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Abstract

This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the

modulus N = p2q where p and q are balanced large primes. Suppose e 2 Zþ satisfying gcd

(e, ϕ(N)) = 1 where ϕ(N) = p(p − 1)(q − 1) and d < Nδ be its multiplicative inverse. From ed −
kϕ(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when

the primes share a known amount of Least Significant Bits(LSBs). This is achievable since

we obtain the small roots of our specially constructed integer polynomial which leads to the

factorization of N. More specifically we show that N can be factored when the bound

d < 11

9
� 2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g
p

. Our attack enhances the bound of some former attacks upon N = p2q.

1 Introduction

Secure communication up till the 70’s was executed through symmetrical ways. In other word,

both of the encryption and decryption processes used the same key. Later in 1978, the first

assymetric cryptosystem went public and solved the problematic issue of distributing keys.

This cryptosystem used different keys to encrypt and decrypt the data. It is known as the RSA

cryptosystem [1]. The construction of the RSA algorithms comprise of key generation, encryp-

tion and decryption. During the key generation process, two large balanced primes p and q are

generated and the modulus N = pq is computed. Next, let e be a random integer such that gcd

(e, ϕ(N)) = 1 where ϕ(N) = (p − 1)(q − 1) is the Euler totient function. Let d be its multiplicative

inverse of e such that ed� 1 mod ϕ(N). Let (N, e) be publicised for encryption purpose while

p, q, ϕ(N), d are kept private. For decryption process, private parameter d is needed. The math-

ematical difficulty of the RSA cryptosystem relies on the hardness of solving the integer factori-

zation problem on N = pq, solving the key equation ed − kϕ(N) = 1 and solving the RSA

diophantine key equation that is, C�Me mod N. Up until today, the RSA cryptosystem has

remained secure.

In 1990, [2] found out a potential weakness on this cryptosystem. He proved that if

d < 1

3
N1

4, then one can factor N by using the continued fractions expansion method. In the fol-

lowing years, more resarchers worked on the same objective as [2] and managed to enhance
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the bound d. Later in 1996, [3] came out with an astounding method that is very useful to find

the roots of either univariate or multivariate polynomial. Since then, this method has been

used extensively in both cryptography and cryptanalysis. [4] utilized this method in their

attack and they improved the bound of [2] up to d< N0.292.

Another potential weakness upon the RSA cryptosystem is when there is leaked informa-

tion regarding either the MSB(s) or LSB(s) of the private keys which is known as partial key

exposure attack. In 1998, [5] proved that the whole value of d could be retrieved if a quater of d
is known [6], and [7] also showed that if the primes share either MSB(s) or LSB(s), then the

modulus can be factored in polynomial time. Later in 2014, [8] published an attack on RSA

cryptosystem when the primes share the LSB(s) and there exists two public exponents such

that their private exponents share their MSB(s).

Multi-Power RSA is one of the variants of the RSA whereby the modulus N = pr q for r� 2

is utilized. This type of modulus provides advantage for both key generation and the decryp-

tion algorithms provided the Chinese Remainder Theorem is utilized [9]. Among cryptosys-

tems that utilize this fact are designs by [10–12]. Through their papers, the designers managed

to show that their cryptosystems had low computing costs compared to the standard RSA.

As such, the study of the Integer Factorization Problem of N = pr q becomes important. [13]

proved that N = pr q is factorable for large r, when rffi log p. Since then, many attackers made

an attempt to cryptanalyse the multi-power RSA modulus. For instance, [14] showed that the

modulus N = pr q is more vulnerable compared to N = pq. For r = 2, the author proved that N
can be factored if d< N0.292. In 2014, [15] presented his proof that N = p2q can be factored by

using lattice reduction techniques provided d< N0.395.

1.1 Our contribution

We are working on the same purpose as the previous researchers which is to find other weak-

ness of the RSA in order to enhance its security. Therefore in this paper, we present an attack

on the modulus N = p2q where the primes share a known amount of LSB(s). Note that this is

an extended result from [8]. We apply the strategy of Jochemsz and May to find small roots of

our integer polynomial and show that the modulus N can be factored when d< Nδ where

d <
11

9
�

2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g

p
:

The construction of this paper is as follows. In Section 1, we intoduce the mechanisms and

some results that will be used throughout this paper. In Section 2, we present the result on our

attack theoretically. We also make a comparison with the previous attacks. Finally we conclude

in Section 4.

2 Materials and methods

This section will discuss briefly on lattice basis reduction, Howgrave-Graham theorem, and

useful lemmas that will be needed in this study.

2.1 Lattice

Suppose o; n 2 Zþ with ω� n. Let v1, � � �, vω be linearly independent vectors in real numbers

field. A lattice L is spanned by a set of linear combination {v1, � � �, vω} in the form

L ¼
Xo

k¼1

xkuk j xk 2 Z

( )
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with the dimension of ω. The lattice is called full rank if the dimension ω = n. Thus, the deter-

minant is calculated by taking the absolute value of the determinant of the matrix whose rows

consist of {v1, � � �, vω} [16]. [17] formulated LLL algorithm to find a short basis vector in time

polynomial.

Theorem 1 [17] Let L be the lattice generated by a set of basis fv1; . . . ; vog and has the
dimension ω. The reduced basis fb1; . . . ; bog produced by the LLL algorithm satisfies

jjb1jj � jjb2jj � � � � � jjbijj � 2
oðo� 1Þ

4ðoþ1� iÞdetðLÞ
1

oþ1� i

for all 1� i� ω.

Since its invention, LLL algorithm has been extensively applied in order to find reduced

basis vectors in a lattice. For instance, [3] introduced a method to find a small roots of modular

polynomial. Applying the LLL algorithm to find a reduced basis of the lattice generated by the

modular polynomial, [3] managed to obtain the roots of the polynomial. Later, [18] described

an alternative to Coppersmith’s method and he came out with the following theorem.

Theorem 2 [18] Let hðx1; . . . ; xnÞ 2 Z½x1; . . . ; xn� be a polynomial with at ω monomials.
Suppose that hðxð0Þ1 ; . . . ; xð0Þn Þ � 0 ðmod RÞ where jxð0Þi j < Xi for i ¼ 1; . . . ; n; and
h x1X1; . . . ; xnXnð Þ < Rffiffiffi

o
p . Then hðxð0Þ1 ; . . . ; xð0Þn Þ ¼ 0 holds over integers.

Remark that our attack relies on a notable assumption that also had been used in some ear-

lier proposed attacks such as [4, 15, 19].

Assumption 1. The construction of LLL algorithm produces a number of coprime polynomi-
als. The roots of these polynomials can be computed efficiently using the resultant technique.

2.2 Approximation of primes in RSA

The following results by [20] show an approximation of the size of the primes and approxima-

tion of N − ϕ(N). These results will be used to approximate the bound for one of the variables

in our polynomial.

Lemma 1 Let N = p2q with q< p< 2q. Then

2� 1=3N1=3 < q < N1=3 < p < 21=3N1=3:

Lemma 2 Let N = p2q with q< p< 2q. Then

2N2=3 � N1=3 < N � �ðNÞ < ð22=3 þ 2� 1=3ÞN2=3 � 21=3N1=3:

2.3 Prime sharing bits

The following lemma is reformulated from result [8]. It considers the case when the modulus

N = p2q consists of two primes that share a known amount of their LSBs.

Lemma 3 Let N = p2q be the modulus and suppose that p − q = 2b u for a known value of b.

Let p = 2b p1 + u0 and q = 2b q1 + u0 where u0 is a solution to p3� N (mod 2b). If s0 �

u� 1
0
ðN � u3

0
Þ ðmod 23bÞ then p2 + pq − p = 23b s + s0 − v where

v ¼ ð2bp1 þ 22bp1q1 � 2bp1u0 � 2u2
0
þ u0Þ:

Proof. Suppose that p − q = 2b u. Then q = p − 2b u and

N ¼ p2q ¼ p2ðp � 2buÞ ¼ p3 � 2bup2: ð1Þ

Hence, from (1), we obtain p3� N (mod 2b). Let u0 be a solution of the modular form p3� N
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(mod 2b). Then, p� u0 (mod 2b) is a solution which implies that p = 2b p1 + u0 where p1 is a

positive integer. Now we have,

q ¼ p � 2bu ¼ 2bp1 þ u0 � 2bu ¼ 2bðp1 � uÞ þ u0 ¼ 2bq1 þ u0

where q1 = p1 − u. Using N = p2q, we get

N ¼ ð2bp1 þ u0Þ
2
ð2bq1 þ u0Þ

¼ ð22bp2
1
þ 2bþ1p1u0 þ u2

0
Þð2bq1 þ u0Þ

¼ 23bp2
1
q1 þ 22bp2

1
u0 þ 22bþ1p1u0q1 þ 2bþ1p1u2

0
þ 2bq1u2

0
þ u3

0
:

ð2Þ

From (2) we deduce

22bu0ðp2
1
þ 2p1q1Þ þ 2bu2

0
ð2p1 þ q1Þ þ u3

0
� N ðmod 23bÞ

22bu0ðp2
1
þ 2p1q1Þ þ 2bu2

0
ð2p1 þ q1Þ � N � u3

0
ðmod 23bÞ:

ð3Þ

Suppose gcd(u0, 23b) = 1, we multiply (3) with u� 1
0

and get

22bðp2
1
þ 2p1q1Þ þ 2bu0ð2p1 þ q1Þ � u� 1

0
ðN � u3

0
Þ ðmod 23bÞ

which can be rewritten as

22bðp2
1
þ 2p1q1Þ þ 2bu0ð2p1 þ q1Þ ¼ 23bsþ s0

where s0 � u� 1
0
ðN � u3

0
Þ ðmod 23bÞ. Finally we have,

p2 þ pq � p ¼ ð2bp1 þ u0Þ
2
þ ð2bp1 þ u0Þð2

bq1 þ u0Þ � ð2
bp1 þ u0Þ

¼ 22bp2
1
þ 2bþ1p1u0 þ u2

0
þ 22bp1q1 þ 2bp1u0 þ 2bq1u0 þ u2

0
� 2bp1 � u0

¼ 22bðp2
1
þ 2p1q1Þ þ 2bu0ð2p1 þ q1Þ � ð2

bp1 þ 22bp1q12
bp1u0 � 2u2

0
þ u0Þ

¼ 23bsþ s0 � v

ð4Þ

where v ¼ ð2bp1 þ 22bp1q1 � 2bp1u0 � 2u2
0
þ u0Þ:

3 The new attack

This section presents the attack on modulus N = p2q which works when there has a known

amount of LSBs shared between the primes p and q.

Theorem 3 Let N = p2q be modulus such that p − q = 2b u where 2b� Nα. Let e be a public
exponents satisfying e� Nγ and ed − kϕ(N) = 1. Suppose that d< Nδ. Then N can be factored in
time polynomial if

d <
11

9
�

2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g

p
:

Proof. Suppose we have public exponent e and key equation

ed � k�ðNÞ ¼ 1

ed � kðpðp � 1Þðq � 1ÞÞ ¼ 1

ed � kðN � ðp2 þ pq � pÞÞ ¼ 1:

ð5Þ

Suppose that p − q = 2b u. Then, from Lemma 3, p2 + pq − p can be rewritten in the form p2 +

pq − p = 23b s + s0 − v where s0 � u� 1
0
ðN � u3

0
Þðmod 23bÞ and u0 is a solution of the modular
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equation p3� N (mod 2b). Thus, substitutes (4) from Lemma 3 into (5), we get

ed � kðN � ð23bsþ s0 � vÞÞ ¼ 1:

Rearranging the equation,

ed � kðN � s0Þ þ kð23bs � vÞ � 1 ¼ 0: ð6Þ

We transform (6) into

a1x1 þ a2x2 þ x2x3 þ a3 ¼ 0:

and we fix the coefficients and the variables of the polynomial as follows:

a1 ¼ e

a2 ¼ ðN � s0Þ;

a3 ¼ � 1

8
>>><

>>>:

and

x1 ¼ d;

x2 ¼ k;

x3 ¼ 23bs � v:

8
>>><

>>>:

Now, we consider the polynomial

f ðx1; x2; x3Þ ¼ a1x1 þ a2x2 þ x2x3 þ a3:

Then (d, k, 23b s − v) is a root of f(x1, x2, x3) and can be solved by using Coppersmith’s tech-

nique [3]. However, we choose to use the extended strategy of Jochemsz and May [21] due to

its easier implementation. The following bounds will be needed:

• max(e1, e2) = Nγ.

• max(d) < X1 = Nδ.

• k ¼ e1d1 � 1

�ðNÞ < X2 ¼ Ngþd� 1.

• p − q = 2b u with 2b� Nα and a < 2

9
.

• p2 + pq − p = 23b s + s0 − v with 23b s − v< X3 = N2/3.

The bounds of the variables are fixed as follows:

X1 ¼ Nd;X2 ¼ Ngþd� 1;X3 ¼ N2=3

Let m; t 2 Zþ. The set S and M be defined as:

S ¼
[

0�j�t

fxi1
1 x

i2
2 x

i3þj
3 jx

i1
1 x

i2
2 x

i3
3 monomial of f m� 1g

and the set

M ¼ fmonomials of xi1
1 x

i2
2 x

i3
3 f j xi1

1 x
i2
2 x

i3
3 2 Sg:

Neglecting the coefficients, we find the expansion of polynomial fm−1(x1, x2, x3) satisfies

f m� 1ðx1; x2; x3Þ ¼
Xm� 1

i1¼0

Xi1

i2¼0

Xm� 1� i1

i3¼0

xi1
1 x

i2
2 x

i3
3 ð7Þ
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The monomials xi1
1 x

i2
2 x

i3
3 in (7) can be categorised as:

xi1
1 x

i2
2 x

i3
3 2 S if

i1 ¼ 0; . . . ;m � 1;

i2 ¼ 0; . . . ;m � 1 � i1;

i3 ¼ 0; . . . ; i2 þ t:

8
>>><

>>>:

Consequently, the monomials for set M are

xi1
1 x

i2
2 x

i3
3 2 M if

i1 ¼ 0; . . . ;m;

i2 ¼ 0; . . . ;m � i1;

i3 ¼ 0; . . . ; i2 þ t:

8
>>><

>>>:

Define

W ¼ jjf ðx1X1; x2X2; x3X3jj1

¼ maxðja1jX1; ja2jX2;X2X3Þ:

Then W satisfies

W � ja1jX1 ¼ ed � Ngþd ¼ Ngþd: ð8Þ

Next, define

R ¼WXm� 1
1

Xm� 1
2

Xm� 1þt
3

:

Suppose that a4 is coprime with R. We want to work with a polynomial that has constant term

1, thus we define f 0ðx1; x2; x3Þ ¼ a� 1
4
f ðx1; x2; x3Þ mod R. Next, define the polynomials g and h

as:

g ¼ xi1
1 x

i2
2 x

i3
3 f 0X

m� 1� i1
1 Xm� 1� i2

2 Xm� 1þt� i3
3 ;

with xi1
1 x

i2
2 x

i3
3 2 S

h ¼ xi1
1 x

i2
2 x

i3
3 R;

with xi1
1 x

i2
2 x

i3
3 2 MnS:

The basis of a lattice L is built by using the coefficients of polynomials g and h with dimension

o ¼
X

xi1
1
xi2

2
xi3

3
2M

1 ¼
Xm

i1¼0

Xm� i1

i2¼0

Xi2þt

i3¼0

1 ¼
1

6
ðmþ 1Þðmþ 2Þðmþ 3t þ 3Þ:

In order to construct an upper triangular matrix, we perform the following ordering of the

monomials: if
P

ij <
P

i0j then xi1
1 x

i2
2 x

i3
3 < xi0

1
1 x

i0
2

2 x
i0
3

3 and the monomials are lexicographically

ordered if
P

ij ¼
P

i0j. The diagonal entries of the matrix are of the form

(
ðX1X2Þ

m� 1Xm� 1þt
3

for the polynomials g

WXm� 1þi1
1 Xm� 1þi2

2 Xm� 1þtþi3
3 for the polynomials h:

Refer S1 Table in S1 Appendix for the coefficient matrix of m = 3 and t = 1.
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Next, define

sj ¼
X

xi1
1
xi2

2
xi3

3
2MnS

ij; for j ¼ 1; 2; 3:
ð9Þ

The determinant of L is then

detðLÞ ¼W jMnSjXðm� 1þtÞjSjþðm� 1þtÞjMnSjþs3
3

Q2

j¼1
Xðm� 1ÞjSjþðm� 1ÞjMnSjþsj

j

which can be simplified into

detðLÞ ¼W jMnSjXðm� 1þtÞoþs3
3

Y2

j¼1

Xðm� 1Þoþsj
j :

All the polynomials g(x1, x2, x3) and h(x1, x2, x3) and their combinations share the root (d, k,

23b s − v) modulo R. A new basis with short vectors is produced after applying the LLL algo-

rithm to the lattice L. For i = 1, 2, let fi(x1 X1, x2 X2, x3 X3) be two short vectors of the reduced

basis. Each fi shares the roots (d, k, 23b s − v). Then by Theorem 3, we have

jjfiðx1X1; x2X2; x3X3Þjj < 2
oðo� 1Þ

4ðo� 2ÞdetðLÞ
1

o� 2 for i ¼ 1; 2:

In order to fulfill the condition of the bound proposed by [18], we force the polynomials fi for

i = 1, 2 to fulfill the condition of

2
oðo� 1Þ

4ðo� 2ÞdetðLÞ
1

o� 2 <
R
ffiffiffiffi
o
p

which then can be transformed into det ðLÞ < Ro, that is

W jMnSjXðm� 1þtÞoþs3
3

Y2

j¼1

Xðm� 1Þoþsj
j < ðWXm� 1

1
Xm� 1

2
Xm� 1þt

3
Þ
o

Xs3
3

Y2

j¼1

Xsj
j < Wo� jMnSj:

Using ω = |M| and |M| − |MnS| = |S|, we get

Y3

j¼1

Xsj
j < W jSj: ð10Þ
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Using (9), we get

s1 ¼
Xm

i1¼0

Xm� i1

i2¼0

Xi2þt

i3¼0

i1 �
Xm� 1

i1¼0

Xm� 1� i1

i2¼0

Xi2þt

i3¼0

i1

¼
1

6
mðmþ 1Þðmþ 3t þ 2Þ

s2 ¼
Xm

i1¼0

Xm� i1

i2¼0

Xi2þt

i3¼0

i2 �
Xm� 1

i1¼0

Xm� 1� i1

i2¼0

Xi2þt

i3¼0

i2

¼
1

6
mðmþ 1Þð2mþ 3t þ 4Þ

s3 ¼
Xm

i1¼0

Xm� i1

i2¼0

Xi2þt

i3¼0

i3 �
Xm� 1

i1¼0

Xm� 1� i1

i2¼0

Xi2þt

i3¼0

i3

¼
1

6
ðmþ 1Þðm2 þ 3mt þ 2mþ 3t2 þ 3tÞ:

Correspondingly, we get

jSj ¼
X

xi1
1
xi2

2
xi3

3
2S

1 ¼
Xm� 1

i1¼0

Xm� 1� i1

i2¼0

Xi2þt

i3¼0

¼
1

6
mðmþ 1Þðmþ 3t þ 2Þ:

Set t = τm, then,

s1 ¼
1

6
ð3tþ 1Þm3 þ oðm3Þ

s2 ¼
1

6
ð3tþ 2Þm3 þ oðm3Þ

s3 ¼
1

6
ð3t2 þ 3tþ 1Þm3 þ oðm3Þ

jSj ¼
1

6
ð3tþ 1Þm3 þ oðm3Þ

Using this, and after simplifying by m3, the inequality (10) transform into

X
1
6
ð3tþ1Þ

1 X
1
6
ð3tþ2Þ

2 X
1
6
ð3t2þ3tþ1Þ

3 < W1
6
ð3tþ1Þ

Substituting the values of X1, X2, X3 and W from (8) we get

ðdÞð
1

6
ð3tþ 1ÞÞðgþ d � 1Þð

1

6
ð3tþ 2ÞÞð

2

3
Þð

1

6
ð3t2 þ 3tþ 1ÞÞ < ðgþ dÞð

1

6
ð3tþ 1ÞÞ

or equivalently,

1

3
t2 þ

1

6
3d � 1ð Þtþ

1

36
ð6gþ 12d � 8Þ < 0:

Differentiate the equation above with respect to τ, we get the optimal value t ¼ � 3dþ1

4
, this
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reduces to

� 27d
2
þ 66dþ 24g � 35 < 0

which is valid if

d <
11

9
�

2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g

p
:

Under this condition of δ, we find our reduced polynomials f, f1, f2 with the root of (d, k, 23b

s − v). By Assumption 1 in Section 2, the solution of the roots can be extracted using resultant

technique. By using the third root 23b s − v, we compute p2 + pq − p = 23b s + s0 − v. This value

is then used to find ϕ(N) and since ϕ(N) = p(p − 1)(q − 1) we can factor out p by taking the gcd

(N, ϕ(N)). By knowing the value of p, we can factor the modulus N.

3.1 Comparison with the former attack

We compare our bounds with these three former attacks, [14, 15 and 19] that also work on

modulus N = pr q but we specifically consider the case when r = 2. Their attacks focused on the

RSA key equation ed − kϕ(N) = 1 where ϕ(N) = pr−1(pr − 1)(q − 1). Note that in these former

attacks, their primes do not share any amount of LSBs. Their bounds depend only on the value

of r. We compare the results with various values of γ = logN(e). Our corollary is as follow.

Corollary 1 Let N = p2q be the modulus where q< p< 2q. Let e be a public exponent satisfy-
ing ed − kϕ(N) = 1 for ϕ(N) = p(p − 1)(q − 1). Suppose that d< Nδ. Then N can be factored in
time polynomial if

d <
11

9
�

2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g

p
:

Note that the bounds for δ of [14, 15 and 19] remain fixed because their bounds only

depend on the value of r = 2. We describe their bound for d as in the Table 1 below.

Table 2 shows that our bound improves the previous bounds. The value of δ increases

inversely proportional to the value of γ.

Table 1. Bounds for d from the former attacks.

Former attack Bound

[14]

d < N
max r

ðrþ1Þ2
;
ðr� 1Þ2

ðrþ1Þ2

n o

¼ N0:22

[15] d< N0.39

[19] d < N
rðr� 1Þ

ðrþ1Þ2 ¼ N0:22

https://doi.org/10.1371/journal.pone.0248888.t001

Table 2. Comparison of the new result with methods from [14, 15, 19].

Bound of δ
γ = logN(e) γ = 0.6 γ = 0.5 γ = 0.4 γ = 0.3

[14] 0.22 0.22 0.22 0.22

[15] 0.39 0.39 0.39 0.3

[19] 0.22 0.22 0.22 0.22

Our bound in Corollary 1 0.36 0.42 0.47 0.54

https://doi.org/10.1371/journal.pone.0248888.t002
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Remark 1 In Corollary 1, it states that N can be factored if

d <
11

9
�

2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g

p
:

Suppose e = Nγ. We have

ed ¼ 1þ k�ðNÞ > �ðNÞ � N:

then

d >
N
e
¼ N1� g:

From the fact that

d > 1 � g

and combining it with results from Corollary 1, d < 2

3
� 1

2
g, we have

1 � g <
11

9
�

2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 18g

p
:

From here, we can find the bound for the positive value of γ. A direct calculation shows that

g < 2

3
. For small values of γ, this translates into d� N.

4 Conclusion

We describe an attack related to partial key exposure. Our attack works upon the modulus N =

p2q where the primes share an amount of LSB(s). Based on the result of Nitaj et al. [8], we

reformulate their lemma within our theorem and find the substitution for p2 + pq − p which is

the value of N − ϕ(N). We use the result from our lemma in our theorem which then yields a

set of integer polynomials. By applying the extended strategy of Jochemsz and May, one is able

to determine the small roots of our integer polynomial and thus factoring the modulus N. We

show that N can be factored when d< Nδ for d < 2

3
þ 3

2
a � 1

2
g where 0 < g < 2

3
. As such, we

manage to improve the bounds of some previous attacks on the modulus N = p2q.
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