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Abstract

Since the word2vec model was proposed, many researchers have vectorized the data in the

research field based on it. In the field of social network, the Node2Vec model improved on

the basis of word2vec can vectorize nodes and edges in social networks, so as to carry out

relevant research on social networks, such as link prediction, and community division. How-

ever, social network is a network with homogeneous structure. When dealing with heteroge-

neous networks such as knowledge graph, Node2Vec will lead to inaccurate prediction and

unreasonable vector quantization data. Specifically, in the Node2Vec model, the walk strat-

egy for homogeneous networks is not suitable for heterogeneous networks, because the lat-

ter has distinguishing features for nodes and edges. In this paper, a Heterogeneous

Network vector representation method is proposed based on random walks and Node2Vec,

called KG2vec (Heterogeneous Network to Vector) that solves problems related to the inad-

equate consideration of the full-text semantics and the contextual relations that are encoun-

tered by the traditional vector representation of the knowledge graph. First, the knowledge

graph is reconstructed and a new random walk strategy is applied. Then, two training mod-

els and optimizing strategies are proposed, so that the contextual environment between

entities and relations is obtained, semantically providing a full vector representation of the

Heterogeneous Network. The experimental results show that the KG2VEC model solves

the problem of insufficient context consideration and unsatisfactory results of one-to-many

relationship in the vectorization process of the traditional knowledge graph. Our experiments

show that KG2vec achieves better performance with higher accuracy than traditional

methods.

1 Introduction

Nowadays we reach an era that everything can be embedded, called representation learning. In

many research fields, embedding models are adopted to vectorize the research data. For
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instance, in the field of natural language processing (NLP) [1], by embedding the words into

the vector representation, we can determine a word’s synonym, or estimate the accuracy of the

translation; in the field of bioinformatics, protein chain [2] or transcription factor [3]can be

regarded as a network. By embedding the proteins into vectors, we can determine whether a

chain bond exists; as in social network, by embedding social entities, link prediction can be

performed. Therefore, many researchers have developed various 2vec models tailored to fields,

such as word2vec [4] in NLPs, and Node2Vec [5] in social networks.

Currently, most heterogeneous information networks (HIN) measure the similarity

between points by aiming at making dot products of two nodes as large as possible in low-

dimensional space. This method can only consider first-order proximity, which is also men-

tioned in node2vec. Compared with homogeneous information network, heterogeneous infor-

mation network contains multiple relationships, where each relationship has different types of

semantic information, and the distribution of relationship types is very uneven.

For heterogeneous networks (i.e. Knowledge graphs), a more advanced algorithm repre-

sents the nodes and links as triples (head, relation, and tail). In KGs, we often project an entity

to a low-dimensional vector h (or t) with dimension n, by considering the entity to be a node,

and representing the relations as operations between nodes [6]. Therefore, a relational scoring

function can be defined as fr(h,t), by minimizing the distance between fr and real r as the tar-

get. By iteratively updating h, the vector projection of r and t can be obtained.

The KG embedding algorithms like TransE [6], TransR [7] and TransG [8] are designed by

this main idea. Although these algorithms are proved to be efficient in many scenarios, we

notice that the trans-algorithms handle each triple with the same probability, lacking the

emphasis as the 2vec models process the vectorization, resulting in unsatisfactory results. Tak-

ing the movie dataset as an example, the movie node A has relations with three actor nodes,

one director node, and one country node, as shown in Fig 1. During the process of embedding,

the influence of the country node and its relation is bound to be different from that of the

director node.

The trans-series algorithm can accurately predict 1-to-1 relation using triples, however, it

has flaws in dealing with N-to-N, or 1-to-N. As shown in Fig 2, movie A is both directed and

performed by B, meaning that there are two relation types between A and B, which cannot be

trained using triples.

Taking 2vec and trans series algorithms into consideration, we aim to give certain weights

to the triples in trans series by 2vec random walks [9], so that emphasis takes place during

Fig 1. A subgraph of Fig 4.

https://doi.org/10.1371/journal.pone.0248552.g001
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vectorization. However, the random walks in 2vec algorithms fail in heterogeneous networks.

Besides, trans series using triples can neither give emphasis on different triples nor avoid the

problem of multiple relations.

In this paper, the KG2Vec algorithm is proposed based on node2vec. Two challenges would

appear if node2vec is directly applied to the vectorization of the heterogeneous networks: 1)

heterogeneous networks are composed of entities (different types of nodes) and relations (dif-

ferent types of edges). For heterogeneous networks, the triple of form (head entity, relation,

and tail entity) is the key to construct the node context. The node2vec algorithm neglects this

key information, so that the quality of embedding is compromised. 2) Encountering the com-

plexity of heterogeneous networks, the random walks strategy has to be adapted.

To solve the first problem, we propose to homogenize heterogeneous networks by abstract-

ing the relation in heterogeneous networks to a new relation node and the node in heteroge-

neous networks to an entity node. Then we can use node2vec idea to train the reconstructed

heterogeneous networks. However, the original random walks make no distinction between

relation-type node and entity-type node, so the result is unsatisfactory.

Due to the natural advantages of heterogeneous network embedding (HNE) in application,

which largely prevents the task performance from being attributed to effective data preprocess-

ing and novel technical design, especially considering the various possible ways to build het-

erogeneous networks from the actual application data. As for heterogeneous networks, the

2vec random walks algorithm leading to the problem of inaccuracy embedding.

Thus, a new random walk strategy is proposed. The strategy learns the pattern “entity-rela-

tion-entity” as the main context. Therefore, we can find the most suitable context by this pat-

tern in the reconstructed heterogeneous networks, as the input of this model.

Moreover, CBOW [10] and Skip-gram [11] are applied in the training process of KG2Vec,

and the embedding of relation node and entity node are predicted. A parameter called node

degree that adjusts the walk times is also introduced, in order to improve the quality and effi-

ciency of the model.

The contributions of this paper are summarized as follows:

• The original heterogeneous networks are reconstructed, and an entity-relation topology is

proposed.

• A new embedding method for heterogeneous networks is proposed and node2vec is

improved. The new walk strategy is applied in the reconstructed heterogeneous networks. A

node-degree parameter is also introduced to control the walk times.

• Two training models are proposed for heterogeneous networks: given relations, CBOW is

used to predict the context entity; given entities, Skip-gram is used to predict the relation

node.

Fig 2. 1-N relation in knowledge graph.

https://doi.org/10.1371/journal.pone.0248552.g002
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2 Related work

This paper study the representation learning of heterogeneous information networks. In this

chapter, the existing heterogeneous information network algorithm and the existing 2vec algo-

rithm will be elaborated.

2.1 Heterogeneous network representation learning

A universal taxonomy is used for existing HNE algorithms with three categories based on their

common objectives. The main challenge of instantiating on heterogeneous networks is the

consideration of complex interactions regarding multi-typed links and higher order meta-

paths. The HNE algorithm is mainly based on three ideas, including: Proximity-Preserving

Methods, Message-Passing Methods and Relation-Learning Methods.

The goal of network embedding is to capture network topological information. This can be

achieved by preserving different types of proximity among nodes. There are two major catego-

ries of proximity preserving methods in HNE: random walk-based approaches (inspired by

DeepWalk) and first/second-order proximity based ones (inspired by LINE [12]). Metapath2-

vec [13] is one of the typical algorithms based on random walk, so does HIN2vec [14] algo-

rithm. Metapath2vec utilizes the node paths traversed by meta-path guided random walks to

model the context of a node regarding heterogeneous semantics. HIN2Vec considers the prob-

ability that there is a meta-path M between nodes u and v. SHNE [15] improves metapath2vec

by incorporating additional node information. For such algorithms, it is generally necessary to

establish a meta-path. However, one disadvantage of this path-based approach is that the path

(pattern) needs to be specified (requiring more domain knowledge to do so). The first/second-

order proximity-base algorithm includes PTE [16] algorithm, AspEm [17] algorithm, HEER

algorithm and so on. PTE proposes to decompose a heterogeneous network into multiple

bipartite networks, each of which describes one edge type. Its objective is the sum of log-likeli-

hoods over all bipartite networks. AspEm assumes that each heterogeneous network has multi-

ple aspects, and each aspect is defined as a subgraph of the network schema [18]. An

incompatibility measure is proposed to select appropriate aspects for embedding learning.

HEER extends PTE by considering typed closeness. Specifically, each edge type has an

embedding.

For Message-Passing Methods, each node in a network can have attribute information rep-

resented as a feature vector. Message-passing methods aim to learn node embeddings based

on the feature vector, by aggregating the information from u’s neighbors. In recent studies,

Graph Neural Networks (GNNs) [19] are widely adopted to facilitate this aggregation/mes-

sage-passing process. Different from regular GNNs, R-GCN [20] considers edge heterogeneity

by learning multiple convolution matrices W’s, each corresponding to one edge type. During

message passing, neighbors under the same edge type will be aggregated and normalized first.

The node embedding is the output of the K-th layer. As the development of deep learning, in

the field of graph feature representation, in addition to those traditional methods, deep learn-

ing methods have also been integrated, in order to embed node features. For instance, DKN

[21] (Deep Knowledge-aware Network) embeds news titles through KG into vectorization,

improving the accuracy. Besides, MKR [22], as well as in the recommendation systems, collab-

orates users and items into KG, adjusts RS and KG by taking the difference between the actual

rate and the predicted rate as the loss function, thus regulating the user and item feature

embedding.

For Relation-Learning Methods, we first highlight TransE and its variants (TransR [7] and

TransG [8]) because they are simple and effective and can achieve the state-of-the-art perfor-

mance in the majority of related tasks, especially in KGs with thousands of relations. TransE is
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one of the classic algorithms for KG embedding that was presented by Bordes et al in 2013.

After this algorithm was presented, a series of algorithms were implemented, such as TransH

[23], and TransG. Those traditional training methods introduce too many parameters when

modelling the triples (head-relation-tail) in the knowledge base, leading to the low interpret-

ability of the model and the overfitting problem during training. Meanwhile, TransE improved

the cost function by introducing a reward and punishment mechanism, which maximized the

prediction result by separating right from wrong as far as possible. Thus, it has remedied the

problems related to complex training parameters and difficult expansions in traditional meth-

ods. TransE represents a relation as a vector r indicating the semantic translation from the

head entity h to the tail entity t, aiming to satisfy the equation t−h�r when triplet (h; r; t)

holds.

Furthermore, Zheng Wang et al. propose TransH, which introduces two additional relation

matrices compared to TransE related to the head and the tail. Instead of projecting the rela-

tions to another space, they use vectors to solve the difficulties of TransE in dealing with reflex-

ive one-to-many many-to-one many-to-many relations. In addition, Guoling Ji et al improve

TransE when encountering the link prediction problem using a method called TransD [24].

This algorithm defines the mapping matrices for every relation, thus improving the prediction

accuracy and the computational complexity.

2.2 2Vec algorithm research

First, we review Word2vec and its extensions. Since Mikolov proposed the concept word

embedding in his paper” Efficient Estimation of Word Representation in Vector Space” in

2013, the NLP field enters the world of “embedding”, such as Senternce2Vec [25], Doc2Vec

[26], and Everthing2Vec. The word embedding is based on the assumption that the meaning

of a word can be inferred from its context, proposing the word distributed representation.

Compared with traditional One-hot Representation in NLP, which is high-dimensional and

sparse, the word embedding trained by Word2Vec is both low-dimensional and dense. The

main idea of Word2Vec is to make use of word context and yield richer semantic information.

The current main applications are listed as follows:

1. The trained word embedding is used as the input feature to improve the existing system, for

instance the input layer of neural networks such as sentiment analysis, part-of-speech tag-

ging, natural language translation.

2. The word embedding is directly adopted from the perspective of linguistics, for instance,

expressing the word similarity based on the distance of embeddings, and the query correla-

tion. Word2vec employs a one-layer neural network (i.e. CBOW) to project the one-hot

sparse word embedding to a n-dimensional dense vector.

Later, Word2vec has been transplanted in social networks. A.Grover designed a Node2vec

model, which employs a weight parameter α, to control the random walks in Deepwalk, so

that the resulting sequence is a combination of DFS and BFS [27]. This model makes use of

Skip-gram in Word2vec as basis. The main contribution of Node2vec is considering a graph as

a text, where the nodes in the graph can be represented by tokens in the text. Then Word2vec

can be directly applied to yield vectors. However, the difference between graphs and texts lies

in that texts are linear sequences, as graph has a more complex structure. The algorithm Deep-

walk that was put forward before inspires Node2vec, which combines DFS and BFS as walk

strategy to sample the nodes in graph. As Figure shows, BFS yields Local microscopic view, as

DFS yields global macroscopic view. Node2vec introduces a heuristic approach 2nd-order ran-

dom walks, namely defining random walks and two hyper parameters [28].
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Fig 3 shows the transition probability process of Node2Vec. The better the random walk is,

the more appropriate context the algorithm finds, and the more efficient it is. Eq 1 is used to

calculate the skip probability of Node2vec.

P ci ¼ xjci� 1 ¼ vð Þ ¼

pvx
Z
if v; xð Þ 2 E

0 otherwise
ð1Þ

8
<

:

where πvx represents the skip probability between social nodes, and z is a normalization

parameter.

Conversely, in Deepwalk, which is another embedding algorithm, the skip probability

equals the weights that are labelled on the edges between nodes, such as πvx =Wvx The bias

parameter influences Node2vec in the way that it regularizes the random walk and balances

the BFS and DFS, thereby equipping the under-predicted nodes with better context.

apq s; xð Þ ¼

1

p
if dsx ¼ 0

1 if dsx ¼ 1

1

q
if dsx ¼ 2

ð2Þ

8
>>>>><

>>>>>:

In Eq 2, p and q are used to adjust the walks, and dsx represents the smallest distance

between s and x, which has the largest value of 2. Supposing the current node is v and the last

hop is s, the parameter p defines the probability of jumping back. It can be concluded that the

higher the probability of jumping back is, the more likely the random walk is to be a BFS. In

contrast, parameter q determines the likelihood of a DFS. The skip probability of Node2Vec

can be represented as (3):

pvx ¼ apqðt; xÞ � wvx ð3Þ

However, applying 2vec model causes the loss of link meaning between nodes for heteroge-

nous networks. Thus, in the field of KG representation, trans series are mostly used to embed

entities and relations.

Fig 3. The transition probability process of Node2Vec.

https://doi.org/10.1371/journal.pone.0248552.g003
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3 KG2Vec

3.1 Problem definitions

The walk strategy highlights the importance of nodes. If we extract the relation features between

nodes, the interpretation of the node embedding can be improved. Besides, we also introduce the

importance degree of nodes, improving the accuracy of embedding. In this section, we first pres-

ent the reconstruction of homogeneous networks, and then the improved walk strategy.

First, we introduce some common symbols: a traditional homogeneous network includes enti-

ties, semantics, contents, attributes, relations, etc., where the first four factors constitute the nodes

in the KG and the last factor is represented as the links among those nodes. A homogeneous net-

work is expressed by triples G = (E, R, S), where E represents the set of entities that are nodes in

the graph where E = {e1, e2, e3. . .. . .,e|E|}; R represents the set of relations that are represented as

edges where R = {r1, r2, r3. . .. . .,r|R|}; and S represents the triples “entity-relation-entity” where

S2E×R×E, meaning that an edge links two nodes. The homogeneous networks are homogenized

by reconstructing the original G into G’ = (E,R,W), where E represents the set of entities as inG,

R represents the set of relation nodes that are extracted from the original R inG, andW repre-

sents the links weight either between an entity node and relation nodes or between entity nodes.

3.2 Heterogeneous network reconstruction

As mentioned above, the link between nodes has the same type and meaning, thus the walk

process can be interpreted. However, as a kind of heterogeneous network, the walk process has

to be entitled with real meanings in order to get the importance of nodes and relations.

To unify the meaning of links, we need to reconstruct the heterogeneous network. To be

specific, the reconstruction process is transforming the triples into three tuples. That means,

we treat a link also as a node, so that in the original homogeneous networks, one link can be

separated into three to form a triangle, namely a link between entities, a link between an entity

and a relation, a link between a relation and an entity. One thing to notice is that these links

without any real meaning, record only the frequency of the original link. Now we define the

reconstruction of heterogeneous networks.

There are two types of nodes in the reconstructed heterogeneous network G’: relation nodes

and entity nodes. No link is presented between relation nodes, while ordinary links are presented

between relation nodes and entity nodes. There might be links between entity nodes.

After reconstructing Fig 4, the structure is obtained in Fig 5.

In order to better illustrate the process of network reconfiguration, a simple knowledge

graph is used to show the reconfiguration process. Fig 6 left shows a traditional structure of the

heterogeneous network: A is the movie title, B and C are the actors, C is also the director, B
and C has a conjugal relationship, D scores C is 3.

The traditional representation of heterogeneous network (such as knowledge graph) as tri-

ples (h,t,r) is:

T ¼ fðC;A; directorÞ; ðC;A; actorÞ; ðC;B;wifeÞ;

ðB;A; actorÞ; ðD;A; 3Þg:

After the reconstruction, the heterogeneous network (such as knowledge graph) is repre-

sented in Fig 6 right as:

T’ ¼ fðC;AÞ; ðC; directorÞ; ðdirector;AÞ; ðC;AÞ;

ðC; actorÞ; ðA; actorÞ; ðC;wifeÞ; ðC;BÞ; ðB;wifeÞ;

ðB;ActorÞ; ðA; actorÞ; ðB;AÞ; ðD; 3Þ; ð3;AÞ; ðD;AÞg

PLOS ONE KG2Vec
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Fig 4. A knowledge graph of user-movies.

https://doi.org/10.1371/journal.pone.0248552.g004

Fig 5. A simple knowledge graph of user-movies1.

https://doi.org/10.1371/journal.pone.0248552.g005
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As shown in the right part of Fig 6, the reconstructed heterogeneous network (such as

knowledge graph) is a homogenous network.

We can see that in the original triple, we cannot identify the different importance of entity

B and C to entity A. However, after the dissemblance of the entity and the relation, the entity

pair (C,A) appears more frequently than the pair (C,B), highlighting the influence weight of

entity C to A. Therefore, we entitle the links in the reconstructed homogenous network with

weights, which is the frequency of the entity pair.

T’ ¼ fðC;A; 2Þ; ðC; director; 1Þ; ðdirector;A; 1Þ;

ðC; actor; 1Þ; ðA; actor; 2Þ; ðC;wife; 1Þ; ðC;B; 1Þ;

ðB;wife; 1Þ; ðB;Actor; 1Þ; ðB;A; 1Þ; ðD; 3; 1Þ;

ð3;A; 1Þ; ðD;A; 1Þg

3.3 Walk strategy

Since the links in the homogenous network are endowed with the same meaning, sequence

walks can be used to simulate the importance of nodes. However, common homogenous

Fig 6. Reconstructed knowledge graph.

https://doi.org/10.1371/journal.pone.0248552.g006

Fig 7. Entity node transition probability.

https://doi.org/10.1371/journal.pone.0248552.g007
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network only has one type of node, while the reconstructed network has two type of nodes,

namely entity node and relation node. Thus, we need to alter the walk strategy as well.

Compared with normal social network, KG has a special pattern that nodes exist with a

sequence “entity-relation-entity”. We can set the new walk strategy according to this

pattern.

In the Node2Vec model, a parameter α is employed to balance DFS and BFS. In this

paper, this idea is inherited in the proposed KG2Vec model, yet altering the setting of

walking parameters p and q. Now, different random walks are proposed for different types

of nodes.

3.3.1 Entity nodes. As shown in Fig 7, it is supposed that the current node is the entity

node S1, which can be reached from the relation node R2. As the next jump transition, there

are three situations that could happen. The corresponding probabilities are as follows.

i. Jumping back to the last relation node R2 is meaningless for analysing a heterogeneous net-

work, and hence the probability is 0.

ii. Jumping to another connected relation node R1 is exactly what we want, as illustrated in

hypothesis 1, and hence, the probability is 1.

iii. Jumping to another connected entity node S2 is abnormal, and hence, the probability is set

to 1/q.

The skip parameter α of entity nodes is summarized as Eq 4:

aq t; xð Þ ¼

0 if dtx ¼ 0

1

q
if dtx ¼ 1

1 if dtx ¼ 2

ð4Þ

8
>>><

>>>:

where α is the skip parameter; q is the training parameter; dtx represents the shortest path

between nodes t and x, which satisfies second-order Markov model; and the value of dtx is

located in the set of {0,1,2}.

3.3.2 Relation nodes. Supposing the current node belongs to the relation type and,

according to Hypothesis 1, relation nodes can only be connected to entity nodes. As shown in

Fig 8, the current node is R, and the last node is S1. The next transition of node R includes

three situations.

i. Jumping back to the last node S1 does not exist in the heterogeneous network, and hence

the probability is 0.

ii. Jumping to the node S2 that is connected with the last node S1 constitutes the logical

sequence “entity-relation-entity”, which is exactly as expected in hypothesis 1, and hence

the probability 1.

iii. Jumping to another connected entity node S3 constitutes the logical sequence “entity-rela-

tion” and “relation-entity” which could happen but is unexpected and hence the probabil-

ity is set to 1/p.

PLOS ONE KG2Vec
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The skip parameter α of the relation nodes is summarized as Eq 5:

ap t; xð Þ ¼

0 if dtx ¼ 0

1 if dtx ¼ 1

1

p
if dtx ¼ 2

ð5Þ

8
>>><

>>>:

where α is the skip parameter, p is the training parameter, dtx represents the shortest path

between nodes t and x satisfying the second-order Markov model, and the value of dtx is

located in the set {0,1,2}.

The skip probability of KG2Vec can be represented as Eq 6:

pvx ¼ apqðt; xÞ � wvx ð6Þ

3.4 Training model

Originally, Node2vec was inspired by Word2vec, which integrates NLP into social networks.

Moreover, KG2Vec, which is based on Node2vec, deals especially with a heterogeneous net-

work, which is a complex HIN. In comparison, Node2vec, which was proposed by Aditya, uses

skip-gram for training. While the Word2vec training method is divided into the CBOW and

skip-gram. Our KG2Vec combines those two methods to achieve better performance.

Additionally, there are two purposes of Word2vec: one is to predict the centre word given

context, and the other is to predict the context given the centre word [29]. For the first situa-

tion, the CBOW is applied to perform the prediction, and skip-gram is applied for the second

situation. However, in a heterogeneous network, the input sequence should obey the mode of

“entity-relation-entity”.

Similarly, we could use different algorithms under different circumstances. For those rela-

tion nodes, the skip-gram is applied to predict the entity nodes of the context of the sgiven

relation nodes and CBOW is applied to predict the relation nodes given the context of entity

nodes. The same strategy is used for entity nodes to predict context and centre words. The fol-

lowing Fig 9 shows the prediction algorithm of KG2Vec for entity nodes and relation nodes.

Fig 8. Relation node transition probability.

https://doi.org/10.1371/journal.pone.0248552.g008
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3.5 Optimizing random walks

To improve the accuracy and efficiency of the random walks, a parameter that expresses the

influence of nodes is proposed. In Node2vec, no such parameter is taken into account, and it

treats every node as equivalent, consequently lowering the quality of the sample data.

Therefore, the node degree is defined as the influence parameter. That is, nodes with higher

influence would have more walks, and contrarily, nodes with lower influence would have

fewer walks [30]. Additionally, a threshold is introduced to limit the upper bound of the walks.

That is, when the node degree reaches this threshold, the maximum number of walks is used

to train the model, and when the node degree is below this threshold, the number of walks is

reduced according to the proportion of the influence. In conclusion, we define the walks Np
for node p as Eq 7:

Np ¼
Nmax �

Dp

Dmax
Dp < t

Nmax Dp � t
ð7Þ

8
><

>:

Fig 9. The KG2Vec model (a. the prediction of the relation using the CBOW, b. the prediction of the entity using the CBOW, c. the prediction of the

entity’s context using Skip-gram, and d. the prediction of the relation’s context with Skip-gram).

https://doi.org/10.1371/journal.pone.0248552.g009
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where Nmax is the maximum number of walks, Dp is the degree of node p, Dmax is the maxi-

mum degree among all the nodes, and t is the threshold.

Algorithm 1 is the pseudo code of KG2Vec. First, the walks Nmax are updated according to

each node degree. Then, the learning process is optimized by simulating the random walk with

an Nmax of length l from each node u, which neutralizes the implicit bias, and by calculating

the transition probability, which complements the walking sequence as the selection of node

context. Then, according to the type of the current node, which is either an entity node or rela-

tion node, we choose an appropriate random walk strategy as discussed before. After the con-

text is obtained, we apply the SGD to simulate random walks and optimize the process. Thus,

the algorithm is shown as follows.
Algorithm1 The KG2Vec algorithm
LearnFeatures (G = E,R,L), Dimensions d,
MaxWalks Nmax, Walk length l, Context size k,
thresholdValue t, Return p, In-out q)
π = PreprocessModifiedWeights (G,p,q)
G0 = (E,R,L,π)
Initialize walks to Empty
If nodeDegree<t

Nmax  Nmax �
Dp

Dmax

end if
for iter = 1 to Nmax do

for all nodes u2E or u2R do
walk KG2Vec(G’,u,l)
Append walk to walks

end for
end for

f = StochasticGradientDescent(k,d,walks)
return f

KG2Vec (KGraph G’ = (E,R,L,π),Start node u, Length l)
Initialize walk to u
For walk_iter = 1 to l do

curr  walk [−1]
if u2E

Vcurr GetEntiyNeighbors (curr,G’)
else

Vcurr GetRelationNeighbors (curr,G’)
end if
s AliasSample (Vcurr,Π)

Append s to walk
end for

return walk

4 Experiment

4.1 Data set

Two data sets, which are common KG data: WordNet and Freebase, are used. WordNet is a

lexical database. In WordNet, an entity is composed of one or several words, forming a synset.

A single word can belong to different synsets. The relation between synset includes hypernym,

hyponym, mer, hol, and troponym relationships. Freebase is a large collaborative knowledge

graph that contains common world facts. WN18 [31] and FB15K-237 [32] are employed in

Wordnet to evaluate the Recall. In addition, WN18 dataset is employed to evaluate the link

prediction meanRank value.

Table 1 shows the basic parameters and settings of the above five data sets.
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KG2Vec is compared with the following baseline. One thing to mention is that the parame-

ter settings remain the same with the original paper unless otherwise specified.

TransE: As mentioned above, this algorithm represents KG as triples and uses iterative

training to minimize the value of h+r−t until convergence. Experimental parameters are set as

follows: margin = 1, learningRate = 0.00001, dim = 8, L1 = True.

Node2Vec: Node2Vec is one of the bases of our proposed algorithm. We set the parameters

p = 4, and q = 1(the same as original paper), workers = 8, embedding_dim = 8, walkin-

g_length = 80, num_walks = 10.

4.2 KG2Vec parameter tuning

The KG2Vec trains the vector representations of entities and relations, which should be

equipped with all the properties of other vectors (e.g., word vectors). One of the most

important properties is similarity. For instance, word vectors could reveal the semantic

similarity between two entities or words, thereby implying that those semantically similar

entities should be closer in space, and further apart otherwise. Therefore, the similarity is

adopted as an evaluation criterion. The similarity of entities and relations are separated as

follows.

Definition 1: Similar entities are those that have the same relation node and are connected

to each other. Similar relations are those who point to the same entity or those who are pointed

to by the same entity. Furthermore, the recall is used as the evaluation standard. To start, all

the similarities between the current entity node and other entities nodes (or the current rela-

tion node and other relation nodes) are calculated. Then, the similarities are sorted, and the

proportion of similar nodes in the first N nodes is calculated as Eq 8.

Ri ¼
Nisim
N

ð8Þ

where Ri represents the recall of node i, N represents the top N after sorting the similarities,

and Nisim represents the number of similar nodes to node i among those N nodes. To calculate

the similarity between two nodes, the Euclidean distance is used as Eq 9.

Sij ¼
Pi¼1

N ðIi � JiÞ
2

ð9Þ

where N represents the number of vector dimensions, Ii represents the i-th dimension of vec-

tor I, and Ji represents the i-th dimension of vector J.
Regarding random walks, the values of parameters p and q need to be set. In KG2Vec, p is

used to adjust the walks of relation nodes, while q is used to adjust the walks of entity nodes.

To achieve the best performance, the values of p and q are tuned as shown in Fig 10.

It can be concluded from Fig 10 that the bigger the initial value of p is, the higher the recall

is, no matter whether entity vectors or relation vectors are used. It can also be observed that

when p is between 10 and 100, the recall does not differ much. Under some circumstances,

p = 10 results in better performance. Therefore, 10 is used as the initial value of p. Another

interesting result to note is that after introducing the optimizing training algorithm, the recall

increases both with the CBOW and Skip-gram.

Table 1. Data sets.

ENTITY RELATION TRIPLE

FB15K 14541 41 272115

WN18 40943 18 86835

https://doi.org/10.1371/journal.pone.0248552.t001
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From Fig 11, it can be seen that there is no explicit regularity for q affecting the recall as p

shows; nevertheless, the recall fluctuates greatly under different circumstances. This means

that the effect of q on the walks is random. Therefore, q = 100 is finally chosen as the initial

value the recall has the tendency to increase as q increases (C. Shi et al,2016) [17]. Further-

more, the optimized training algorithm that is illustrated above has little influence on the

experimental recall-q, which also proves that in our proposed random walks, p has more influ-

ence than q.

4.3 Result

The experiment results of recall on FB15K-237 are shown in Table 2. It can be seen that the

algorithms with knowledge representation learning based on random walks, regardless of

whether Node2Vec or KG2Vec is used, has better performance than those with space shifting,

such as TransE. This means that the knowledge representation learning based on random

Fig 10. Line chart of P (a is the entity data of the FB15K data set, b is the relational data of the FB15K data set, c is the

entity data of the WN18 data set, and d is the parameter relational data of the WN18 data set).

https://doi.org/10.1371/journal.pone.0248552.g010

Fig 11. Line chart of q (a is the entity data of the FB15K data set, b is the relational data of the FB15K data set, c is the

entity data of the WN18 data set, and d is the parameter relational data of the WN18 data set).

https://doi.org/10.1371/journal.pone.0248552.g011
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walks results in more semantically sufficient representation vectors. Furthermore, our

KG2Vec outperforms Node2Vec, both in entity vector learning and relation vector learning.

Another observation is that the CBOW performs better than Skip-gram during vector learn-

ing, which may be because the CBOW predicts the current entity/relation based on context

and Skip-gram uses the entity (or relationship) to predict the entities and relationships around

it. In particular, there are not many nodes around the entity node that are connected to it, so

they can’t travel route to its entity (or relationship). It can be also found that the proposed opti-

mization algorithm in CBOW model training and Skip-gram has achieved good ascension.

This shows that our training optimization algorithm can solve the problem of model overfit-

ting caused by the high noise and low quality of data caused by the power law property of com-

plex networks. As knowledge graph is also a kind of social network, power law problems can

also appear in other social networks. Therefore, the training optimization algorithm proposed

in this paper has strong universality and can be applied to solve other social network

problems.

The experimental result of recallon WN18 is shown in Table 3. We can see the same result

as that for FB15K-237. Both Node2Vec and KG2Vec that use knowledge representation learn-

ing based on random walks outperform those that use space shifting, such as TransE. Addi-

tionally, KG2Vec improves the vector learning of both entities and relations compared to

Node2Vec. Therefore, it can be concluded that KG2Vec, which applies knowledge representa-

tion based on random walks and is tailored for knowledge graphs, achieves the best perfor-

mance since it considers the full semantical characteristics of both entities and relations.

In conclusion, our experiments show that the algorithm that learns the knowledge repre-

sentation based on random walks can obtain a better representation vector, which takes full

advantage of learning the semantics of entities and relations, compared to TransE. TransE is

an algorithm that is based on the shifting of the space vector, which is a shallow algorithm.

Deeper algorithms, such as the neural network based Node2Vec and our proposed KG2Vec,

result in better semantic expressed vectors, which has been proven by this paper and others.

Table 2. Experimental results of KG2Vec model on FB15K-237.

MODEL ENTITY RELATION

Node2Vec 0.608 0.019

KG2Vec (cbow) 0.621 0.034

KG2Vec(cbow+improved) 0.616 0.054

KG2Vec (skip-gram) 0.613 0.021

KG2Vec(skip-gram+improved) 0.615 0.048

TransE (baseline) 0.497 0.022

https://doi.org/10.1371/journal.pone.0248552.t002

Table 3. Experimental results of KG2Vec model on WN18.

MODEL ENTITY RELATION

Node2Vec 0.826 0124

KG2Vec (cbow) 0.846 0.127

KG2Vec(cbow+improved) 0.849 0.106

KG2Vec (skip-gram) 0.844 0.166

KG2Vec(skip-gram+improved) 0.843 0.139

TransE (baseline) 0.697 0.101

Node2Vec 0.826 0.124

https://doi.org/10.1371/journal.pone.0248552.t003
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The CBOW model and Skip-gram model in KG2Vec have little difference in the learning of

entity representation vector, but differ in the learning of relation representation vector, which is

slightly different from the experimental results on the FB15K data set. Compared with CBOW

model, the relationship representation vector learned by Skip-gram model is better. This may

indicate that Skip-gram model of KG2Vec is a better method in relation representation vector. In

addition, it is worth noting that the training optimization algorithm proposed in this paper still

has a good effect, which further illustrates the superiority of the training optimization algorithm.

Two algorithms are also proposed with the CBOW and Skip-gram. The experimental

results indicate that both algorithms equally improve the KG2Vec, more specifically, the

CBOW performs better when learning entity representation vectors and Skip-gram is more

suitable for learning relation representation vectors.

By summarizing the experimental results on two data sets, it can be found that compared

with the model represented by TransE, the knowledge representation learning model based on

random walk can fully learn the semantics of entities and relationships. This is because:

1. Knowledge representation based on the random walk model aims at learning map entities

(relationship) sequence in modeling, it focuses on a pair of entities and relationships,

instead of focusing on the relationship between entities and relationships in order at the

same time also pay attention to entities and relationships in the knowledge graph in the net-

work, which well solves the limitation of learning knowledge representation model based

on spatial translation.

2. Based on the random walk knowledge representation learning model, both node2VEc and

the KG2Vec models proposed in this paper use Word2VEC model, and Word2VEC model

itself is a neural network model, which is a deep model. TransE model, on the other hand,

is based on vector translation in space, and it is a shallow model.

CBOW model is better at learning entity representation direction, while Skip-gram model

is more suitable for learning relational representation vector, which may be related to the prin-

ciples of CBOW and Skip-gram models.

Finally, it can also be seen that both FB15K and WN18 models have lower recall rates in

relation vectors, which may be caused by the following two reasons:

1. In the knowledge graph, the number of relational nodes is smaller than the number of

entity nodes. Both the traditional knowledge representation learning model and random

walk need a large number of training samples to improve the training effect of the model

and avoid the problem of under fitting and overfitting. Therefore, it is not surprising that

the experimental results do not show the ideal situation when the number of relational

nodes is small.

2. In the previous definition of the concept of relational similarity, we mentioned that the defi-

nition of similar relationship is vaguer than that of similar entity, so it is difficult to ensure

that the definition can accurately identify similar relationship.

In any case, the KG2Vec model proposed in this paper still performs better than the tradi-

tional knowledge representation learning model. From this point, it can still prove the superi-

ority of knowledge representation learning based on random walk.

5 Conclusion

An improved knowledge representation learning algorithm that is based on a modified ran-

dom walk called KG2Vec is proposed, which is inspired by Node2Vec but tailored to KGs. The
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algorithm regards relations as the nodes in the network and reconstructs KGs, yielding two

types of nodes: entity nodes and relation nodes. Afterwards, the algorithm utilizes the strategy

in Node2Vec to generate node sequences, which is then further trained using Word2vec.

Moreover, experiments on the FB15K237 and WN18 KG databases are conducted and the

entity and the relation nodes to obtain their representation vectors. The results of recall shows

that KG2Vec is efficient and effective on real-world data. However, our model has a high

computational complexity, and time cost arising from representing each triple separately.

How to improve the efficiency of the feature extraction is an urgent problem to be solved. In

addition, the temporal and spatial attributes for dynamic KGs also need to be studied as the

next research goal.
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