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Abstract

This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the

modulus N = pqwhere p and g are balanced large primes. Suppose e € Z* satisfying gcd
(e, o(N)) =1 where ¢(N)=p(p—1)(g— 1) and d < NP be its multiplicative inverse. From ed -
k¢(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when

the primes share a known amount of Least Significant Bits(LSBs). This is achievable since
we obtain the small roots of our specially constructed integer polynomial which leads to the
factorization of N. More specifically we show that N can be factored when the bound

§ <4 —2./T+718y. Our attack enhances the bound of some former attacks upon N = p?q.

1 Introduction

Secure communication up till the 70’s was executed through symmetrical ways. In other word,
both of the encryption and decryption processes used the same key. Later in 1978, the first
assymetric cryptosystem went public and solved the problematic issue of distributing keys.
This cryptosystem used different keys to encrypt and decrypt the data. It is known as the RSA
cryptosystem [1]. The construction of the RSA algorithms comprise of key generation, encryp-
tion and decryption. During the key generation process, two large balanced primes p and g are
generated and the modulus N = pq is computed. Next, let e be a random integer such that ged
(e, ¢(N)) = 1 where ¢(N) = (p — 1)(q — 1) is the Euler totient function. Let d be its multiplicative
inverse of e such that ed = 1 mod ¢(N). Let (N, e) be publicised for encryption purpose while
D> 9> (N), d are kept private. For decryption process, private parameter d is needed. The math-
ematical difficulty of the RSA cryptosystem relies on the hardness of solving the integer factori-
zation problem on N = pq, solving the key equation ed — k¢(N) = 1 and solving the RSA
diophantine key equation that is, C = M* mod N. Up until today, the RSA cryptosystem has
remained secure.

In 1990, [2] found out a potential weakness on this cryptosystem. He proved that if

d< %N%, then one can factor N by using the continued fractions expansion method. In the fol-
lowing years, more resarchers worked on the same objective as [2] and managed to enhance
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the bound d. Later in 1996, [3] came out with an astounding method that is very useful to find
the roots of either univariate or multivariate polynomial. Since then, this method has been
used extensively in both cryptography and cryptanalysis. [4] utilized this method in their
attack and they improved the bound of [2] up to d < N°?*%,

Another potential weakness upon the RSA cryptosystem is when there is leaked informa-
tion regarding either the MSB(s) or LSB(s) of the private keys which is known as partial key
exposure attack. In 1998, [5] proved that the whole value of d could be retrieved if a quater of d
is known [6], and [7] also showed that if the primes share either MSB(s) or LSB(s), then the
modulus can be factored in polynomial time. Later in 2014, [8] published an attack on RSA
cryptosystem when the primes share the LSB(s) and there exists two public exponents such
that their private exponents share their MSB(s).

Multi-Power RSA is one of the variants of the RSA whereby the modulus N = p" g for r > 2
is utilized. This type of modulus provides advantage for both key generation and the decryp-
tion algorithms provided the Chinese Remainder Theorem is utilized [9]. Among cryptosys-
tems that utilize this fact are designs by [10-12]. Through their papers, the designers managed
to show that their cryptosystems had low computing costs compared to the standard RSA.

As such, the study of the Integer Factorization Problem of N = p” g becomes important. [13]
proved that N = p" q is factorable for large 7, when r = log p. Since then, many attackers made
an attempt to cryptanalyse the multi-power RSA modulus. For instance, [14] showed that the
modulus N = p” g is more vulnerable compared to N = pq. For r = 2, the author proved that N
can be factored if d < N°?°%. In 2014, [15] presented his proof that N = p°q can be factored by
using lattice reduction techniques provided d < N**%°.

1.1 Our contribution

We are working on the same purpose as the previous researchers which is to find other weak-
ness of the RSA in order to enhance its security. Therefore in this paper, we present an attack
on the modulus N = p>q where the primes share a known amount of LSB(s). Note that this is
an extended result from [8]. We apply the strategy of Jochemsz and May to find small roots of
our integer polynomial and show that the modulus N can be factored when d < N° where

11 2

The construction of this paper is as follows. In Section 1, we intoduce the mechanisms and
some results that will be used throughout this paper. In Section 2, we present the result on our
attack theoretically. We also make a comparison with the previous attacks. Finally we conclude
in Section 4.

2 Materials and methods

This section will discuss briefly on lattice basis reduction, Howgrave-Graham theorem, and
useful lemmas that will be needed in this study.

2.1 Lattice

Suppose w, n € Z" with w < n. Let v, - - -, v, be linearly independent vectors in real numbers
field. A lattice £ is spanned by a set of linear combination {v;, - - -, ¥,,} in the form

L= {Zxkuk | x, € Z}
pas}
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with the dimension of w. The lattice is called full rank if the dimension w = n. Thus, the deter-
minant is calculated by taking the absolute value of the determinant of the matrix whose rows
consist of {vy, - - -, v,,} [16]. [17] formulated LLL algorithm to find a short basis vector in time
polynomial.

Theorem 1 [17] Let L be the lattice generated by a set of basis {v,, ...,v,} and has the
dimension w. The reduced basis {b,, ..., b,} produced by the LLL algorithm satisfies

o(w-1)
1,]] < [[B,]| < -~ < ||b]] < 2 =ndet(L)7

foralll <i<w.

Since its invention, LLL algorithm has been extensively applied in order to find reduced
basis vectors in a lattice. For instance, [3] introduced a method to find a small roots of modular
polynomial. Applying the LLL algorithm to find a reduced basis of the lattice generated by the
modular polynomial, [3] managed to obtain the roots of the polynomial. Later, [18] described
an alternative to Coppersmith’s method and he came out with the following theorem.

Theorem 2 [18] Let h(x,, ..., x,) € Z|x,,...,x,] be a polynomial with at w monomials.
Suppose that h(x\”, ..., x”) = 0 (mod R) where |x\" | < X, fori=1,...,n, and
h(x,X,,...,x,X,) < 75 Then h(x”, ..., x0) = 0 holds over integers.

Remark that our attack relies on a notable assumption that also had been used in some ear-
lier proposed attacks such as [4, 15, 19].

Assumption 1. The construction of LLL algorithm produces a number of coprime polynomi-
als. The roots of these polynomials can be computed efficiently using the resultant technique.

2.2 Approximation of primes in RSA

The following results by [20] show an approximation of the size of the primes and approxima-
tion of N — ¢(N). These results will be used to approximate the bound for one of the variables
in our polynomial.

Lemma 1 Let N = p°q with q < p < 2q. Then

27N < g < N3 < p < 23N/,
Lemma 2 Let N = p>q with q < p < 2q. Then
2N?3 — N3 < N — ¢(N) < (2°° + 27/%)N*/* — 2/NY3,

2.3 Prime sharing bits
The following lemma is reformulated from result [8]. It considers the case when the modulus
N = p°q consists of two primes that share a known amount of their LSBs.
Lemma 3 Let N = p°q be the modulus and suppose that p — q = 2 u for a known value of b.
Letp= 2}’p1 +upand q = 2b q1 + U where uy is a solution to p3 = N (mod 2%). Ifs, =
uy'(N — u2) (mod 2%) then p* + pq — p = 2°" s + s — v where
v=(2"p, +2%p,q, — 2°p,uy — 2uj + u,).
Proof. Suppose that p — g = 2° u. Then g = p — 2° u and
N =p’q =p*(p — 2°u) = p* — 2°up”. (1)

Hence, from (1), we obtain p3 = N (mod 2°). Let u, be a solution of the modular form p3 =N
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(mod 2°). Then, p = u, (mod 2) is a solution which implies that p = 2° p; + u, where p; is a
positive integer. Now we have,

qu_zb“:2bp1 +u, —2'u = 2h(p1 —u) +uy = 2b‘11 +u,
where g, = p; — u. Using N = p*g, we get
N = (2bp1 + ”0)2(2h% + uu)
= (2% f + ZbHPluo + ”g)(2b‘11 + ”0) (2)
= 2%17?% +2% Tu, + 22“1171”06]1 + 217“1’1”3 + 2b611”g + up.
From (2) we deduce
2%”‘0(1)? + 21’1‘11) + Qb”g@pl + %) + ”3 = N (mod 231’)
2%u,(p +2p,q,) +2'u3(2p, +q,) = N —uj (mod 2%).
Suppose ged (i, 2°%) = 1, we multiply (3) with u;" and get
2%@? +2p,q,) + 2b”0(2p1 +4,) = uy,' (N — u) (mod 23b)
which can be rewritten as
2%(1’% +2p,q,) + 2h”o(2pl +4q,) = 2%s + Sy
where s, = u;' (N — u?) (mod 2%). Finally we have,
P2 +pg—p = (2bP1 + ”0)2 + (szl + uu)(Qb% + ”0) - (2hP1 + ”U)
= 2% ? + 2b+1p1“0 + ”3 + 22bP1‘11 + 2bp1”0 + 2b‘]1“0 + ”3 - 2bp1 — Uy
= 22b(p§ +2p,q,) + 2b“0(2p1 +q,) — (2bp1 +2% 1‘112bp1”0 = 2u + u)

= 2545, —v

(4)
where v = (2°p, +2”p,q, — 2"p,u, — 212 + u,).

3 The new attack

This section presents the attack on modulus N = p°q which works when there has a known
amount of LSBs shared between the primes p and g.

Theorem 3 Let N = p°q be modulus such that p — q = 2" u where 2° ~ N Let e be a public
exponents satisfying e =~ N and ed — k¢(N) = 1. Suppose that d < N°. Then N can be factored in
time polynomial if

11

2

Proof. Suppose we have public exponent e and key equation

ed—kdp(N) = 1
ed—k(p(p—1)(q—1)) = 1 (5)
ed—k(N—(p*+pg—p)) = 1.

Suppose that p — g = 2" u. Then, from Lemma 3, p* + pq — p can be rewritten in the form p* +
pq-p=2"s+sy—vwheres, = u;' (N — u?)(mod 2%) and u, is a solution of the modular
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equation p3 = N (mod 2%). Thus, substitutes (4) from Lemma 3 into (5), we get
ed — k(N — (2"s +s,—v)) = L.
Rearranging the equation,
ed — k(N —s,) + k(2"s —v) =1 =0. (6)
We transform (6) into
a,x; + ayx, + x,x; +a; = 0.

and we fix the coefficients and the variables of the polynomial as follows:

a =e x, =d,
a, =(N-—s,), and x, =k,
_ __o3b
a;, =-1 X, =2"s—wv

Now, we consider the polynomial
Fx1, %, %3) = ayx; + A%, + X%,%5 + a5

Then (d, k, 2°% s — v) is a root of f{xy, x5, x3) and can be solved by using Coppersmith’s tech-
nique [3]. However, we choose to use the extended strategy of Jochemsz and May [21] due to
its easier implementation. The following bounds will be needed:

+ max(e;, e;) = N
« max(d) < X; = N°.
.k_eldl <X — Nrto-1
. p—qzzhuwithf’zNaandoc <2
. p2+pq—p:23bs+so—vwith23bs—v<X3:N2/3.

The bounds of the variables are fixed as follows:

X, =N, X, =N""1 X, =N/

Let m,t € Z*. The set S and M be defined as:

S= U {x x2x3 M |x ¥ monomial of f"'}
0<j<t

and the set
M = {monomials of xx2x}f | xixZx} € S}.

Neglecting the coefficients, we find the expansion of polynomial fm’l(xl, X,, X3) satisfies

m—1 i m—1—i)

AR CAENT: ZZ Z X x (7)

=0 ip=0 iz=
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The monomials x}' x2x? in (7) can be categorised as:
14243

Kxpxd €S if i,
iy =0,...,i,+¢

Consequently, the monomials for set M are

xlexSEM if i,=0,...
i, =0,...,0,+ L
Define
W= |[f(x, X, %X, %X,
= max(|a,|X,, |a,|X,, X, X,).
Then W satisfies
W > |a,|X, =ed ~ N'™ = N, (8)
Next, define
R = WX Xmo1xmie,

Suppose that a, is coprime with R. We want to work with a polynomial that has constant term

1, thus we define f'(x,, x,, x;) = a;'f(x,, x,,x;) mod R. Next, define the polynomials g and h
as:

g = XXX
with x'x2x € S

h =xx2x5R,
with x}' x7x} € M\S.

The basis of a lattice £ is built by using the coefficients of polynomials g and h with dimension

m m—iy ig+t
Z 1—22”21:% (m+1)(m+2)(m + 3t + 3).
xxxeM i1=0 ip=0 i3=0

1

In order to construct an upper triangular matrix, we perform the following ordering of the

monomials: if Y i, < ] then X aal < x1 x2 xd and the monomials are lexicographically
orderedif ) i, = Z i The diagonal entries of the matrix are of the form

{ (X, X,)" X for the polynomials g
WX XX S for the polynomials b

Refer S1 Table in S1 Appendix for the coefficient matrix of m =3 and t = 1.

PLOS ONE | https://doi.org/10.1371/journal.pone.0248888 March 24, 2021 6/11


https://doi.org/10.1371/journal.pone.0248888

PLOS ONE Analytical cryptanalysis upon N = p?q utilizing Jochemsz-May strategy

Next, define

s, = Z i, forj=1,2,3. 9)

xil] x;z x? eM\S
The determinant of £ is then

det(L) = W|M\5‘X§m71+t)\5\+(m71+t)\M\S\+53 sz:l )(j(mfl)\SH»(mfl)\M\ﬂJrs]

which can be simplified into

2
det(£) = W‘M\S‘Xém—l+t)w+53HAXj(m—l)uH,sj.
i1

All the polynomials g(x;, x5, x3) and h(x1, x,, x3) and their combinations share the root (d, k,
2% s — v) modulo R. A new basis with short vectors is produced after applying the LLL algo-
rithm to the lattice £. For i = 1, 2, let fi(x; X;, X, X, x3 X3) be two short vectors of the reduced
basis. Each f; shares the roots (d, k, 23— v). Then by Theorem 3, we have

w(w—1) 1
|1 (1 X5 2, X, 2, X5) || < 2707 det(ﬁ)wiz for i=1,2.

In order to fulfill the condition of the bound proposed by [18], we force the polynomials f; for
i =1, 2 to fulfill the condition of

w(w—1)

QH(w-2) det([_‘,)ﬁ <

Bl =

which then can be transformed into det (£) < R”, that is

2

W‘M\s‘X§m71+t)w+53 HX].(mfl)<u+5] < (WX{"71X;'171X3171+t)(A)

=1

2
X;S X‘_J‘ < Wo-IMs|
JIJ ;
Using w = |M| and | M| — |[M\S]| = |S|, we get

3
[Ix < wh. (10)
j=1

PLOS ONE | https://doi.org/10.1371/journal.pone.0248888 March 24, 2021 7/11


https://doi.org/10.1371/journal.pone.0248888

PLOS ONE

Analytical cryptanalysis upon N= p?q utilizing Jochemsz-May strategy

Using (9), we get

m m—iy ig+t m—1m—1—iy ig+t
IR ODRED IS IPW
=0 ipg=0 i3=0 =0 ip=0 i3=0
=—-m(m+ 1)(m+ 3t + 2)
m_m—iy ig4t m—1m—l—iy ip+t
P DRI IP I
=0 ig=0 i3=0 0 ip=0 iz=0
—m(m+1)(2m + 3t +4)
m m—ij ig+t m—1m—1—iy iy+t
D3 3 3535 3¢
i1=0 in=0 iz=0 0 ip=0 i3—

(m+ 1)(m* + 3mt + 2m + 3t + 3t).

Cﬁ|'—‘

Correspondingly, we get

m—1m—1—iy ig+t

S| = Z 1—222 m(m + 1)(m + 3t + 2).

x x x 3es =0 ip=0 i3=0
Set t = m, then,

s, 6(3r+1)m + o(m®)
1

S, 6(31+2)m + o(m?)
1

S5 6(31’ + 3t + 1)m’ + o(m?)
1

S| E(3r—|—1)m + o(m®)

Using this, and after simplifying by #2°, the inequality (10) transform into

XG < W%(Srﬂ)

(31+1) (,A(31+2) (33 +31+1)
X

Substituting the values of X1, X,, X3 and W from (8) we get

(3t 4+ 1))

[N

(37 +3t4+1)) < (y+9)(

=

)

[SCRI )

(3t +2))(

[N

Br+1)(+0—1)(

=

(0)(

or equivalently,
L 2+1(35 L)t + L (6y + 125 —8) < 0
3° 76 TR '

Differentiate the equation above with respect to 7, we get the optimal value T = =2+, this
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reduces to
—275" 4+ 666 + 24y — 35 < 0

which is valid if
11 2

Under this condition of 8, we find our reduced polynomials f, f;, f» with the root of (d, k, 2°*

s — v). By Assumption 1 in Section 2, the solution of the roots can be extracted using resultant
technique. By using the third root 2*” s — v, we compute p* + pq — p = 2°% s + s — v. This value
is then used to find ¢(N) and since ¢(N) = p(p — 1)(q — 1) we can factor out p by taking the gcd
(N, ¢(N)). By knowing the value of p, we can factor the modulus N.

3.1 Comparison with the former attack

We compare our bounds with these three former attacks, [14, 15 and 19] that also work on
modulus N = p" q but we specifically consider the case when r = 2. Their attacks focused on the
RSA key equation ed — k¢(N) = 1 where ¢(N) = p"'(p” - 1)(q — 1). Note that in these former
attacks, their primes do not share any amount of LSBs. Their bounds depend only on the value
of r. We compare the results with various values of y = logx(e). Our corollary is as follow.

Corollary 1 Let N = p°q be the modulus where q < p < 2q. Let e be a public exponent satisfy-
ing ed — kp(N) = 1 for §(N) = p(p — 1)(q — 1). Suppose that d < N°. Then N can be factored in
time polynomial if

11 2

Note that the bounds for § of [14, 15 and 19] remain fixed because their bounds only
depend on the value of = 2. We describe their bound for d as in the Table 1 below.

Table 2 shows that our bound improves the previous bounds. The value of § increases
inversely proportional to the value of y.

Table 1. Bounds for d from the former attacks.

Former attack Bound
1 SN
d< N ¥ (12 | = NO-22
[15] d < N°¥
(19]

d < N = No2
https://doi.org/10.1371/journal.pone.0248888.t001

Table 2. Comparison of the new result with methods from [14, 15, 19].

v =log, () 7=0.6 y=05 y=04 y=03
Bound of 6
[14] 0.22 0.22 0.22 0.22
[15] 0.39 0.39 0.39 0.3
[19] 0.22 0.22 0.22 0.22
Our bound in Corollary 1 0.36 0.42 0.47 0.54

https://doi.org/10.1371/journal.pone.0248888.t1002
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Remark 1 In Corollary 1, it states that N can be factored if
11 2
5 <§—§\/4+18y.
Suppose e = N”. We have
ed=1+kp(N) > ¢(N) = N.

then
N
d>—=N'"",
e

From the fact that

O0>1—y

and combining it with results from Corollary 1, 6 < 2 — 17, we have

From here, we can find the bound for the positive value of 7. A direct calculation shows that
7 < 2. For small values of y, this translates into d ~ N.

4 Conclusion

We describe an attack related to partial key exposure. Our attack works upon the modulus N =
p’q where the primes share an amount of LSB(s). Based on the result of Nitaj et al. [8], we
reformulate their lemma within our theorem and find the substitution for p> + pq — p which is
the value of N — ¢(N). We use the result from our lemma in our theorem which then yields a
set of integer polynomials. By applying the extended strategy of Jochemsz and May, one is able
to determine the small roots of our integer polynomial and thus factoring the modulus N. We
show that N can be factored when d < N° for § < 2+ 30— 1y where 0 <y <2 Assuch, we
manage to improve the bounds of some previous attacks on the modulus N = p*q.

Supporting information
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