Waveform50% 18.0±2.0 26.6±2.7 33.1±1.4 39.6±1.9

Waveform75% 18.4±1.9 26.6±2.7 33.0±1.3 39.6±1.9

Waveform100% 18.6±1.9 26.5±2.7 33.0±1.3 39.6±1.9

Offline PCA 18 25 33 40

f) Waveform225% 5.8±1.3 10.8±1.2 16.1±0.3 20.9±0.1

Waveform250% 5.6±1.2 11.0±1.0 16.0±0.2 21.0±0.0

Waveform275% 5.7±1.2 11.1±0.9 16.0±0.2 21.0±0.0

Waveform2100% 5.8±1.2 11.1±0.9 16.0±0.1 21.0±0.0

Offline PCA 6 11 16 21

https://doi.org/10.1371/journal.pone.0248896.t008
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In addition, it was tested if the results could be further improved by fitting the linear regres-

sion model, which operates at the core of the proposed method, in the double logarithmic

scale. This method was tested in combination with the cumulative percentage of total variance

stopping rule. The results in the double-logarithmic scale were less stable, therefore the single-

logarithmic scale is preferable.

List of symbols

c, PCA center;

C, covariance matrix;

i, eigenvalue index;

K, total number of training steps;

m, number of eigenvectors;

n, dimensionality of data space;

N, number of samples in incremental PCA;

U, supplemented set of trained and estimated eigenvalues;

V, set of trained eigenvalues;

W, matrix of estimated eigenvectors;

wi, ith eigenvector estimate;

~U , supplemented set of trained and estimated log-eigenvalues;

~V , set of trained log-eigenvalues;

~V �, set of estimated log-eigenvalues;

x, vector drawn from data space;

X, set with training data;

y, neuron activation;

α, regression slope;

β, regression offset;

δ, adaptive learning rate;

Γ, initial training parameter;

η, proportion factor;

θ, complexity factor;

κ, current training step;

λ, trained eigenvalue;

λtotal, total variance;

~l, trained log-eigenvalue;

~l�, estimated log-eigenvalue;

Λ, diagonal matrix of eigenvalues;

σ2, residual variance;

φ, activation function of a neuron;

μ, low-pass filter parameter;

ψ, adaptive learning rate;

ξ, distance between data and center
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