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Abstract

N-hydroxylating flavin-dependent monooxygenases (FMOs) are involved in the biosyn-
thesis of hydroxamate siderophores, playing a key role in microbial virulence. Herein, we
report the first structural and kinetic characterization of a novel alkyl diamine N-hydroxy-
lase DesB from Streptomyces sviceus (SsDesB). This enzyme catalyzes the first com-
mitted step in the biosynthesis of desferrioxamine B, a clinical drug used to treat iron
overload disorders. X-ray crystal structures of the SsDesB holoenzyme with FAD and the
ternary complex with bound NADP* were solved at 2.86 A and 2.37 A resolution, respec-
tively, providing a structural view of the active site environment. SsDesB crystallized as a
tetramer and the structure of the individual protomers closely resembles the structures of
homologous N-hydroxylating FMOs from Erwinia amylovora (DfoA), Pseudomonas aeru-
ginosa (PvdA), and Aspergillus fumigatus (SidA). Using NADPH oxidation, oxygen con-
sumption, and product formation assays, kinetic parameters were determined for various
substrates with SsDesB. SsDesB exhibited typical saturation kinetics with substrate inhi-
bition at high concentrations of NAD(P)H as well as cadaverine. The apparent k., values
for NADPH in steady-state NADPH oxidation and oxygen consumption assays were 0.28
+0.01s"and 0.24 +0.01s™", respectively. However, in product formation assays used
to measure the rate of N-hydroxylation, the apparent kg,; for NADPH (0.034 + 0.008 s™")
was almost 10-fold lower under saturating FAD and cadaverine concentrations, reflect-
ing an uncoupled reaction, and the apparent NADPH Ky, was 33 + 24 yM. Under saturat-
ing FAD and NADPH concentrations, the apparent k., and Ky, for cadaverine in Csaky
assays were 0.048 £ 0.004 s and 19 £ 9 uM, respectively. SsDesB also N-hydroxylated
putrescine, spermidine, and L-lysine substrates but not alkyl (di)amines that were
branched or had fewer than four methylene units in an alkyl chain. These data demon-
strate that SsDesB has wider substrate scope compared to other well-studied ornithine
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and lysine N-hydroxylases, making it an amenable biocatalyst for the production of des-
ferrioxamine B, derivatives, and other N-substituted products.

Introduction

N-hydroxylating monooxygenases (NMOs) play an important role in the biosynthesis of iron-
chelators or siderophores. Microorganisms express these flavin-dependent enzymes under
iron-limiting conditions to produce siderophores to sequester iron, an essential nutrient
required for cell growth and development. Using the electron donor NADPH and molecular
oxygen, NMOs catalyze the first committed step in hydroxamate siderophore biosynthesis by
oxidizing a primary amine in alkyl amines [1, 2] and amino acids, such as lysine [3] and orni-
thine [4, 5], to N-hydroxylated products. Subsequent acylation of these products form hydro-
xamates, imparting metal-chelating properties. NMOs are involved in the biosynthesis of a
variety of hydroxamate siderophores in many microorganisms, such as Aspergillus fumigatus
(SidA) [4], Pseudomonas aeruginosa (PvdA) [6, 7], Bordetella bronchiseptica RB5 (AlcA) [8],
and Streptomyces pilosus (DesB) [9]. Deleting genes encoding these enzymes in pathogens,
such as A. fumigatus [10] and P. aeruginosa [11], inhibit siderophore production as well as
their growth in low iron media. Thus, characterizing NMOs can provide insights into combat-
ing pathogen virulence and identifying potential drug targets for the development of antimi-
crobial agents.

In addition to serving as drug targets against pathogenic microbes, N-hydroxylases are
indicative of the biosynthesis of hydroxamate siderophores, some of which are used in clinical
treatments [12, 13]. The lysine-derived desferrioxamine B (Fig 1) is a tris-hydroxamate sidero-
phore produced by aerobic, Gram-positive soil actinomycetes, such as S. coelicolor M145 [12]
and S. pilosus [14], clinically used for the intravenous treatment of iron poisoning and hemo-
chromatosis [15, 16]. The hydroxamate moiety is the key pharmacophore [17] and also the rea-
son why desferrioxamine B is widely used as a hexadentate chelator in immunoPET and cell
tracking [13]. Desferrioxamines are biosynthesized by an operon encoding a lysine decarbox-
ylase (DesA), cadaverine N-hydroxylase (DesB), acyl transferase (DesC), and an ATP-depen-
dent nonribosomal peptide synthetase (DesD) [18] (Fig 1). A ferric siderophore lipoprotein
receptor (DesE) and a ferric-siderophore hydrolase (DesF) are also found within the gene clus-
ter in various strains of Streptomyces (Fig 1) [19, 20]. These genes were first identified in S. coe-
licolor [18] and have since been found in most sequenced Streptomyces genomes [20], several
species of Salinispora [21], as well as plant pathogen E. amylovora [2]. While a number of pub-
lications have provided insight into the activities of DesA [22], DesB [2], DesC [23], and DesD
[23, 24] from S. pilosus and S. coelicolor, DesA is the only enzyme to be kinetically character-
ized [22]. Homologs of these biosynthetic enzymes have been identified in several clinical
pathogens. For example, there are a number of DesB homologs (36-60% sequence identity) in
clinical pathogens, such as Streptococcus pneumonia, Acinetobacteria baumannii, and Yersinia
pestis (S1 Fig in S1 File). Thus, understanding the mechanism of siderophore biosynthetic
enzymes, such as DesB, can lead to the identification of new bioactive hydroxamate sidero-
phores and improve the production of other hydroxamates and molecules containing N-O
functional groups [25].

We aimed to determine the structure and characterize the kinetics of DesB from S. sviceus
(SsDesB) to understand the limitations of desferrioxamine biosynthesis and evaluate the sub-
strate scope of alkyl diamine N-hydroxylases. Alkyl diamine N-hydroxylases, such as the
putrescine N-hydroxylases GorA from Gordonia rubripertincta CWB2 [1] (38% sequence
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Fig 1. Desferrioxamine B biosynthetic pathway in S. sviceus. Organization of the biosynthetic gene cluster in S. sviceus and proposed enzymatic steps involved in the
synthesis of desferrioxamine B. Genes encoding the four desferrioxamine biosynthetic enzymes are in black (desA, desB, desC, and desD) and genes involved in
ferrioxamine uptake and utilization are in grey (desE and desF).

https://doi.org/10.1371/journal.pone.0248385.g001

similarity to SsDesB) and PubA from Shewanella oneidensis MR-1 [26] (51% sequence similar-
ity to SsDesB) (S2, S3 Figs in S1 File), have a wider substrate scope compared to well-known
ornithine and lysine NMOs, which are specific for their substrates and NADPH. For example,
GorA is active with NAD(P)H, FAD, and either putrescine, cadaverine, or 1,6-diaminohexane
substrates [1]. PubA also N-hydroxylates either putrescine and cadaverine in the presence of
FAD and NADPH [26]. The N-hydroxylation step catalyzed by both GorA and PubA are cata-
Iytically similar to that of SsDesB but remain to be kinetically characterized with both cadaver-
ine and putrescine substrates.

Although a crystal structure of the SsDesB homolog DfoA with bound FAD and NADP*
(53% sequence identify) from the plant pathogen, E. amylovora 2], was recently reported at
2.8 A resolution, visualization of the electron density maps deposited in the Protein Data Bank
(PDB; PDB code: 508R) revealed a poor fit of the FAD and NADP* cofactors into the experi-
mental electron density. A more accurate view of the enzyme active site with bound cofactors
is needed. Furthermore, the activity and cofactor specificity of DfoA was solely evaluated by
NADPH oxidation assays [2]. There was no analysis of the N-hydroxylation step, which is criti-
cal for understanding product formation. Herein, we heterologously expressed and purified
SsDesB and used X-ray crystallography as well as NAD(P)H oxidation, O, consumption, and
hydroxamate product formation assays to kinetically and structurally characterize this NMO,
which has a higher sequence identity to DesB in the industrial desferrioxamine B-producing S.
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pilosus strain. Steady-state kinetics were performed with putrescine and cadaverine to under-
stand the substrate specificity of SsDesB. We hypothesized that SsDesB would have a broader
substrate scope similar to GorA and a comparable three-dimensional structure to other well-
studied ornithine (PvdA from P. aeruginosa, 31% sequence identity) and alkyl diamine N-
hydroxylases (DfoA).

Materials and methods
General materials

An E. coli codon-optimized, N-terminal hexahistidine-tagged SSEG_08523 gene encoding
SsDesB was synthesized and subcloned into pET28a (+) by GenScript Corp. (Piscataway, NJ).
N-hydroxycadaverine was purchased from Enamine Ltd. (Kyiv, Ukraine). All other materials
were purchased from Sigma-Aldrich (St. Louis, MO) or Thermofisher Scientific (Waltham,
MA) and used without further purification.

General methods

Microplate kinetic assays were monitored on an Epoch BioTek microplate spectrophotometer
(Winooski, VT). The SsDesB extinction coefficient was determined using an Agilent 8453
diode array UV-vis spectrophotometer (Santa Clara, CA). High resolution electrospray ioniza-
tion mass spectrometry (ESI-MS) was performed on an Acquity Ultra Performance Liquid
Chromatography (UPLC) I-Class System in tandem with a Waters Xevo quadrupole-time of
flight (q-TOF) mass spectrometer. Oxygen consumption assays were monitored on an Oxy-
graph Plus system (Hansatech; Norfolk, UK). DNA sequencing was performed by Eurofins
Genomics (Louisville, KY).

Protein expression of SsDesB with N-terminal hexahistidine tag

The SsDesB gene cloned into pET28a (+) was transformed into Escherichia coli BL21 Star
(DE3) One Shot®) cells (Invitrogen; Carlsbad, CA) according to the manufacturer’s instruc-
tions. Cells were plated on Luria-Bertani (LB)-agar containing 50 pg/mL kanamycin and
grown overnight at 37°C. A single colony was used to inoculate LB broth (100 mL) containing
50 pg/mL kanamycin, which was grown overnight at 37°C at 200 rpm. The overnight culture
was used to inoculate 1-L of LB broth containing 50 ug/mL kanamycin, which was grown at
30°C at 200 rpm. Cells were induced with 1 mM isopropyl f-D-1 thiogalactopyranoside
(IPTG) once an optical density at 600 nm (ODggg) of 0.6 was reached and grown for four addi-
tional hours before being harvested at 4,500 rpm and stored at -80°C.

Protein purification of SsDesB with N-terminal hexahistidine tag

Cells were lysed twice via the French Press at 20,000 psi after incubation with lysozyme (1 mg/
ml) and protease inhibitor cocktail (P8849; Sigma- Aldrich, St. Louis, MO) 50 mM phosphate
buffer (pH 8) containing 300 mM sodium chloride and 10 mM imidazole. After centrifugation
at 9,100 rpm for 1 hr at 4°C, the supernatant was filtered with a 0.22 uM Millex-GS syringe fil-
ter (EMD Millipore; Burlington, MA) and incubated with HisPur™ Ni-NTA resin (Thermo-
fisher; Waltham, MA). The resin was equilibrated with 50 mM phosphate buffer (pH 8)
containing 300 mM sodium chloride and 20 mM imidazole. Protein was eluted in 50 mM
phosphate buffer (pH 8) containing 300 mM sodium chloride, 125 mM imidazole, and 2.5%
glycerol. Using a 10 K Amicon Ultra centrifugal filter unit (Thermofisher Scientific; Waltham,
MA), protein was buffer-exchanged into 100 mM phosphate buffer containing 1 mM dithio-
threitol and 10% glycerol and stored at -80°C.
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Determination of SsDesB extinction coefficient

SsDesB (156 uM) was heated in triplicate at 95°C for 15 min and clarified by centrifugation at
13,000 rpm for 10 min at room temperature. After the supernatant was removed and reheated
again, its absorbance was measured over a range of 200-800 nm. Using Beer’s Law (A = &cl)
and the extinction coefficient of FAD (11,300 M'cm™), the extinction coefficient of DesB was
determined, as the concentration of the enzyme should be equivalent to the concentration of
free FAD after denaturation. Furthermore, the percent of FAD bound was also determined
using Eq (1).

[Free FAD)]

FAD — ==
%oof bound enzyme Fnzyme]

x 100% (1)

NAD(P)H oxidation assays

Steady-state kinetic parameters for NAD(P)H in oxidation assays were determined by incubat-
ing SsDesB (0.7 uM) with 50 uM FAD, and 10 mM cadaverine at 25°C. Assays were initiated
after 5 min with varying concentrations of NAD(P)H (5.5 uM-1 mM)), resulting in a total vol-
ume of 250 pL. The decrease in absorbance at 340 nm was monitored using an Epoch BioTek
microplate spectrophotometer. The initial rate at which the enzyme oxidized NAD(P)H over
time was determined using Beer’s Law (exappyu = 6,220 M tem™! at 340 nm) and an NAD(P)
H standard curve (to determine the quality of cofactor and pathlength of the microplate).

Oxygen consumption assays

Molecular oxygen consumption consumed by SsDesB was monitored using a Hansatech Oxy-
graph (Norfolk, England, UK). Steady-state kinetic parameters for substrates were obtained by
incubating substrate of various concentrations, 100 mM phosphate buffer, pH 8, SsDesB

(7.4 uM), and 50 uM FAD for 5 min at 25°C with stirring. Reactions were then initiated by the
addition of 0.7 mM NADPH (700 pL total volume). Steady-state kinetic parameters for
NADPH were obtained by incubating 100 mM phosphate buffer, pH 8, SsDesB (7.4 uM),

50 uM FAD, and 0.7 mM cadaverine for 5 min incubation with stirring at 25°C. Assays were
initiated with various NADPH concentrations (9.1 pM-9.3 mM).

Detection of hydrogen peroxide

Standard assays (400 uL total volume) consisting of 100 mM phosphate buffer pH 8, 50 uM
FAD, 2.12 uM SsDesB, 10 mM cadaverine, and 0.7 mM NADPH were incubated at 25°C.
Assays with boiled enzyme as well as no enzyme were also prepared. After 30 s and 72 s, ali-
quots were removed from assays and the amount of hydrogen peroxide produced was quanti-
fied via the QuantiChrom™ peroxide assay kit (BioAssay Systems; Hayward, CA) according
to the manufacturer’s instructions. A hydrogen peroxide standard curve was used to quantify
the amount of hydrogen peroxide produced by SsDesB.

Cloning and protein expression of SsDesB for structural studies

The SsDesB gene was amplified from E. coli codon-optimized DNA obtained from GenScript
Corp. (Piscataway, NJ) (SSEG_08523, pET28a (+)) by polymerase chain reaction (PCR) using
the following oligonucleotide primers: 5’ ~GGC TCG GAG AAC CTG TAC TTC CAG ACC
GCG CGT CCG GAG -3’ (PE-3112)and 5’ -GGG GAC CAC TTT GTA CAA GAA AGC
TGG GTT ATT ACA CGC TAA ACT CCT GGA ACG C-3’ (PE-3113). The PCR ampli-
con was then used as the template for a second PCR amplification with primer PE-277 (57 -
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTC GGA GAA CCT GTA CTT CCA
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G -3’)and PE-3113. The amplicon from the second PCR, coding for SsDesB (T2-V425) with
an N-terminal tobacco etch virus (TEV) recognition site (ENLYFQ/T), was recombined into
the entry vector pDONR 221 (Life Technologies; Grand Island, NY) using Gateway cloning
technology to generate the entry clone pGL3067, and the nucleotide sequence was confirmed
by Sanger sequencing [27]. The modified SsDesB gene was then recombined from pGL3067
into pDEST527 to generate the expression vector pGL3070. This plasmid produces an N-ter-
minal hexahistidine-tagged SsDesB that can be cleaved by TEV protease to yield the SsDesB
enzyme [25]. The protein was expressed in the E. coli strain Rosetta2(DE3). Cultures were
grown to mid-log phase (ODggo ~ 0.5) at 37°C in Luria Bertani broth containing 0.2% glucose,
100 pg ml™" ampicillin, and 30 pg ml™* chloramphenicol. Overexpression of the SsDesB fusion
protein was induced with 1 mM isopropyl -D-1-thiogalactopyranoside for 18-20 h at 18°C.
Cells were pelleted by centrifugation and stored at -80°C.

Protein purification for structural studies

All purification steps were performed at 4-8°C. E. coli cell paste (10 g) was resuspended in 200
mL of ice-cold lysis buffer containing 50 mM Tris-HCI pH 7.4, 200 mM NaCl, 25 mM imidaz-
ole, and cOmplete, EDTA-free protease-inhibitor cocktail tablets (Roche Diagnostics; Mann-
heim, Germany). Cells were lysed by passing through an APV-1000 homogenizer (Invensys
APV Products, Albertslund, Denmark) at 69 MPa three times, and the lysate was centrifuged
for 30 min at 15,500 rpm. The supernatant was filtered by vacuum through a 0.2 pm polyether-
sulfone membrane and applied to a 5-mL HisTrap FF column (GE Healthcare, Piscataway,
NJ) pre-equilibrated with lysis buffer. The column was washed to baseline with lysis buffer and
protein was eluted using a linear gradient from 25 mM to 500 mM imidazole. Fractions con-
taining the Hiss-SsDesB fusion protein were combined and concentrated using an Ultracel 30
kDa ultrafiltration disc (EMD Millipore, Billerica, MA). The concentrated protein was diluted
with 50 mM Tris pH 7.4, 200 mM NaCl buffer to achieve an imidazole concentration of 25
mM. The Hisg-SsDesB fusion protein was then digested with 5 mg polyhistidine-tagged TEV
protease overnight [27]. The digest was applied to a second HisTrap column (2 x 5 mL) pre-
equilibrated with lysis buffer. The deep-yellow colored fractions containing SsDesB were com-
bined and half was concentrated to 12-15 mg/mL in the lysis buffer mentioned above. Aliquots
were flash frozen in liquid nitrogen and stored at -80°C for use in structural studies. The pro-
tein was judged to be >90% pure by sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE), and the molecular weight was confirmed by electrospray ionization mass
spectrometry. The remaining portion of protein was incubated overnight at 4°C with 10 mM
DTT. The sample was concentrated, as above, and fractionated on a HiPrep 26/60 Sephacryl S-
300 HR column (GE Healthcare; Piscataway, NJ) equilibrated with a buffer containing 25 mM
Tris-HCl pH 7.4, 150 mM NaCl, and 2 mM tris(2-carboxyethyl)phosphine (TCEP). The peak
fractions of recombinant SsDesB were combined and concentrated to 12-15 mg/mL. Aliquots
were flash frozen in liquid nitrogen and stored at -80°C for use in biochemical studies. This
protein was judged to be >95% pure by SDS-PAGE using a Coomassie stain and its molecular
weight was confirmed by electrospray ionization mass spectrometry.

Product formation assays

Using SsDesB without an N-terminal hexahistidine tag, the amount of N-hydroxylated product
formed in SsDesB assays at 25°C was determined using a modified Csaky iodine oxidation
assay [4, 28]. In a 96-well plate, SsDesB (1 M) was incubated in 100 mM phosphate buffer, pH
8.0 with 50 uM FAD and varied amounts of substrate (cadaverine or putrescine) for 5 min
before reactions were initiated with 0.7 mM NAD(P)H (400 pL total volume). For assays in
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which NAD(P)H concentrations were varied (0.031-4 mM), the substrate concentration was
10 mM. Hydroxylamine standards (9.4-300 uM) in 100 mM phosphate buffer, pH 8.0, were
also prepared. Aliquots of enzyme assays (61.5 pL) as well as standards were removed and
quenched with perchloric acid (0.03 N). Samples were then centrifuged at 7,000 rpm for 3 min
at room temperature before the supernatant (47 uL) was removed and added to equal volumes
of 10% w/v sodium acetate (47 pL) and 0.6% w/v sulfanilic acid in 25% acetic acid (47 uL).
Samples were then incubated with 0.07% w/v iodine in glacial acetic acid for 15 min with shak-
ing before the addition of 19 pL of sodium thiosulfate (0.02 N) and 19 pL of 1-napthylamine
(0.6% w/v). After 45 min of shaking at 25°C, 96-well plates were read at 562 nm using an
Epoch Biotek microplate spectrophotometer.

Substrate scope assays

Standard assays (400 pL total volume) consisting of 100 mM phosphate buffer pH 8, 50 uM
FAD, 1 uM SsDesB (without an N-terminal hexahistidine tag), 10 mM substrate, and 0.7 mM
NADPH were incubated at 25°C. The following substrates were assayed: cadaverine, putres-
cine, L-lysine, 1,3-diaminopropane, spermidine, L-ornithine, n-butylamine, and
3-dimethylaminopropylamine.

Liquid chromatography/mass spectrometry (LC/MS) analysis

Standard assays (400 uL) consisting of 100 mM phosphate buffer pH 8, 10 mM substrate,
SsDesB (1.0 uM, without an N-terminal hexahistidine tag) and 0.7 mM NADPH were incu-
bated at 25°C. Assays without substrate were also prepared as a negative control. Aliquots

(50 pL) were removed after 10 min, quenched with twice the volume of HPLC-grade acetoni-
trile (Thermofisher; Waltham, MA), and chilled at -20°C for 10 min. After centrifugation at
12,500 rpm for 3 min at room temperature, the supernatant was incubated with 50 uL of 100
mM borate buffer pH 8 followed by the addition of 20 pL of 10 mM Fmoc-Cl dissolved in LC/
MS grade methanol. After 5 min, samples were incubated with 20 pL of 0.1 M 1-adamantyla-
mine in 1:1 acetonitrile: water for an additional 10 min to remove excess Fmoc-Cl. Samples
were then analyzed by LC/MS. Using a flow rate of 0.6 mL/min, samples (1 uL) were injected
onto an Acquity UPLC BEH C18 column (2.1 X 50 mm X 1.7 um) (Waters; Milford, MA) with
an Acquity precolumn filter (2.1 mm x 0.2 pm) attached. The column was warmed to 40°C
and UPLC separation was achieved using a 5-100% gradient of acetonitrile: water with 0.1%
formic acid over 9 min. ESI-MS in sensitivity mode was used to obtain exact mass measure-
ments of Fmoc-derivatized substrates and products. The following ESI settings were used: 3
kV capillary voltage, 45 V sample cone voltage, 120°C source temperature, 550°C desolvation
temperature, 50 L/hr cone gas flow, and 800 L/hr desolvation gas flow. A leucine enkephalin
reference (Waters; Milford, MA) was used for the lock spray with a 30 s reference scan fre-
quency, 45 V reference cone voltage, 6 eV collision energy, and a 99.9 dynamic range enhance-
ment setting.

Kinetic data analysis

Kinetic data were analyzed in Kaleidagraph (Synergy; Reading, PA) and Prism 8 (GraphPad;
San Diego, CA). The k., and Ky; of SsDesB with specific substrates were determined by fitting
initial rate data to the Michaelis-Menten Eq (2). The substrate inhibition constant (K;) was
determined for cadaverine and NAD(P)H (with the exception of oxygen consumption initial
rate data with varied NADPH) by fitting the initial rate data to the Haldane Eq (3). All reaction
rates were measured such that no more than 10% product formed in enzyme assays. See the S1
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File for fitted data.
y = kcut[s] (2)
Ky +[S]
Y= kcat [S] i ( 3)
Ky + (8] + 5
Crystallization

Purified SsDesB (12 mg/mL in 50 mM Tris-HCI, pH 7.4, 200 mM NaCl, and 25 mM imidaz-
ole) was screened for crystals using several sparse-matrix crystallization screens from Hamp-
ton Research, Microlytic, Qiagen, and Molecular Dimensions using a Gryphon crystallization
robot (Art Robbins Instruments; Sunnyvale, CA). Optimization screens of the initial crystalli-
zation screening hits were carried out using the hanging-drop vapor diffusion method in Easy-
Xtal 15-well plates (Qiagen; Germantown, MD). Additional optimization screens were com-
pleted using the Hampton Research Additive screen. Crystals of SsDesB for data collection
were obtained by mixing 2.5 uL of protein solution (12.1 mg/mL) with 2 ul well solution (0.1
M Hepes pH 7.5, 0.2 M sodium chloride, 25% w/v polyethylene glycol 3350), and 0.5 uL of 0.1
M taurine and sealing over 500 pL of well solution. The trays were incubated at 4°C. Yellow,
plate-like crystals appeared within 1 week. A single crystal was retrieved from a drop using a
Litholoop (Molecular Dimensions; Maumee, OH) and transferred to a 1 ul drop of Paratone-
N where excess mother liquor was whisked away from the crystal. The crystal was removed
with a Litholoop and flash-cooled by plunging it into liquid N..

Crystals of SsDesB in complex with NADP™ were obtained by incubating 12.1 mg/mL of
protein with 1 mM NADP™ (Sigma-Aldrich, St. Louis, MO) for 2 hrs at 4°C. Precipitated mate-
rial was removed by centrifugation for 10 min and 2.5 pL of the SsDesB:NADP™ mixture was
mixed with 2.0 pL of well solution (0.1 M Hepes pH 7.5, 0.2 M sodium chloride, 25% w/v poly-
ethylene glycol 3350) and 0.5 pL (0.1 M sarcosine) and sealed over 500 pL of well solution.
After 1 hr, the drops were streak-seeded with a whisker using previous crystals of SsDesB as a
seed source. Yellow, plate-like crystals appeared within 2 days. A single crystal for data collec-
tion was retrieved using a Litholoop, transferred to a 1 uL drop of Paratone-N, where excess
mother-liquor was whisked away from the crystal, and the crystal was flash-cooled by plunging
into liquid N.,.

Data collection

X-ray diffraction data for crystals of SsDesB and SsDesB complexed with NADP™ were col-
lected on the 22-ID and 22-BM beamlines, respectively, of the SER-CAT facilities at the
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois. For the SsDesB
crystal, 360 images were collected using a wavelength of 1.0000 A, an oscillation angle of 1.0°,
a crystal to detector distance of 300 mm, and an exposure time of 0.25 s. Data were collected
from a single crystal of SsDesB complexed with NADP* using a wavelength of 1.0000 A, a crys-
tal-to-detector distance of 300 mm, an oscillation angle of 1.0°, and an exposure time of 20 s. A
total of 180 frames of data were collected. All X-ray diffraction images were processed with
HKL-3000 [29].

The 2.37 A structure of SsDesB in complex with NADP" was solved by molecular replace-
ment with the program PHASER [30] in the PHENIX [31] suite and using the structure of E.
amylovora DfoA [2] (PDB entry 508r, chain A, 53% sequence identity) as a search model after
removing all solvent and ligand molecules. Based on the Matthews coefficient of 2.36 A*> Da™
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and solvent content of 47.9%, a search for 8 molecules in the asymmetric unit was performed
[32-34]. Iterative rounds of model-rebuilding were performed manually using Coot [35] fol-
lowed by additional automated model adjustment using the PDBredo server [36]. The PDB
coordinate files for the FAD and NADP™ ligands were prepared using Molinspiration (https://
molinspiration.com), and the ligand restraint files used during refinements were prepared
with the program eLBOW [37] in PHENIX. Refinements were performed with phenix.refine
[38]. Water molecules were automatically located with Coot, manually inspected, and refined
with phenix.refine.

The structure of SsDesB at 2.86 A resolution was solved by molecular replacement with
Phaser using chain A of the SsDesB-NADP" complex structure after removing all solvent and
ligand molecules and searching for 8 molecules in the asymmetric unit (2.30 A’ Da™" and sol-
vent content of 46.5%). Iterative rounds of manual model rebuilding were performed using
Coot followed by refinement with phenix.refine. All structures were validated using the valida-
tion tools available in Coot and also with the Molprobity server [39]. Refinement statistics and
model validation are outlined in Table 4. The coordinates and structure factor files were
deposited in the Protein Data Bank under accession codes 6XBB and 6XBC.

Results
Protein purification and characterization of FAD cofactor

The purification yielded 30-40 mg of a 51.7 kDa N-terminal hexahistidine tagged protein from
1 L of culture (S4A Fig in S1 File). The UV-visible absorbance spectrum of SsDesB indicated
the presence of the FAD cofactor bound to the purified enzyme with characteristic absorbance
maxima at 370 nm and 457 nm (S4B Fig in S1 File). The extinction coefficient at 457 nm was
14,478 M'cm™ and ~15% of flavin was estimated to copurify with SsDesB.

NAD(P)H oxidation and coenzyme specificity

Kinetic parameters of SsDesB NAD(P)H oxidation activity was determined by monitoring the
decrease in the absorbance of NAD(P)H at 340 nm (Table 1). At a constant concentration of
cadaverine (10 mM), SsDesB oxidized NADPH with an apparent k., of 0.28 + 0.01 s* and
kea/Ky0f 43 £ 11 mM's™'. NADH was oxidized with an apparent k,, of 0.38 + 0.09 s and
kea/Kpof 3.3 £ 1.3 mM s ™, indicating a preference for oxidizing NADPH. There was also evi-
dence of substrate inhibition when assayed with either cadaverine or NAD(P)H at concentra-
tions above 0.7 mM.

Oxygen consumption assays varying NADPH, cadaverine, and putrescine

The activity of SsDesB was assessed by monitoring its rate of oxygen consumption with NAD
(P)H, FAD, and various substrates. Substrate-independent oxidation was observed as SsDesB

Table 1. Steady-state kinetic parameters determined in NAD(P)H oxidation assays for different substrates.

Substrate kears s K, tM Keat/ K, mM ™ s7* K, mM
Cadaverine (0.7 mM NADH) 0.38 +0.07 79 +23 4.8+1.6 22+1.8
NADPH (10 mM Cadaverine) 0.28 +0.01 6.4+ 1.6 43+ 11
NADH (10 mM Cadaverine) 0.38 + 0.09 120 £ 36 33+13 29+34
Putrescine (0.7 mM NADH) 0.28 £ 0.02 140 + 23 2.1+0.3

Initial rates measured with varied concentrations of cadaverine or putrescine (or 10 mM) in NAD(P)H oxidation assays in the presence of SsDesB, 50 uM FAD, and 0.7

mM NAD(P)H (or varied concentrations). All measurements were made in triplicate.

https://doi.org/10.1371/journal.pone.0248385.t001
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Fig 2. Oxygen consumption assays. Oxygraph traces demonstrate high oxidase activity in the absence of substrate.
Assays contained 100 mM sodium phosphate buffer, pH 8 with 0.7 mM NADPH and 0.05 mM FAD in the absence or
presence of 10 mM cadaverine.

https://doi.org/10.1371/journal.pone.0248385.g002

consumed slightly more oxygen (1.5-fold more) with cadaverine (Fig 2). Similar kinetic
parameters were determined using the oxygen consumption assay compared to those obtained
from NAD(P)H oxidation assays (Table 2). At a constant cadaverine concentration of 10 mM
and varying NADPH concentrations, SsDesB consumed molecular oxygen with an apparent
kear 0f 0.24 + 0.01 s and ko, /K., 0f 2.9 + 0.4 mM s, These values are somewhat consistent
with those determined in NADPH oxidation assays. When the concentration of NADPH was
held constant and cadaverine concentrations were varied, SsDesB consumed molecular oxygen
with an apparent k., of 0.20 + 0.01 s and k., /Ky, 0of 4.3 £ 0.1 mM's ™. When putrescine con-
centrations were varied at constant NADPH concentrations, SsDesB consumed molecular oxy-
gen with a similar apparent k., of 0.29 + 0.01 s but lower catalytic efficiency of 0.62 + 0.15
mM 's". QuantiChrome assays detected peroxide formation in only assays with enzyme

(11 uM in 30 s and 20 uM in 72 s) and none in control assays without enzyme or with boiled
enzyme (S5 Fig in S1 File). The presence of peroxide indicated that SsDesB does not use all of
its reduced molecular oxygen to form an N-hydroxylated product.

N-hydroxylation activity varying NAD(P)H, cadaverine, and putrescine

Using SsDesB without a hexahistidine tag at a constant concentration of NADPH, the enzyme
N-hydroxylated cadaverine with an apparent k., of 0.048 + 0.004 s ' and catalytic efficiency of

Table 2. Steady-state kinetic parameters determined in oxygen consumption assays for different substrates.

Substrate keatr 87 K, tM Kcat/Km, mM's™ K, mM
Cadaverine(0.7 mM NADPH) 0.20 £ 0.01 47+ 1 43+0.1 37+4
NADPH(10 mM Cadaverine) 0.24 £ 0.01 83+ 10 29+04
Putrescine(0.7 mM NADPH) 0.29 £ 0.02 470 £ 110 0.62 £ 0.15

Initial rates measured with varied concentrations of cadaverine or putrescine (or 10 mM) in the presence of SsDesB, 50 uM FAD, and 0.7 mM NADPH (or varied

concentrations). All measurements were made in triplicate.

https://doi.org/10.1371/journal.pone.0248385.t1002
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Table 3. Steady-state kinetic parameters determined in product formation assays with SsDesB and different substrates.

Substrate keats s K, tM Keat/Kpm, mM™* s7* K;, mM
Cadaverine 0.048 £ 0.004 19+9 25+1.2 27 22
NADPH 0.034 £ 0.008 33+24 1.0+ 0.8 1.1£0.6
Putrescine 0.34 + 0.006 1100 = 78 0.31 +0.23
NADH 0.094 £0.018 130 + 49 0.71 £ 0.26 1.0+ 04

Initial rates measured with varied concentrations of cadaverine or putrescine (or 10 mM) in the presence of SsDesB, 50 uM FAD, and 0.7 mM NAD(P)H (or varied

concentrations). All measurements were made in triplicate.

https://doi.org/10.1371/journal.pone.0248385.t003

2.5+ 1.2mM™" s (Table 3). However, the apparent k., value was approximately 6-fold lower
than those determined in oxygen consumption and NADPH assays (Fig 3). N-hydroxylated
product was confirmed by LC/MS in SsDesB assays derivatized with Fmoc-Cl and not in assays
without enzyme (Fig 4). At a constant NADPH concentration, SsDesB also N-hydroxylated
putrescine with a higher apparent k., of 0.034 + 0.006 s™' but lower catalytic efficiency of

0.31 +0.23 mM's™", further indicating a preference for N-hydroxylating cadaverine over putres-
cine. The apparent Ky of cadaverine (31 uM) with SsDesB was 35-fold lower than that of putres-
cine (1100 uM). When the NADH concentration was varied, the apparent k., value was ~2-fold
higher than that when NADPH was varied, however the apparent Ky; was ~4-fold larger, indicat-
ing a preference for binding NADPH over NADH. At high cadaverine and NAD(P)H concentra-
tions, substrate inhibition was observed. To rule out product inhibition, we assayed SsDesB in the
presence of increasing concentrations of N-hydroxycadaverine and there was no decrease in
enzyme activity (S10 Fig in S1 File). Thus, the initial rate data were fit to Eq 3 when inhibition
was observed. Products were confirmed via LC/MS analysis of SsDesB assays with cadaverine
detected the generation of new compounds, such as N-hydroxycadaverine, after derivatization
with Fmoc-Cl that were not present in control assays without enzyme (Fig 4).

Substrate scope

SsDesB N-hydroxylated cadaverine, putrescine, spermidine, and L-lysine substrates (Fig 5). L-
ornithine, 1,3-diaminopropane, and 3-dimethylaminopropylamine were not N-hydroxylated.
The m/z values of these products are consistent with N-hydroxycadaverine ((IM+H]" m/z
caled. for C35H34N,05H 563.25; found 562.2563), N-hydroxyputrescine ((M+H]" m/z calcd.
for C34H3,N,05H: 549.23; found 549.2389), N-hydroxylysine ([M+Na]" caled. for
C36H34N,0,Na: 629.23; found 629.2264), and N-hydroxyspermidine ([M+H]" m/z calcd. for
C37H30N305H: 606.29; found 606.2968). See SI for extracted ion chromatograms and high res-
olution mass spectral data (S11-S15 Figs in S1 File). With the exception of assays with spermi-
dine that yielded two stereoisomers of N-hydroxylated products, four stereoisomers of
products were detected in all assays (§10-S13 and S15 Figs in S1 File). Assays were also per-
formed with SsDesB containing an N-terminal hexahistidine tag was assayed, and no N-
hydroxylated products were detected in product formation assays containing SsDesB with L-
lysine. A slight difference in activity was only observed with L-lysine when it was assayed with
the hexahistidine tagged SsDesB, suggesting that the affinity tag interferes with the enzyme N-
hydroxylating L-lysine.

Structural analysis of SsDesB

Crystal structures of SsDesB were obtained for the FAD-bound holoenzyme and the ternary
complex with bound FAD and NADP* at 2.86 A and 2.37 A, respectively. Data collection and
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Table 4. Crystallographic data collection and refinement statistics.

Data collection statistics:

SsDesB-FAD SsDesB-FAD-NADP™
Program used: HKL3000 HKL3000
Beamline APS, SER-CAT, 22-ID APS, SER-CAT, 22-BM
Wavelength (A) 1.0000 1.0000
Space group P2, P2,
a, b, c(A) 83.05, 151.17, 141.40 84.13, 153.43, 141.31
o, B, 7(") 90, 91.58, 90 90, 92.44, 90
Resolution range* 50-2.86 (2.90-2.86) 50.0-2.37 (2.40-2.37)
Number of unique reflections measured 78957 (3917) 139487 (6942)
Completeness (%) 98.7 (98.5) 96.3 (96.3)
Redundancy 3.2(3.3) 3.7 (3.7)
Mean I/a(]) 15.4 (2.2) 14.2 (2.0)
Rym 0.066 (0.451) 0.089 (0.692)
Riperge 0.043 (0.355) 0.059 (0.580)
Ryim 0.042 (0.288) 0.053 (0.418)
CC % 0.996 (0.860) 0.996 (0.729)
Refinement statistics
Program used: phenix.refine phenix.refine
Resolution range (A) 39.1-2.86 37.02-2.37
Number of reflections used in refinement 73546 (3617) 136497 (6786)
R/Rgree 0.199/0.258 0.189/0.240

No. of atoms

Protein, chain A,B,C,D,E,F,G,H

3340/3340/3326/3326/3340/3333/3553/3340

3353/3340/3340/3346/3346/3340/3340/3370

FAD, chain A,B,C,D,E,F,G,H

53, all chains

53, all chains

NADP* - 48, all chains
Water - 1201
Average B factor (A%

Protein, chain A,B,C,D,E,F,G,H

43.5/51.2/52.3/55.4/41.0/49.3/47.4/42.1

30.9/32.8/34.4/39.2/33.7/39.8/37.0/38.3

FAD, chain A,B,C,D,E,F,G,H

41.2/50.6/57.5/62.2/38.2/56.0/49.4/38.9

29.2/30.6/33.9/33.1/29.4/38.3/33.2/35.4

NADP* - 31.5/33.4/35.6/38.3/36.2/41.0/38.5/38.8
Water - 40.9
Root-mean-square- deviation from ideal

Bond length (&) 0.003 0.002

Bond angle () 0.6 0.5

Ramachandran plot

Favored (%) 94.4 95.7

Allowed (%) 5.1 4.1

Outliers (%) 0.5 0.2

Molprobity analysis

All atoms contact clash score 5.54 (100" percentile) 3.1 (100" percentile)
Molprobity score 1.66 (100™ percentile) 1.4 (100" percentile)
PDB accession code 6XBC 6XBB

*Values in parenthesis are for the highest resolution shell

https:/doi.org/10.1371/journal.pone.0248385.t004

processing statistics are presented in Table 4. SsDesB crystallized as a homotetramer with each
protomer consisting of two dinucleotide-binding Rossman-fold domains [40]: an FAD-bind-
ing domain (red) and an NADPH-binding domain (blue) (Fig 6). In both structures, each
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Fig 3. Representative steady-state kinetics of SsDesB in oxygen consumption and product formation assays. A. Initial rate kinetic data
obtained with cadaverine and putrescine in oxygen consumption assays. Kinetic data for putrescine assayed with SsDesB, 0.05 mM FAD,
and 0.7 mM NADPH. These data were obtained in triplicate and fit to the Haldane substrate inhibition (cadaverine) and Michaelis-
Menten equations (putrescine), respectively. B. Initial rate data for cadaverine and putrescine assayed with SsDesB, 0.05 mM FAD, and 0.7
mM NADH in product formation assays. These data were obtained in triplicate and fit to the Haldane substrate inhibition (cadaverine)
and Michaelis-Menten equations (putrescine), respectively.

https://doi.org/10.1371/journal.pone.0248385.9003

molecule in the asymmetric unit contained bound FAD and in the SsDesB-FAD-NADP" com-
plex, abound NADP* molecule was clearly resolved in each protomer. Based on a query of the
Protein Data Bank (PDB) using PDBefold [41, 42], the overall structure of the SsDesB resem-

bles those of previously determined crystal structures of the flavin-dependent monooxygenases
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Fig 4. LC/MS detection of N-hydroxycadaverine (m/z 563.25). LC/MS select ion chromatograms of Fmoc-derivatized N-
hydroxycadaverine in assays with and without SsDesB. Diastereomers are observed.

https://doi.org/10.1371/journal.pone.0248385.9004

E. amylovora DfoA (PDB entry 508P, r.m.s.d. 0.85 A over 407 aligned residues) [43], the orni-
thine hydroxylase KtzI from Kutzneria sp. 744 (PDB entry 4TM1, r.m.s.d. 1.74 A over 364
aligned residues) [5], the P. aeruginosa ornithine hydroxylase PvdA (PDB entry 3S5W, r.m.s.d
1.96 over 361 aligned residues) [44], and the A. fumigatus ornithine hydroxylase, SidA, (PDB
entry 5CKU, r.m.s.d 2.08 A over 362 aligned residues) (Fig 7 and S1 Table in S1 File).

FAD-bound enzyme

In the SsDesB-FAD complex structure, the FAD molecule is bound in an elongated conformation
with the fully planar isoalloxazine ring positioned at the interface of the two dinucleotide-binding
domains and a large area of the molecule, particularly the adenine dinucleotide portion, is
exposed to solvent. During purification, after passage through the gel filtration column, fractions
containing SsDesB lost the deep yellow color, suggesting that FAD was lost during the process.
For our crystallization efforts, we used concentrated protein eluted from an IMAC column in
which the aliquots retained a deep yellow color. However, similar crystallization hits could also
be obtained after adding exogenous FAD to the protein aliquots after passage through a size
exclusion column and then concentrating the protein. Loss of FAD during purification was also
reported with other homologs [3]. In the holoenzyme, FAD is held in the active site pocket pri-
marily by hydrogen bonding interactions involving S43, E42, K44, H50, P390, and W49 along
the flavin adenine nucleotide backbone while residues Q61 and L392 contribute direct hydrogen
bonds to the planar isoalloxazine ring primarily via the backbone amide nitrogen atoms (Fig 8).

FAD and NADP*-bound enzyme

There are no significant global structural changes observed upon binding of the NADP" mole-
cule (r.m.s.d. = 0.26 over 2741 aligned atoms). The higher resolution 2.37 A structure of the
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Fig 5. Relative SsDesB activity with different substrates. Initial rates measured with 10 mM L-lysine, cadaverine, spermidine, putrescine, n-
butylamine, L-ornithine, 1,3-diaminopropane, and 3-dimethylaminopropylamine in product formation assays in the presence of SsDesB,

50 uM FAD, and 0.7 mM NADPH. All initial rates are relative to that of cadaverine. n-Butylamine, L-ornithine, 1,3-diaminopropane, and
3-dimethylaminopropylamine did not yield any Fmoc-derivatized N-hydroxylated products by LC/MS. All assays were performed in triplicate
and molecular structures are shown with numbered carbon chains.

https://doi.org/10.1371/journal.pone.0248385.9005

ternary complex shows that the NADP™ cofactor is held in the active site pocket in an elon-
gated manner via several direct hydrogen bonds to SsDesB and a network of water-mediated
hydrogen bonding bridges between SsDesB residues and NADP™ (Fig 9). The electron density
is well-defined for both the FAD and NADP" cofactors, including the nicotinamide ring, in all
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NADPH-binding
domain

Fig 6. Overall structure of tetrameric SsDesB in complex with NADP*. NAD"* and FAD-bound SsDesB (PDB code:
6XBB). A) Tetrameric structure of SsDesB complexed with NADP" illustrating the FAD-binding domain (red-
ribbons) and the NADPH-binding domain (blue-ribbons). The bound NADP* molecule is shown in orange spheres
and the FAD molecule in yellow spheres. B) A view of the SsDesB protomer.

https://doi.org/10.1371/journal.pone.0248385.g006

8 protomers in the asymmetric unit. The nicotinamide ring is held in position by hydrogen
bonding interactions between the nicotinamide N7N atom and main chain carbonyl oxygen
atom of H59 and the N5 atom of the FAD isoalloxazine ring. The nicotinamide O7N atom par-
ticipates in water-mediated hydrogen bonding interactions via water 679 to the E202 side
chain and H50 main chain carbonyl oxygen atom. The side chain of Q61 also contributes to
stabilizing interactions via a hydrogen bond between the side chain OE1 oxygen atom and the

Fig 7. Structural comparison of SsDesB and homologs. Superimposed crystal structures of chain A of SsDesB (PDB
code: 6XBC) with A) E. amylovora DfoA (PDB code: 508P), B) Kutzneria sp. 744 ornithine hydroxylase, Ktzl, (PDB
code: 4TM1), C) P. aeruginosa ornithine hydroxylase, PvdA, (PDB code: 3S5W), and D) A. fumigatus ornithine
hydroxylase, SidA, (PDB code: 5CKU).

https://doi.org/10.1371/journal.pone.0248385.g007
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Fig 8. Active site environment of SsDesB holoenzyme. View of the active site residues (carbon atoms in gray,
nitrogen atoms in blue, and oxygen atoms in red) mediating FAD (carbon atoms in yellow, and phosphate atoms in
orange) binding in the FAD-bound SsDesB structure (PDB code: 6XBC). The fit of the FAD molecule to the final 2F,-
F, electron density map (blue mesh, 2.86 A resolution, contoured at 10 level) is shown.

https://doi.org/10.1371/journal.pone.0248385.g008

02D ribose oxygen atom. The phosphate moiety of NADP™ is held in place by a salt bridge
between the 02X oxygen and the side chain of K264, and the R232 side chain to the O2X and
01X oxygen atoms. In addition, there is a hydrogen bond between the O3X oxygen and the
side chain of §224.

In comparison to the holoenzyme structure, upon NADP" binding, several structural
adjustments are observed among the residues surrounding the NADP™ binding pocket. At the

H59 H59

Fig 9. Active site environment of SsDesB-NADP* bound structure. Stereo-view of the active site of the
SsDesB-NADP" bound structure (PDB code: 6XBB). The fit of the FAD molecule (carbon atoms in yellow, nitrogen
atoms in blue, oxygen atoms in red, and phosphate atoms in orange) and the NADP* molecule (carbon atoms in
orange) to the final 2F,-F, electron density map is shown (blue mesh, 2.37 A resolution, contoured at 10 level).

https://doi.org/10.1371/journal.pone.0248385.g009
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7"‘1\ , Q61

NADP+

A261

R223

Fig 10. Structural changes upon NADP" binding. View of the superimposed active sites of the SsDesB holoenzyme
(blue; PDB code: 6XBC) and SsDesB-NADP™ bound (green; PDB code: 6XBB) structures highlighting the positional
shift of residues in the active site upon NADP* binding.

https://doi.org/10.1371/journal.pone.0248385.9010

interface of the FAD isoalloxazine ring and NADP" nicotinamide ring, the side chain of Q61
shifts away from the FAD isoalloxazine to accommodate the binding of the nicotinamide ring
of NADP", which in turn, induces a shift in the rotamer positions of the nearby 1230, E231,
and Y232 side chains (Fig 10). Additionally, the D391 side chain is now engaged in a water-
mediated hydrogen bond bridge between the side chain OD2 oxygen atom and the isoalloxa-
zine ring O2 atom via water 691 (Fig 9). The side chain of T62 is also hydrogen bonded to the
isoalloxazine ring N3 nitrogen atom (Fig 9). A shift in the conformation of the loop consisting
of residues 261-269 is observed which avails space for NADP" binding and also properly posi-
tions the side chain of K264 to engage in an ionic interaction with the phosphate moiety of
NADP™. The side orientation of R223 also shifts and is now properly positioned for an ionic
interaction with the NADP" phosphate and is also stacked against the terminal adenine
moiety.

Discussion

Alkyl diamine N-hydroxylases are class B flavin monooxygenases that catalyze the N-hydroxyl-
ation of diamines using NADH or NADPH as their redox partners. These NMOs play an
essential role in committing diamines to the biosynthesis of hydroxamate siderophores, which
are used to sequester iron for microorganisms, including several human pathogens. Further-
more, they are used in the industrial fermentation of pharmaceuticals, such as desferrioxamine
B, and are currently being explored as biocatalysts, as they accept complex substrates and
introduce the unique N-O functionality in a single step, which can be further derivatized [45].
However, they are not as well-studied as the L-lysine and L-ornithine NMOs, particularly
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Fig 11. General mechanism for Class B flavin-dependent monooxygenases. The NADPH oxidation, oxygen consumption, and N-hydroxylation steps are represented
by steps 1, 2, and 4, respectively. The loss of peroxide is indicated in blue and the apparent k,, values for steady-state kinetic assays with varied NADPH concentrations
are shown. *, the substrate is either added before or after the reduction of molecular oxygen.

https://doi.org/10.1371/journal.pone.0248385.9011

those involved in the biosynthesis of nocobactin in N. farcinica [3] and ferrichrome in A. fumi-
gatus [4], respectively. Here we report the structural and kinetic characterization of SsDesB, a
cadaverine N-hydroxylase from S. sviceus.

The general mechanism proposed for class B flavin-dependent monooxygenases (Fig 11)
commences with an oxidized FAD being reduced by the C4-pro-R position of NAD(P)H nico-
tinamide to the N5 position of the flavin isoalloxazine ring to produce FADH™ (FAD,.4). Then
molecular oxygen adds to FAD,4 to form an activated C4a-(hydro)peroxyflavin intermediate
that undergoes nucleophilic attack by the primary amine of the bound substrate, which could
bind before or after the reduction of molecular oxygen. NADP" typically remains bound to
prevent the quenching of the C4a-(hydro)peroxyflavin species [46, 47]. Once the hydroxylated
product is formed, the oxidized FAD is regenerated by the loss of water and the products dis-
sociate, completing the catalytic cycle. Based on the kinetic analysis of the NADPH oxidation,
O, consumption, and N-hydroxylation steps, SsDesB appears to have a mechanism consistent
with the proposed mechanism for a Class B flavin-dependent monooxygenase. However, Fig 2
shows that SsDesB consumes oxygen when incubated with NADPH in the absence of sub-
strate, suggesting that the substrate may not be required to be bound to SsDesB for FAD to be
reduced (step 1 in Fig 11), which is not uncommon for N-hydroxylases [46, 48].

While the apparent k., values for the initial NADPH oxidation and oxygen consumption
steps for SsDesB were of the same order of magnitude, there was a ten-fold difference in the
apparent k,, values of those steps to that of the N-hydroxylation step. The significant decrease
in the apparent k., among those three steps indicates the uncoupling of the reaction. The
detection of peroxide in SsDesB assays with cadaverine further supports this notion, as not all
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molecular oxygen is converted into N-hydroxylated product. Other N-hydroxylases have been
reported to catalyze uncoupled reactions, such as NbtG (Nocardia farcinica) [49], MbsG
(Mycobacterium smegmatis) [49], PvdA [48], and GorA [1].

Unlike many amino acid N-hydroxylases with Ky values ranging from 0.3 to 4 mM, the
apparent Ky values for cadaverine, NADPH, and NADH were significantly lower, approach-
ing the limit of detection of the multistep product formation assay. The apparent k., of SsDesB
with cadaverine was at least 10-fold less than the published k., values of other amino acid N-
hydroxylases [50]. SsDesB also exhibited higher apparent k., values with putrescine, which
were the same order of magnitude in product formation and oxygen consumption assays, sug-
gesting the putrescine substrate stabilizes the C4a-(hydro)peroxyflavin intermediate. However,
cadaverine is the preferred substrate based on its higher apparent catalytic efficiency. We are
aware that the apparent Ky, values for cadaverine and putrescine in product formation assays
were slightly higher than those determined in the other assays, which is likely due to greater
error associated with the multistep product formation assay.

The difference in the magnitudes of the apparent Ky, values for cadaverine and putrescine,
which only differ by one methylene group, likely reflects the physiological relevance of these
polyamines in S. sviceus. For example, in S. putrefaciens, desferrioxamine B is synthesized once
putrescine has been depleted [51]. The more than 20-fold difference between the apparent Ky,
values of cadaverine and putrescine with SsDesB could represent a way to manage iron acquisi-
tion in S. sviceus. The S. sviceus genome contains genes to transport putrescine into the cell;
thus, putrescine could be used as a SsDesB substrate to produce N-hydroxyputrescine and
other putrescine-derived hydroxamate siderophores under certain growth conditions.

Based on the N-hydroxylation of cadaverine and putrescine, SsDesB has broader substrate
and cofactor specificity than other class B flavin-dependent monooxygenases supporting our
initial hypothesis. SsDesB exhibited similar activity to GorA [1] and PubA [26], accepting both
NADPH and NADH cofactors as well as multiple diamine substrates. However, a higher
apparent catalytic efficiency was determined with NADPH, indicating a preference for
NADPH over NADH. A preference for NADPH was also reported for GorA, in which the rela-
tive amount of hydroxylated product made with NADPH was significantly higher than with
NADH, which produced too little product for quantification in assays containing 150 uM of
either cofactor. Similar to GorA, SsDesB also exhibits higher activity with putrescine followed
by cadaverine [1]. However, the authors did not report steady-state kinetic data over a wide
enough range of cadaverine concentrations to confirm that putrescine is the preferred GorA
substrate [1]. While SsDesB exhibits higher activity with putrescine at concentrations above its
apparent Ky, cadaverine is the preferred substrate based on its low micromolar Ky, increasing
its apparent catalytic efficiency.

Molecules containing alkyl chains with less than four methylene groups or branched alkyl
amines were not N-hydroxylated by SsDesB. Spermidine and L-lysine were accepted to a lesser
degree, respectively, indicating that SsDesB can tolerate longer alkyl diamines as well as a car-
boxyl group. LC/MS detected at least four stereoisomers of these N-hydroxylated products
with the exception of spermidine, which produced two stereoisomers likely due to the N-
hydroxylation of the longer alkyl chains, as the amines with 3-carbon alkyl chains were not N-
hydroxylated. The spermidine substrate is more readily N-hydroxylated than L-lysine (Fig 5)
and may form more stable hydrogen bonding interactions with its additional nitrogen atoms.
Interestingly, assays with SsDesB containing an N-terminal hexahistidine tag did not N-
hydroxylate lysine, whereas SsDesB did without a hexahistidine tag, suggesting that additional
residues near the N-terminus prevent the N-hydroxylation of amino acid substrates (S16 Fig in
S1 File).
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Fig 12. Structural analysis of substrate specificity. A. Active site structure of SidA bound to NADP" and ornithine (PDB code: 4b63).
B. Model of ornithine binding to the active site of SsDesB obtained by superimposing the coordinates of SsDesB (PDB code: 6XBB) onto
the coordinates of SidA bound to ornithine (PDB code: 4b63). C. Comparison of the active site environment between SsDesB and SidA.
D. Modeling of lysine binding to SsDesB. E. Modeling of cadaverine binding to SsDesB. F. Modeling of putrescine binding to SsDesB.

https://doi.org/10.1371/journal.pone.0248385.g012

The structural basis for SsDesB N-hydroxylation was explored by comparing the structure
of SsDesB bound to NADP" with experimental crystal structures of the SidA homolog with
bound substrate. Similar to other NMO structures [5], SsDesB is a homotetramer with its
active site within a subunit at the interface of three domains, including Rossman-type FAD
and NAD(P)H binding domains (Fig 6). The SsDesB active site appears to be more solvent
exposed, which may contribute to its uncoupled mechanism as a lower amount of FAD copur-
ified with the enzyme compared to that of other N-hydroxylases (75% flavin in NbtG [3] and
50-60% flavin in SidA [4]) in which FAD is buried and inaccessible by solvent. While SsDesB
accepts a broad range of substrates, such as cadaverine and putrescine, it does not N-hydroxyl-
ate L-ornithine. To gain structural insight into the substrate specificity of SsDesB, we superim-
posed the coordinates of the SsDesB-NADP* complex onto its SidA homolog, which accepts
L-ornithine as a substrate, crystallized with NADP" and L-ornithine (PDB code: 4b63) [52]
(Fig 12). Fig 12A shows that SidA binds L-ornithine through several hydrogen bonds involving
N323, N293, S469, and K107 residues (these residues are conserved in the PvdA and Ktzl
homologs); however, SsDesB lacks the equivalent residues (Fig 12B and 12C). In particular,
SsDesB lacks the equivalent K107 residue, which would hydrogen bond to the carboxylate moi-
ety of L-ornithine and contribute a stabilizing positive charge, anchoring the substrate. Addi-
tionally, SsDesB contains a nonpolar L237 residue (N293 in SidA), eliminating the possibility
of hydrogen bonding interactions at this position with the carboxylate oxygen and 8-carbon
primary amine of L-ornithine. In SidA, N323 hydrogen bonds with the a-carbon primary
amine; however, SsDesB contains a nonpolar F267 residue in the equivalent position (Fig
12C). Furthermore, a clashing negative charge provided by SsDesB D391 (L467 in SidA, L404
in KtzI and L408 in PvdA) would likely repel the negative charge of the L-ornithine
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carboxylate group. These highlighted structural features provide insight into why SsDesB does
not accept L-ornithine as a substrate.

Given that SsDesB accepts L-lysine, cadaverine, and putrescine as substrates, we modeled
the position of these substrates into the SsDesB active site by superimposing the SsDesB coor-
dinates onto available crystal structures from homologs with bound substrates (Fig 12). The
position of L-lysine in the SsDesB active site was modeled by overlaying the SsDesB coordi-
nates onto those of the SidA-NADP*- L-lysine complex structure (Fig 12D, PDB code: 4b64)
and the position of L-ornithine was based on the superimposed coordinates with the SidA--
NADP"- L-ornithine structure (Fig 12B, PDB code: 4b63), while the position of cadaverine
(Fig 12E) and putrescine (Fig 12F) was modeled based on the removal of atoms from the L-
lysine substrate in PDB entry 4b64 and L-ornithine substrate in PDB entry 4b63, respectively.
While exact hydrogen bonding interactions are difficult to predict based on modeling alone,
we can suggest that given proper positioning of cadaverine, the side chain of D391 may hydro-
gen bond with the e-carbon amine and Q61 is within hydrogen bonding distance to the a-car-
bon amine (Fig 12). Similar interactions could possibly be observed with putrescine, which is
one methylene shorter than cadaverine, given proper positioning of the substrate. However,
given putrescine’s lower apparent Ky, with SsDesB, these interactions may be weaker due to
the shorter chain length. Although we observed low activity with L-lysine, we could not fully
rationalize the binding of L-lysine based on our modeling studies. If the side chain of D391
moved away from the carboxylate moiety of L-lysine, then the nearby T240 side chain could
hydrogen bond with L-lysine. However, experimental X-ray crystal structures and additional
site-directed mutagenesis studies are needed to fully characterize the structural basis for the
binding of SsDesB substrates and identify key catalytic residues.

We also examined the X-ray crystal structure to understand the preference of SsDesB for
NADPH over NADH. The ornithine N-hydroxylase from P. aeruginosa, PvdA [5, 48], only
uses NADPH as the electron donor during the oxidation of substrates. In the 1.9 A resolution
crystal structure of PvdA with bound NADP" and ornithine (PDB code: 3S5w), there is no
electron density available to sufficiently model the nicotinamide ring, suggesting that flexibility
may be required for catalysis [5]. However, in SsDesB, the electron density for the nicotin-
amide ring of NADP" is fully resolved in all molecules in the asymmetric unit. The specificity
of PvdA for NADPH is determined by two residues, R240 and S210 [5]. R240 forms two
hydrogen bonds with the 2’-phosphate on the adenine ribose and the $286 residue also forms a
hydrogen bond to the phosphate. In contrast, SsDesB has an R223 residue, which is equivalent
to R240 in PvdA, but lacks the equivalent serine residue (S3 Fig in S1 File). Instead, a positively
charge lysine, K268, is positioned away from the 2’-phosphate, which may reduce the specific-
ity of SsDesB for NADPH (Fig 9).

Conclusions

The present study is the first kinetic and structural characterization of SsDesB, providing
insight into the biosynthesis of desferrioxamine and derivatives. The kinetic and structural
data revealed the broader substrate scope of alkyl amine N-hydroxylases compared to the
more selective ornithine and lysine N-hydroxylases. Furthermore, an uncoupled mechanism
was observed when SsDesB was assayed with cadaverine and not with putrescine. Understand-
ing the structural and catalytic basis for activity can lead to the development of biocatalysts
and inhibitors that target homologs in human pathogens. Future studies include the kinetic
and structural characterization of mutated SsDesB residues to identify key catalytic residues,
understand why the enzyme-catalyzed reaction is uncoupled with cadaverine, and expand the
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SsDesB substrate scope to produce structurally diverse hydroxamate siderophores and N-
hydroxylated molecules.
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