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Abstract

Building on the epidemiological SIR model, we present an economic model with heteroge-
neous individuals deriving utility from social contacts creating infection risks. Focusing on
social distancing of individuals susceptible to an infection we theoretically characterize the
gap between private and social cost of contacts. Our main contribution is to quantify this gap
by calibrating the model with unique survey data from Germany on social distancing and
impure altruism from the beginning of the COVID-19 pandemic. The optimal policy is to
drastically reduce contacts at the beginning to almost eradicate the epidemic and keep them
at levels that contain the pandemic at a low prevalence level. We find that also in laissez
faire, private protection efforts by forward-looking, risk averse individuals would have stabi-
lized the epidemic, but at a much higher prevalence of infection than optimal. Altruistic
motives increase individual protection efforts, but a substantial gap to the social optimum
remains.

Introduction

The reduction of physical social contacts (“social distancing”) has been a key measure for pub-
lic disease control in the COVID-19 pandemic around the world. While social distancing
reduces infection rates, it naturally comes at the expense of the lost benefits of contacts. Since
the global death toll in the COVID-19 pandemic has been around 5,000 cases a day for most of
the year 2020, social distancing is a key factor in containing the virus. We study how contacts
should be reduced from the perspective of a social planner and to whether voluntary contact
reductions by risk-averse and impure altruistic persons prone to infection would come close
to, or substantially differ from, the social optimum.

To address these questions, we extend the SIR (susceptible-infected-recovered) model of
epidemiological dynamics [1] by including the behavior of heterogeneous, forward-looking
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individuals that differ in infection, recovery, and mortality rates (implying heterogeneous
baseline reproduction rates), and in their preferences. We keep the analysis simple by focusing
on the behavior of susceptible individuals and infected individuals who do not yet know about
their infection, considering the behavior of COVID-19 patients (assumed to be strictly quaran-
tined) and recovered individuals as fixed. This focus allows us to contrast a private (‘laissez-
faire’) Nash equilibrium with the Pareto-optimal social distancing policy that targets different
population groups.

We provide analytical results on the gap between the private and social costs of contacts
due to infection externality. We show what drives the gap between purely selfish and socially
optimal social distancing and that it decreases with the degree of impure altruism. To quantify
the gap between private and socially optimal behavior, we rely on a unique data set from a rep-
resentative sample of around 3, 500 individuals in Germany at the beginning of the COVID-19
epidemic, and calibrate our model to official epidemiological statistics for Germany.

Our survey elicits reported reductions in physical social contacts and the relative share of
impurely altruistic motivation for social distancing, allowing us to derive the social cost of con-
tacts without relying on estimates of the value of a statistical life (VSL) from other contexts,
and to separate purely selfish from altruistic motivations. We conducted the survey in late
March 2020, when almost all Germans were still susceptible.

Our data collection period includes the introduction of a nationwide ban on contact, which
is similar to the “shelter-in-place” policy in the United States. While many social distancing
policies aim to reduce mobility, the German contact ban focused specifically on reducing phys-
ical contact, leaving considerable scope for voluntary behavior in choosing local contacts in
particular. Our survey data is better able to capture such local contact reductions than other
data sources such as to mobile phone data, which we also consider for comparison. Further-
more, the timing of our survey allows us to examine private contributions to a public good in
the case of social distancing and to test the robustness of the role of regulation. As the severity
of COVID-19 differs with age and gender, our application to Germany distinguishes groups
along these dimensions.

Our calibrated model provides the following results. First, the optimal social distancing pol-
icy drastically reduces contacts to bring infection rates below 1 per 100, 000 at the beginning of
the pandemic and stabilizes contacts at about a third of pre-pandemic levels to keep the basic
reproduction number stable at one. Second, we find only slight differences in social distancing
between groups, both in the laissez-faire equilibrium and in the social optimum.

Third, we find that the social costs of contacts are multiple times the private costs, and the
ratio is particularly high at low infection rates. Fourth, we find that impure altruistic behavior
fills a substantial part of the gap to the social optimum, with the group-specific reduction of
the gap ranging from 28 percent for old men to 32 percent for young women. We also find
that altruism has a positive effect on welfare and closes the welfare gap between the laissez-
faire equilibrium with selfish individuals and the optimum by about one third. A gap still
remains as the motivation to protect oneself continues to be the main determinant of individ-
ual actions in spite of some altruistic motives coming into play.

Finally, we show that purely selfish protection reduces the number of contacts to a level that
keeps the basic reproduction number at one, albeit at a prevalence of the disease that is much
higher than optimal. Accordingly, the death toll in the laissez-faire Nash equilibrium is about
20 times higher than in the social optimum. These findings are in line with general theory
according to which self-protection by risk-averse individuals can contribute to alleviating the
problem of external effects in a setting characterized by substantial private risk [2].

Whereas the literature is rapidly expaning, to the best of our knowledge, our paper is the
first to (i) combine a heterogeneous, group-specific analytical model with survey data on
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individual behavioural change to quantify the gap between the social optimum and the Nash
equilibrium with risk-averse, selfish individuals (‘laissez-faire’); (ii) estimate welfare effects
based on empirical evidence, while disentangling purely selfish and altruistic components of
social-distancing behavior. While so far most economic-epidemiological models are calibrated
to US data, our application to Germany offers an interesting complementary case study, as an
advanced economy that has managed the first month of the pandemic with relatively few
deaths and relatively modest regulations.

Related literature and contribution

Our research adds to the rapidly growing literature on the economics of epidemics applied to
the ongoing COVID-19 pandemic. It draws on earlier contributions on the economics of
infectious diseases [3-11]. In particular, we build on Fenichel et al. [5] regarding socially opti-
mal and impure altruistic behavior with heterogeneous groups. Our theoretical analysis, com-
paring the Nash equilibrium dynamics with individual decentralized decisions and the social
planner’s solution, is similar to the approach of Fenichel [6].

Our contribution regarding the stylized purely selfish and impure altruistic private versus
social cost of contacts with heterogeneous groups is most closely related to recent work by Far-
boodi et al. [12] and Acemoglu et al. [13]. Faarbodi et al. [12] study an optimal control model
with a single type of agent to compare contacts in a laissez-faire equilibrium to a social plan-
ner’s solution fully internalizing the externality. The authors also compare pure selfish behav-
ior with imperfect altruism. They calibrate their model based on the literature, including VSL
estimates from [14], finding that a laissez-faire equilibrium comes close to the decline in social
activity as measured in US micro-data from SafeGraph. Their optimal policy, which accounts
for the infection externality, would stabilize contacts at about 60 percent of pre-pandemic lev-
els. In comparison to our work, they do not disentangle selfish and altruistic behavior and
capture group heterogeneities. With a similar focus, Bethune et al. [15] study the infection
externalities and compare individual behavior with the social optimum in a SIR model cali-
brated using VSL estimates. For the US, they estimate the social cost of infections to be 3.5 fold
higher than the private cost. They find that, in contrast to the laissez-faire equilibrium, the
social planner would eradicate the disease, except if it’s social cost is very small. Eichenbaum
et al. [16] use the SIR model in a representative agent setting to show that the equilibrium of
selfish individuals is not Pareto efficient, as individuals take infection rates as given.

Acemoglu et al. [13] extend the SIR model to heterogeneous groups and provide a closed-
form solution of the dynamic model. Specifically, their ‘Multi-Risk’ model considers different
age classes that differ in their infection, hospitalization and mortality rates. In their calibration
for the US, they specify parameters based on the literature and account for heterogeneity in
some parameters across age groups, distinguishing young (20-44), middle-aged (45-65) and
old (> 65). They find that a targeted, group-specific social distancing policy reduces economic
cost and lives lost compared to an undifferentiated policy. Building on this Multi-Risk SIR
model, Gollier [17] compares welfare effects of a ‘suppression’ policy where the disease is erad-
icated, with a ‘flatten the curve’ policy, where infections are only kept below the capacities of
the health systems. The model is calibrated for France, considering three age groups: young (0-
18), middle-aged (19-64), and old (> 65). Gerlagh [18] considers heterogeneity in preferences
about social contacts, health cost or transmission rates in a simplified SIR model. He shows
that a group-specific optimal social distancing policy sets tighter distancing policies for elderly
when based on health characteristics, but sets tighter distancing policies for the young when
based on the transmission of the virus. Overall, he finds that public benefits of optimal social
distancing are an order of magnitude higher than the private benefits. Grimm et al. [19] extend
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the SEIR model for, among others, heterogeneous infectiousness parameters and solve it
numerically with calibration from the literature for Germany.

Several other recent papers extend the SIR model to study social distancing behaviour and
optimal policy response in the COVID-19 pandemic with different foci [20-27]. Of these,
Alfaro et al. [28] is most closely related to our paper. They use a homogenous SIR model to
show that infected individuals internalise part of the infection externality due to altruistic pref-
erences. Yet, their data does not allow for clearly disentangling to what extent altruistic motives
narrow the gap between selfish and socially optimal behavior. There is also a group of papers
studying macroeconomic effects, such as fiscal consequences or income shocks related to the
effects on trade or supply chains [29-33]. In relation to income losses, which our surveyed
households expect on average, our empirical strategy assumes that—as far as income depends
on physical contacts—these income losses are captured by their individual reductions in
contacts.

Finally, our paper relates to the literature on the private provision of a public good under
uncertainty [2, 34-37] and public good provision under impure altruism [38-41], as it pro-
vides evidence for a general hypothesis that uncertainty can help mitigate the externalities
problem.

Economic-epidemiological model with heterogeneous groups
Epidemiological dynamics

We draw on the canonical epidemiological SIR model [1], augmented by additional equations
to include quarantine, and set up in discrete time. Total population in period t, denoted by N,
splits up into susceptibles, S;, infected and infectious, who do not yet have any symptoms and
do not know they are infected, I;, COVID-19 patients who are in quarantine, Q,, and recover-
eds, R,. We also record the number of deads D,, such that N,=S,+ I, + Q,+ R,= Ny — (D, —
D). Recovereds are assumed to be immune.

We model heterogeneous population groups j that differ in socio-demographic characteris-
tics, notably age and gender, risk exposure, and preferences. Considering this heterogeneity
addresses limitations of the aggregate SIR model [42], and allows studying how incentives to
choose frequencies of contacts with others c;, differ with these characteristics. Different fre-
quencies of contacts result in heterogeneous effective infection rates. Individuals from differ-
ent groups may also differ in their clinical course of the infection, resulting in heterogeneous
fatality or recovery rates. The current state of the epidemic is determined by the number of
susceptibles Sj;, infected I, quarantined Q;,, and recovered R;; from all groups j. We use the
symbols without group index to denote aggregate values, i.e. I, := ¥, I, is the aggregate total
number of infected, and so on. To keep the model tractable, we assume that individuals are
homogeneous within a group and do not switch groups. The epidemiological dynamics how
individuals of all groups change their health status are described by:

St =S = B(6) S L,y (la)

Ly =0—0,—a—y)IL +plc,)S, I, (1b)
Qe =1 —0f =) Q, + ;I (L)
Ry =Ri+7L,+9Q, (1d)

where f(c;) is the infection rate given the frequency of physical social contacts c;; of
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susceptibles of group j. In general this term represents a matching function which could
depend on the activities of those searching for contacts and those being available to be con-
tacted. Here we assume that only the individual searching contacts affect the probability of an
infection, thus f3(c;;) depends on c;; only. Our quantitative results are robust to alternative spec-
ifications of a matching function that is homogeneous of degree one, the standard assumption
in economic matching models [43]. The given assumption implies that the health externality is
fully captured by the difference in the individual and social value of an infection, see section.

We further specify B(cj;) = Bc;,, which means that the probability of getting infected is pro-
portional to the number of physical social contacts. We assume that the infected who do not
yet know about the infection behave just like susceptibles. With rate ), an infection becomes
evident, as the COVID-19 patient shows symptoms, or as a test turned out to be positive. We
assume that once the infection is detected, the COVID-19 patient goes into strict quarantine
and does not infect others any more. In principle, 6; is a policy variable as well, as this parame-
ter can be influenced by testing frequencies, among others. Given our focus on social distanc-
ing, we consider 6; as exogeneously given in this paper. Moreover, y; and y] are the recovery
rates, while of and o are the COVID-19 mortality rates, of infected and quarantined individu-
als from group j die. While it is straightforward to include non COVID-19-related mortality in
the model, we ignore it here.

The group-specific basic reproduction numbers, i.e. the number of people infected by one
individual from group j on average, are R;, = f ¢,/ (o] + 7} + 0,). The overall basic reproduc-
tion number R, is the mean of group specific basic reproduction numbers, weighted by the
initial fraction of susceptibles from the respective groups, R, = >_R;; S,/ N;,. Note that the
basic reproduction number R, is a function of contacts and can thus be reduced by voluntary
or mandatory social distancing.

Nash equilibrium dynamics with private self-protection

A key interest of our paper is in the choice of physical social contacts by susceptibles who we
model as forward-looking expected utility maximizers. For both individuals and society we
assume a finite planning horizon of T weeks. After T weeks, group j individuals incur the pres-
ent value utility level V', with superscript # denoting the no-epidemic situation. Our focus is
on a first ‘wave’ of the pandemic. Thus we keep epidemiological and economic parameters
constant in the model, and consider T to be sufficiently long such that the finite time horizon
does not have a direct effect on the dynamics during that first wave.

Following [5] and [6], each individual takes as given the time paths of S;,, I;;, Q;; and Rj;, for
all groups j. We use V}, to denote the value function for an individual of group j in health state
h € {s,i,q,r, d} at time 1, i.e. the expected present value of utility the individual attaches to
reaching health state /. As usual, the model is solved backwards, starting with the final poten-
tial health states, recovered or dead.

The value function in the recovered health state r is given by

Vi=u +6,V (2)

jo D

where &; € (0, 1) denotes the utility discount factor, ] the Bernoulli utility of recovereds. It fol-
lows that the value of being recovered V] is independent of the state of the epidemic and equal
to
u;
Vi=1—5 (- 5 )+ Ve, (3)

J
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which is a weighted average between the infinite time-horizon value function for recovereds,
the first fraction on the right-hand-side of (3), and the value of an individual in the no-epi-
demic situation, V}". The weighting factor on the first component decreases, and the weighing
factor on the second component increases, as the arrival time T of the vaccination approaches.

An infected individual from group j will recover with probability y/ and die with probability
o/, both of which are, by assumption, independent of the state of the epidemic, but vary with
individual characteristics, such as age and general health conditions. In the following we use v
to denote a group j individual’s Bernoulli utility function in health state i. The corresponding
value function is determined by

Vi=u +0,{(1 =y} — o) Vi, +9] Vi + 0 V'], (4)

which is the sum of the utility of being in quarantine plus the discounted expected utility of
staying in quarantine, recovering, or dying, using V/ to denote the present (dis-)utility value of
death. The term in curly brackets is the (von Neumann-Morgenstern) expected utility of either
remaining in quarantine, recovering, or dying. Also V}{ is independent of the state of the epi-
demic in terms of the number of susceptible, infected, or recovered individuals. Solving (4), we
obtain:

ul! +6.91v + 6.0l V4 - -
V= e (-G =g =) v - =) (o)
J J ]

Note that V}{ can be interpreted in terms of quality-adjusted life years. It is increasing in the
quality of life, as measured by the utility levels ] and u. Moreover, V} is monotonically
decreasing with the ‘severity’ of the disease. More precisely, the value an individual attaches to
an infection is monotonically decreasing in the COVID-19 mortality rate o/. This is shown by
differentiating (5) with respect to o, and using that individuals prefer to be infected over
being dead, expressed in momentary utility as u; > (1 —6;) de. They prefer to be recovered
over being dead, expressed in present values as V;; > Vj” , and they prefer to be in the situation
with no epidemic compared to being infected.

The value an individual attaches to an infection is also monotonically increasing in the Ber-
noulli utility in the infected state, ujq Differences in the Bernoulli utility functions, a susceptible
individual attaches to the different health states, capture the effect of risk aversion. The more
averse against health risk an individual is, the smaller will be u] relative to the utility in the sus-
ceptible health state. Thus, the expected present value an individual attaches to an infection is
decreasing with the individual’s (health-related) risk aversion. The value function for the
unknowingly infected is

Vjiz = ”]S'(Cjt> + 5j {(1 - 0j - V; - O‘;) Vji,t+1 + 91‘ ij‘?H—l + V; V]rz + O(;l: de}7 (6)

where ¢;, is the same choice of contacts as the susceptible, as an individual does not know
about a potential infection. We now turn to this choice of physical social contacts.

Recall that fBcj; I, is the rate at which susceptibles get infected after having had physical con-
tacts with infected. This infection rate increases with the frequency c; with which susceptible
individuals search for physical contacts with others, i.e. > 0. The value function for the
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individual in state s is determined by the Bellman equation:

Vs —n{1a}x[ ( )+5 {( ) ]r+1 +BC I, Vji,t+1}]a (7)

with V]."t given in (6) and where utility u; in state s is a concave function of contacts c;;.

In the absence of regulation, and given Sj, I, Qj» and R;, for all groups j and at each point
in time, a purely selfish individual chooses the frequency of physical social contacts, Cj tO
solve (7). The corresponding first-order condition is given by

' (6) = 0 BIAV; iy = Vi }- (8)

An individual reduces physical social contacts such that her private marginal costs (lost mar-
ginal utility of c;;) equals the expected marginal benefit in terms of extending the time enjoying
utility V3 rather than V;, the expected present value of an infection. The marginal benefit of
reducing contacts is the discounted additional utility of staying susceptible weighted by the
decreased rate of getting infected, SI;, due to reductions in contacts c;. If utility is concave in

contacts, i.e. u;"(c;) < 0, a decrease of u(c;,) corresponds to an increase in ¢. It directly fol-

lows from (8) that physical social contacts of susceptible individuals decrease with the current
number of infected in the population I,. Moreover, contacts of susceptible individuals c;,
decrease with the difference of an individual’s expected present value utility of staying suscepti-

ble rather than becoming infected, i.e. Vi, ., — V/ ...

According to (8), the individually optimal contacts, c;, depend on the number of infected
in the entire population, I,. We consider the dynamics of c;; in open-loop Nash equilibrium,
where all individuals take as given the epidemiological dynamics, resulting from the behavior
of all others.

Utilitarian optimum

The social objective we consider is to maximize the sum of expected present values of individ-
ual utilities over the frequency of contacts of all individuals and at all time periods, i.e. the
utilitarian welfare function. The function is based on the aggregation of unit comparable indi-
vidual utility functions [44]. To construct unit comparable utility functions for the individuals,
we normalize individual utility functions such that momentary utility prior to the COVID-19
pandemic is identical for all individuals, i.e. max, u(c;) = max, u;(c;) for all j, . Given unit
comparability, the utilitarian welfare function is a particularly appealing specification, as it is
consistent with the assumptions that social preferences satisfy the von Neumann Morgenstern
axioms and the Strong Pareto assumption, i.e., society prefers one allocation over another one
if all individuals weakly prefer it and at least one individual strictly prefers it [45]. To take into
account that COVID-19 is a potentially deadly disease, we also include an annuity u on the
present value (dis-utility) an individual attaches to dying, uf = p; de, where p; is the discount
rate corresponding to goup j's discount factor &;. As before, and in line with the standard

approach in social welfare functions [44], we only consider the purely selfish part of individual
utility:

W= maxZZét ((S; + 1) ui(c;) + Quf + Ry u + D, u), (9)

subject to the epidemiological dynamics given by (1). Whereas each individual faces risks of
changing their health status, at the societal level the epidemiological dynamics are determin-
istic. Thus, the problem (9) to find the utilitarian optimum is a standard deterministic dynamic
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optimization problem that can be solved by the Lagrangian method, using 7»]’7, as the Lagrang-
ian multiplier for the number of individuals in health state h € {s, i, g, 1, d} in period t + 1.
These Lagrangian multipliers have the interpretation of the social value, in units of utility, of
an extra individual from group j in health state h. They are the social equivalent to the value
V?,., an individual attaches to the health state & in period ¢ + 1. The conditions characterizing
the socially optimal physical social contacts ¢, under epidemiological dynamics can be written

as (see Appendix in S1 File)
S. .
Jt i s _
S, +1, Al <x"‘ a K’") =0 (10a)

Jt J

w'(G) +9;

w(c) = A, +0,(1=Be )M, +0,pc, Lk, =0 (10b)

AN =1 ’j jit Tt TVt

AL J J ot jt 7ot

w(6) =My 0, (1= 0, =9 — o) 2, + O, M+ 90, + o) =D 6,868, (M = M) (10¢)
1

wl =M 6 (L= — )M+ 6,9 0, + 6,0 Ay =0 (10d)
w—h,,+ok =0 (10e)
wl =M, +0% =0, (10f)

with transversality conditions kjﬁT = V/'forhe{s,i,q,r}
Conditions (10a) and (10b) for the social optimum are formally equivalent to conditions
(7) and (8) for the private optimum, except that the individual value of being in state s (or i) at

timet+ 1,V (or qu, +1), is replaced by the social value of an extra individual in state s (or 7)

attime £, A;, (or X;t). The calculus for determining the optimal number of physical social con-
tacts is the same for the utilitarian planner as for an individual. The marginal utility of an extra
contact is set equal to the marginal cost in terms of increased number of individuals becoming
infected. The difference, however, is that the planner considers the social cost of one extra indi-
vidual becoming infected, which is A, — X;t, and different from the individual cost of becoming
infected, V;, — V.

For dead or recovered individuals, there is no difference between social and individual val-
ues, as being dead or recovered does not effect the health of others. The social value of an extra
= de, and we thus obtain from (10e) that A/, =

Vi, as well. Also for COVID-19 patients, there is no difference between social and individual
values, as by assumption they are in strict quarantine and thus do not infect others, so that
)”;1: = Vfrﬂ-

The key difference between individual and social optimum is that (10c) differs from (4) in
that the condition for the social optimum includes the effect of a change in the number of
infected of type j on all susceptible individuals. If there are many susceptible individuals rela-

tive to infected individuals, this makes a substantial difference. Inserting 1, = V7, in (10c),

dead is constant over time, V¢ : kjdt = KZH

using the expression (6) for V;, and solving the recursive equation for ?»;t — V,,, establishes
that the social cost of an infection in population group j at time ¢ is given as the private cost of
the infection minus the net present value of utility cost of reducing contacts from the individu-
ally optimal level c;; to the socially optimal level ¢;, minus the net present value of the infection
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externality on all others:

T

My = Vi =2 (0,1 —=0,—y—a) """ {(uj»(cﬁ) — () + Y 8B S, (b, — 7»?1)}, (11)
1

T=t+1

where V| is the individual value of getting infected, where 6, f ;. ;. (A, — \,.) is the cur-

rent-value external effect of the infection on individuals of population group [ at time 7 and
where 6, (1 — 0, — 7} — o) is the population group-specific discount factor. This discount fac-
tor depends on the subjective utility discount factor 6; as well as the rates at which individuals
get quarantined, recover, or die. Everything else equal, the external effect of an infection is
smaller the more quickly it is detected and the individual is quarantined. In line with intuition,
extensive testing to increase 6; reduces the infection externality.

The last term on the right-hand side of (11) quantifies the well-known infection externality
in a pandemic (also referred to as ‘health externality’). Society attaches a higher damage to an
extra infection than the individual, as the last term on the right-hand-side of (11) is negative,
since A, > Al for all groups L.

Individual behavior under imperfect altruism

We consider a large population, such that each individual’s contribution to welfare is negligi-
bly small. Given that, we think of a perfectly altruistic individual as one who puts herself in the
shoes of the social planner. The perfectly altruistic individual would thus choose her individual
contacts such as to maximize the utilitarian welfare function that sums up the purely selfish
part of utility of all individuals in society, and thus choose contacts according to (10a). In con-
trast, a purely selfish individual would choose contacts according to (8), as derived above.

An imperfectly altruistic individual is modeled as a hybrid between the two extremes. We
model such behavior by the following equation stating that she would choose her physical
social contacts ¢;, according to

sl S s i SJ’ s i
U; (Cjt) = bjﬂlr (1 - q)j) (Vj.t+1 - Vj,t+1) + P; S +1 (th - )\’jt) ’ (12)
jt jt

where ¢; € [0, 1] is the individual’s degree of altruism between zero, for the purely selfish indi-
vidual, and one, for the perfectly altruistic individual. This captures the idea that a purely self-
ish individual considers only the individual expected cost of infection and thus behave as
described by Eq (8). A perfectly altruistic individual, on the other hand, behaves like the social
planner and thus behave as described by Eq (10a). An imperfectly altruistic individual takes
into account both the individual and the social expected costs of an infection, such that the
expected marginal costs of an infection considered by an imperfectly altruistic indivicual are a
convex combination of the private and social costs. The parameter ¢; thereby can be consid-
ered a continuous measure of the decreee of altruism.

For a given degree of altruism, ¢;, we can use (8) and (10a) to alternatively write

' (¢,) = (1= ¢) w'(c,) + 9,4 (c}), (13)

where ¢, are the purely selfish individual and ¢ the utilitarian optimal contacts.
We further use y; to denote the share of the marginal expected costs of social contacts that
are due to the purely selfish motivation, that is, we write

w'(c) = vu(c;)- (14)
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The remaining fraction 1 — y; corresponds to the extra reduction effort the individual spends
for others. In our calibration to Germany (see below), we use observations on ¢;, and y; in (14)

to estimate the number of contacts a respondent would have chosen for purely selfish reasons.

Bringing the model to data

To quantify and solve the model numerically for the utiliarian optimum and the Nash equilib-
rium with selfish or imperfectly altruistic individuals, empirical information is needed on the
epidemiological parameters o}, o/ B, 7/, and y] for all groups j. One additionally needs not only
the discount factors &, but in principle also the Bernoulli utility functions u;(c; ), 4/, and u],
and the present value an individual attaches to dying, V. Especially the information about

these utility functions is difficult to obtain.

However, not all of these utility functions need to be specified for the purpose of this paper,
due to the following result: To compute the Nash equilibrium and socially optimal distancing,
all information required about utility in the health states of infected, quarantined, recovered,
and dead is contained in the individual expected present value of becoming infected, V}.. The
reason is as follows. In the Nash equilibrium with private self-protection, the dynamics of
physical social contacts is determined as the simultaneous solution, for all groups j, of the indi-
vidual optimality conditions (8), the Bellman Eq (7) for V;, and the epidemiological dynamics
(1). Once V, is known for all j, these equations can be solved without separate information
about u;?, uj, or de.

Socially optimal contacts are determined by condition (10a), the time paths of the state and
co-state variables in this equation, namely epidemiological dynamics (1), and equations (10b)
and (11), along with initial and transversality conditions. The key issue is that (11) determines
the social value of an infection as the sum of the individual expected present value of an infec-
tion V;,—which includes the present values of subsequent health states—, the Nash equilib-
rium number of contacts ¢;,—which can be determined as described in the previous paragraph
—and the value of the infection externality, which does not explicitly depend on the value of
subsequent health states. Thus, the term Vj"[ in (11) fully captures all information about u], u,

and de necessary to compute the social optimum.
Before explaining our method to calibrate V}, from cross-sectional survey data and rational

expectations about the dynamics of the pandemic, we turn to the specification of momentary
utility derived from physical social contacts, which we use in the empirical model. We assume
that individuals have no systematic differences in their preferences over physical social con-
tacts, and specify the utility function as

u‘,(cj[) = (ngt - Scjt)’ (15)

With this specification, the ‘normal’ number of contacts, i.e. the utility-maximizing level
of cjr absent the pandemic, and the maximum of utility, are both normalized to one,
¢;, = arg max ;(c;) = L and uj(1) = 1, independent of &. Thus, all utility values, especially V7,
are measured in units relative to the normal individual utility from contacts.
Our method to calibrate the individual value of an infection, Vj"t, given a specification for £

and a calibration of discount factors &j, is as follows. We use information about reported indi-
vidual social distancing behavior, and postulate that individuals chose their physical social
contacts according to the individual optimality condition (8). Due to forward-looking
behavior, the expected marginal benefit of contact reductions depends on the individual’s
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expectation about the future dynamics of the epidemic. Our calibration approach accounts for
this by assuming that individuals rationally expected the actual development. Between late
March and summer 2020, the pandemic has been largely stabilized in Germany.

Our focus is this ‘first wave’ of the pandemic in Germany, in spring and summer 2020. The
individual probability of getting infected remained constant for several weeks after March
2020 when we observed behavior, as the estimated number of infected remained largely con-
stant at about 50 per 100,000 individuals [46]. Also, between April and August 2020, the basic
reproduction number R has always been around one, with an average of R, = 0.98, a stan-
dard deviation of 0.33, and without any discernible trend [46]. Until of August 2020, there
have been about 220,000 cases of COVID-19 in Germany, 275 per 100,000 individuals. That is,
by August 2020, still more than 99% of the population were susceptible to an infection with the
coronavirus.

For our calibration we thus suppose that forward-looking individuals expected in March
2020 that I, would remain at the prevailing level I, and that the pandemic was in a quasi-steady
state where V;, and V}, have been constant. Using this to solve (7) for a constant V7, and sub-

tracting V;, on both sides of the equation, we get
u(cy) — (1 =96, Vy,

vi—vi =11 ,
» » 1- 5]' (1 - ﬁcj(] Io)

(16)

From condition (8) that determines the individually optimal number of contacts—which we
observe from survey data—and using the specification (15) of momentary utility from social
contacts in the susceptible state, as well as (16), we obtain the individual present value of an
infection:

) 1 e 1-9 e 1-6.
Vie_—" | — Lt 2. 17
s (90 1—eopl, " "1-e 5].[310) (17)

The right-hand-side of (17) is fully specified by data (cjo, Ip) and calibrated parameter values
(0, €). Next we present the data and calibration before we turn to the results that we obtain by
using these calibrated parameter values for the full dynamic solution and analysis of the empir-
ical model.

Calibration for Germany
Epidemiological parameters

We distinguish four population groups based on age and gender. With regard to age, we differ-
entiate between respondents younger than 60 years (young) and those with an age of at least
60 years (old) as this threshold is also commonly used to classify between epidemiological
high- and low-risk groups. In total, we consider the four groups of young men, young women,
old men, and old women.

We use the daily number of new infections and COVID-19 fatalities in Germany reported
by the German government’s central scientific institution in the field of biomedicine [47]. We
calibrate group-specific estimates for the COVID-19 mortality rate, «/. In the baseline calibra-
tion, we assume that the baseline infection rate, f, and the recovery rate, y}’, are identical for all
groups j. This means that differences in infection rates are captured exclusively by differences
in social physical contacts between groups. We assume that no individual dies or recovers
from the disease before it is detected, i.e. we set y}’ﬁ = oc]’f = 0. Appendix contains S1 Table in
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S1 File with the resulting parameter values, as well as details and discussion of the estimation
procedure.

Survey data and calibration of utility parameters

For the key utility parameter required for the calibration—the individual present value of an
infection—we use survey data that we elicited from a representative sample of 3,501 Germans
from March 20 to 27, 2020, and combine this with estimates on discount factors from the liter-
ature. The survey respondents are representative for the German population in terms of gen-
der, age, education, and income. We excluded 112 respondents that answered the survey in
less [more] than 3 [60] minutes due to concerns regarding fast-clicking or inattention as well
as 3 respondents with a diverse gender as this population group would be too small for our
analysis. We pre-registered the survey at the AEA RCT Registry (https://doi.org/10.1257/rct.
5573-1.1) The survey has been approved by the ethics committee of the University of Ham-
burg. Further details on the study are provided in the appendix in S1 File.

In Table 1, we report the main variables of interest for the overall sample as well as for each
population group individually (see also S2 Table in S1 File).

To elicit behavioral responses and to quantify reductions in physical social contacts (c;,), we
asked respondents: “Compared to the same week last year, by what percentage have you reduced
or increased your physical, social contacts this week?”. In the survey, we defined “physical, social
contacts” as situations in which the respondent came closer than two metres to others. We col-
lected responses on a 15-point log-scale ranging from “reduction to zero” to “increasing by
10%” which corresponds to a range of c;,, relative to normal, in the interval [0;1.1]. Converting
the responses to actual values, the mean response corresponds to a frequency of physical social
contacts of ¢;, = 0.25 relative to normal. We observe some heterogeneity between population
groups (see Table 1).

Our survey provides some evidence that respondents behave in an imperfectly altruistic
manner. From another question in the survey, we know that defense measures can only in part
be attributed by pure selfish behavior. Specifically, we asked: “As far as you reduce physical,
social contacts or take protective efforts such as intensive hand washing, in what proportions (in
percentage points that sum up to 100%) do you do this in order to (i) Protect yourself and mem-
bers of your household [x%]; (ii) Protect your family and close friends [y%]; Protect other people
[100-x-y%]”.

We observe that respondents, on average, attach a weight of only 52 percent to protect
themselves when considering private defense measures. Thus, a considerable share of the
reduction in contacts is not attributable to pure selfish behavior, but is due to impure altruistic
motives, relating to the protection of family members and close friends (with a mean weight of
30 percent), as well as to others (18 percent). Although the motivation to contribute to the
public good does not differ across gender, respondents older than 60 years attach a signifi-
cantly higher ‘selfish’ weight on themselves when considering defense efforts. While young
women (men) attach a weight of 49.2 (50.1) percent on impure altruistic motives, this altruistic
weight is only 45.0 (43.7) percent for old women (men).

Besides the intrinsic motivation to engage in defense measures, external factors like govern-
mental regulations could also affect private defense measures and potentially crowd out some
of the intrinsic motivation (see, e.g., [49]).

We test for this by comparing differences in responses for those who participate in the sur-
vey before and after a contact ban for Germany has been announced on Sunday, March 22,
2020. While the announcement took place roughly in the middle of our data collection period,
this leaves approximately half of the respondents unaffected by the contact ban, and at least
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Table 1. Descriptive statistics of relevant survey responses.

All Population Group
Young men (j=1) Young women (j = 2) Old men (j = 3) Old women (j = 4)
Change in contacts 4.81 5.31 o 4.35 o 5.16 ** 4.51 *
(15-point Likert scale) (3.48) (3.48) (3.41) (3.35) (3.61)
Reason for defense efforts (in %)
To protect me 51.96 49.89 o 50.76 * 56.31 e 55.00 e
(21.75) (22.26) (20.74) (21.83) (22.14)
To protect family & friends 30.03 29.94 31.14 * 28.87 28.58 *
(15.90) (16.33) (15.36) (16.53) (15.37)
To protect others 18.01 20.18 e 18.10 14.82 e 16.43 *
(14.37) (16.24) (13.39) (12.97) (12.92)
Expectations
Expected income change 6.98 6.97 6.44 o 7.85 o 7.45 o
(15-point Likert scale) (2.41) (2.49) (2.50) (1.89) (2.10)
P(get infected) (in %) 38.10 41.29 40.16 32.33 31.78
(22.40) (23.33) (23.15) (19.27) (18.74)
P(get slightly ill) (in %) 50.65 54.00 53.42 44.76 4234
(21.71) (21.75) (21.57) (20.10) (20.26)
P(get in acute danger) (in %) 34.65 31.74 ek 30.48 o 42.52 o 43.27 ek
(20.88) (19.62) (18.92) (21.58) (22.73)
Contacts wrt. regulation (in %)
Less than required 0.07 0.10 o 0.06 0.07 0.03 o
(0.26) (0.29) (0.25) (0.25) (0.17)
According to regulations 0.30 0.34 o 0.32 * 0.21 o 0.24 *
(0.46) (0.47) (0.47) (0.41) (0.43)
More than required 0.63 0.57 o 0.62 0.72 o 0.73 o
(0.48) (0.50) (0.49) (0.45) (0.44)
General preferences
Patience 8.11 8.12 8.23 > 8.06 7.81 e
(2.12) (2.08) (2.10) (2.15) (2.22)
Observations 3501 1137 1312 561 491

Notes: The table shows mean values and standard deviations in parentheses. Change in contacts was elicited with a logarithmic Likert scale as described in the main text.
Expected income changes from 2019 to 2020 were elicited using a 15-point Likert scale ranging from 1 (reduction to 10 percent) to 15 (tenfold increase) with a value of 8
representing unchanged income. Patience was elicited using the Likert scale question from [48]. Stars indicate the significance of the mean values for the respective
group to the mean over all groups (t-tests).

*p<0.1,

** p <0.05,

*p <0.01

https://doi.org/10.1371/journal.pone.0248288.t001

some share of the week in question subject to regulation for the other half. We report the
results of this analysis below, which indicates that the contact ban had no discernible effect on
either defense measures or impure-altruistic motives.

As for the momentary utility derived from physical social contacts, we use the functional
form (15). Whereas the utility-maximizing contacts and the corresponding utility level are
independent of the specification of &, the exact value of £ determines the marginal utility of
contacts for cj; < 1. The smaller &, the higher marginal utility, i.e. the more strongly an individ-
ual wants to maintain at least some physical social contacts. In particular, for € > 1, marginal
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utility is bounded for ¢;; — 0, whereas it is infinite for £ < 1 when ¢;, — 0. We specify a value
moderately below one, i.e. £ = 0.7, which implies that a social planner would never choose
complete isolation c;; = 0. The results are robust against alternative specifications of €, except if
£ > 1. For a specification £ > 1, marginal utility of contacts is bounded, and a complete isola-
tion (or lockdown), ¢;; = 0, becomes optimal.

To estimate c;, for the period of the survey, we use reported changes in the number of physi-
cal social contacts in the past week (variable “Change in contacts”, see Table 1). We interpret
these as the optimal number of social contacts, ¢;,, an imperfectly altruistic individual would
choose. We map the original responses, recorded on a 15-point Likert scale ranging from
“reduction to zero” to “increase by 10%” to numerical values, interpolating the non-specified
values. We further use the reasons for defense efforts (variable “To protect me”, see Table 1)
as an estimate for y defined in (14). From this we use the specification (15) in (14) to
estimate the number of contacts a respondent would have chosen for purely selfish reasons as

=01+, (éfn — 1))1/ °. The observations for ¢;, and the estimates for the choice of physical

social contacts under purely selfish behavior ¢, are shown in the appendix (S1 Fig in S1 File).

For 6j0, i.e. the observed imperfect altruistic behavior, the mean is 0.25 and for Cjos 1.€. the esti-
mated purely selfish behaviour, the mean is 0.33. Mean reductions are thus to about a third of
normal and reductions are more pronounced for altruistic behaviour.

Our calibration of the discount factors &; is based on evidence from the literature. As we did
not find evidence for substantial differences in reported patience, we assume identical discount
factors for all groups. For Germany, [50] estimate a median discount rate of 27.5 to 30 percent
from an incentivized elicitation of time preferences. In following our revealed preference
approach, we rely on these best available estimates of individual utility discount rates, but note
that these are orders of magnitudes higher as compared to social utility discount rates as used
by governments or recommended by economic experts [51]. For our main calibration we take
a central estimate from the literature and use a 30 percent annual discount rate, corresponding
to a discount factor of § = 1.37/°% = 0.995 per week. We show below that our results are not
sensitive to substantially different assumptions on time preference rates.

We use the data on individual distancing behavior, as well as the calibrated discount factors
and epidemiological parameters, to estimate, by means of ordinary least squares, the individual
present value of getting infected, V, using (17), derived in section, for the four groups. Results
are reported in S3 Table in S1 File. Generally we observe substantial heterogeneity of values
within population groups, indicated by relatively large standard deviations. Moreover, distri-
butions are skewed, as for most groups the (absolute value) median is much larger (smaller)
than the mean. As theory predicts (see section), the individual damage of an infection should
increase with the COVID-19 mortality risk. Consistent with the pattern of COVID-19 mortal-
ity rates, we find that the individual cost of being infected is larger for old than for young men
and it is larger for old than for young women. The theory also predicts that the individual
damage of an infection increases if u; is small, which is the case especially for risk averse indi-
viduals. We find that the individual dis-utility of an infection is larger for women than for
men, which is consistent with the observation that women are less willing to take health risks
than men.

Results

We present the quantitative results for Germany in three steps. First, we focus on the utilitarian
optimum. Here, we compute socially optimal epidemiological dynamics starting at the initial
infection rates mid March 2020, i.e. at the time of our survey, and then vary initial infection
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rates to study how socially optimal frequency of physical social contacts depends on the num-
ber of infected. Second, we compare these results to equilibrium dynamics with private self-
protection by purely selfish individuals. Third, we focus on the social distancing behavior of
imperfectly altruistic individuals.

We set the time horizon to T = 72 weeks. In line with our focus on the first wave of the pan-
demic in Germany, we also focus our presentation of results on weeks 0 to 20, i.e. March to
August 2020.

We implement our dynamic optimization model, and the solution of equilibrium dynamics,
in the state-of-the art nonlinear programming solver Knitro (version 11.0) with AMPL [52,
53], commonly used in other fields of economics [54, 55]. In all numerical computations we
found a unique Nash equilibrium. Details on the solution method and programming codes are
provided in the Appendix in S1 File and downloadable in the online supporting information.

Utilitarian optimum

Fig 1 shows the socially optimal epidemiological dynamics, starting at the initial infection rates
in Germany in mid March 2020, and the corresponding social distancing policy. Infection
numbers follow a U-shaped pattern. It is optimal to drastically reduce infection numbers at the
beginning, so that the disease is close to eradicated, with less than one infected per 100, 000
individuals (cf. Fig 1, left-hand panel. When considering the numbers of infected, it should be
kept in mind that during the time when our data was collected, testing was still not quite as
common as by the end of 2020.) Infection numbers are then optimally kept well below one
infected per 100, 000 individuals. To attain this optimal trajectory, contacts are drastically
reduced initially compared to pre-pandemic numbers, and during the quasi-steady state they
are kept stable at about 33 percent of normal (see Fig 1, right-hand panel). These numbers

of physical social contacts correspond to a basic reproduction rate of one, R, = 1, i.e. one
infected, on average, infects another individual. Differences in the number of contacts across
groups are negligibly small.
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Fig 1. Dynamic optimization results for the first wave of COVID in Germany (starting March 2020). The left-hand panel
shows the prevalence of infections for the four differnt groups and the total number of infections per 100,000 individuals.
Parameter values as specified in the main text.

https://doi.org/10.1371/journal.pone.0248288.9001
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Fig 2. Optimal social distancing policy (left-hand panel) and social cost relative to private cost of infection, 7\;‘ / Vj", (right-
hand panel) as a function of current infected for the four different groups. Parameter values as specified in the main text.

https://doi.org/10.1371/journal.pone.0248288.9002

A question of particular interest is, how the socially optimal distancing policy depends on
the initial number of infected. The left-hand panel of Fig 2 shows that the optimal social dis-
tancing policy is a decreasing, convex function of current infection numbers. Already at one
infected per 100, 000 individuals it is optimal to reduce physical social contacts to about 10
percent of the pre-pandemic level. At 10 infected per 100, 000 individuals contacts are reduced
to about one percent and at around 100 infected per 100, 000 individuals a nearly complete
lockdown is optimal. Differences in contact reduction between population groups are negligi-
bly small relative to the contact reductions over the pre-pandemic level, with the first order
effect being the response to infection numbers.

., are particularly high at low infection numbers

Social costs relative to private costs, X;t /v,
(cf. Fig 2, right-hand panel). At one infected per 100, 000 individuals the social costs is about
five times higher than the private costs. The ratio of social relative to the private costs is
decreasing with current infection numbers, reflecting that the individual risk of an infection
increases relative to the external effect. This shows that the higher the private risk, the more
would risk-averse, rational individuals contribute to the public good of preventing the epi-
demic from spreading. To study this in more detail, we next compare equilibrium dynamics

with purely selfish individuals to the utilitarian optimum.

Equilibrium dynamics with selfish individuals versus utilitarian optimum

Fig 3 compares the epidemiological dynamics (infected per 100, 000 individuals, top left-
hand panel) and contacts (as percent of normal) for (a) the open-loop Nash equilibrium of
purely selfish individuals and (b) the utilitarian optimum, i.e. the same as shown in Fig 1. In
Nash equilibrium, the reduction in contacts is initially much smaller than optimal. Also in
Nash equilibrium a quasi-steady state is reached, and contacts are reduced to the level that
keeps the basic reproduction rate of the epidemic at one, about a third of normal. This sug-
gests that the selfish interest of rational, risk averse individuals to protect themselves from
the disease may be sufficient to contain the virus. However, infection numbers that induce
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Fig 3. Epidemiological dynamics and individually optimal physical social contacts in Nash equilibrium of purely selfish individuals
and under optimal social distancing policy (optimal dynamics as shown in Fig 1). The graphs on the top show the number of
infections (top left-hand panel), the number of physical social contacts (top right-hand panel). The shaded areas display the respective
spreads over the four groups of individuals. The graphs on the bottom show total prevalence of infections and the fatalities (bottom left-
hand panel) and the current welfare (bottom right-hand panel). Parameter values as specified in the main text.

https://doi.org/10.1371/journal.pone.0248288.9003

selfish individuals to self-protect to an extent that prevents the pandemic from spreading is
about two orders of magnitude higher than in the social optimum. As a result, the number of
people who die from COVID-19 in the Nash equilibrium is multiple times higher than in the
optimum (Fig 3, bottom panel). Regarding differences across groups (Fig 3, top right-hand
panel), in Nash equilibrium, young men have most contacts, followed by old men, following
the individual valuation of an infection, as shown by our theoretical results. The effect that
more individuals who are more severely affected by the disease impose less risks on others,
which according to our theory plays the more important role in the social optimum, is irrele-
vant for equilibrium dynamics.
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The bottom right-hand panel in Fig 3 shows the current welfare in Nash equilibrium with
selfish individuals and the Utilitarian optimum. Welfare, normalized to one in the absence of a
pandemic, is much smaller with the pandemic in place. This holds especially at the beginning
of the pandemic when, in addition to the expected costs of an infection, the utility from physi-
cal social contacts is substantially reduced. As this effect is much more pronounced in the Util-
itarian optimum, there is an initial phase where welfare is smaller in the Utilitarian optimum
than in the Nash equilibrium with selfish individuals. This phase is an investment in future
welfare gain through significantly reduced risk of an infection. In present value over the
20-weeks time horizon considered, welfare is significantly higher in the Utilitarian optimum
(about 11.5) than in the Nash equilibrium (about 5.5), with a present value of 19.0 without the
pandemic. The difference in the present values of welfare in the Utilitarian Optimum and in
the Nash equilibrium—the latter being 52% of the welfare in the Utilitarian Optimum—can be
viewed as a measure of the welfare loss from non-cooperative activities in the Nash equilib-
rium. It quantifies the social efficiency deficit for the first wave of the pandemic in Germany
[56-58].

Social distancing behavior of imperfectly altruistic individuals versus
selfish individuals versus utilitarian optimum

Table 2 compares the contact reductions at the beginning of the pandemic for three scenarios:
The Nash equilibrium with purely selfish individuals, the Nash equilibrium with imperfectly
altruistic individuals, and the utilitarian optimum. Selfish individuals would reduce their con-
tacts already to between 29 percent (young women) and 40 percent (young men) of pre-pan-
demic levels. Altruistic behaviour, as observed in the survey, leads to even stronger contact
reductions ranging from 21 percent (young women) to 29 percent (young men). This closes
the gap between contact reductions in the social optimum and the purely selfish Nash equilib-
rium by around 30 percent.

Fig 4 (left-hand panel) compares the number of contacts for varying numbers of infected
per 100, 000 individuals for the same three scenarios. The comparison shows that the differ-
ence between equilibrium and optimal distancing becomes small in absolute numbers if the
number of infected gets large, as the substantial individual risk of infections is then sufficient
to spur private contributions to the public good by risk-averse individuals. The difference
between the frequency of contacts between the equilibrium, both with selfish and with imper-
fectly altruistic individuals, increases considerably as the number of infected decreases. In
other words, policy intervention is particularly necessary when there are few infected individu-
als, whereas rational individuals will sufficiently self-protect and voluntarily contribute to the
public good if the number of infected individuals is already large.

Table 2. Number of physical social contacts (all in % of normal) in the different scenarios (for initial conditions as in Fig 1; mid March in Germany) and degree of
altruism (in %).

Young men (1) Young women (2) Old men (3) Old women (4)

Physical social contacts

utilitarian optimum [ 2.59 222 5.22 3.51
selfish laissez-faire cjo 40.00 29.27 36.82 30.70
altruistic (observed) o 29.17 20.73 27.30 22.77
altruistic contribution ) 28.95 31.57 30.31 29.17

G5
degree of altruism ®j 7.80 9.34 11.78 10.23

https://doi.org/10.1371/journal.pone.0248288.t1002
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https://doi.org/10.1371/journal.pone.0248288.9004

Fig 4 (right-hand panel) shows the loss in present value of welfare due to the pandemic as a
function of the initial number of infected. The relationship is close to linear: An increase in the
number of infected leads to a proportional extra welfare loss. The welfare difference between
the Utilitarian optimum and the Nash equilibria with purely selfish or imperfectly altruistic
individuals, respectively, (i.e., the social efficiency deficit in the terminology of [56-58]) is
approximately constant, and insensitive to the initial number of infected. The increased reduc-
tion in the physical social contacts by altruistic compared to selfish individuals is reflected in a
reduction of the social efficiency deficit: imperfect altruism closes about a third of the welfare
gap between the Nash equilibrium with selfish individuals, on the one hand, and the Utilitarian
optimum, on the other.

Robustness checks and potential extensions

We have performed multiple further numerical studies to test the sensitivity of the results to
key parameters, examine whether the contact ban has altered the voluntary reductions in con-
tacts, and discuss how results might change with possible model extensions.

Sensitivity analysis

The sensitivity analysis regarding epidemiological and preference parameters on the optimal
dynamics in terms of the number of physical social contacts. Results are largely robust against
all these alternative specifications. There is some sensitivity with respect to the parameters that
determine the period of being infected without knowing, state i. If we assume that an infection
is detected already after four days instead of five as in our baseline calibration, we get 0 =
0.826. The result is that the quasi-steady state is reached more quickly and that slightly higher
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contact rates are admitted during the quasi-steady state. The reason is that at any point in time
there are less infectious people in the population the more quickly infections are detected.

If we assume that infections are detected more quickly for old women and men than for
young women and men (on average four days for old and six days for young individuals),
which may be the case as old individuals more frequently develop symptoms, there is a mod-
erate differentiation in contacts in the quasi steady state for the different groups. As our the-
ory predicts, the old men and old women who are quarantined more quickly are allowed
more social contacts than the young for whom it takes longer until they are quarantined.
The difference is small compared to the overall reduction of contacts relative to normal,
however.

As for the preference parameters, our baseline calibration assumes a weekly utility discount
rate of 0.5 percent, corresponding to an annual discount rate of around 30 percent. The results
are very robust against alternative specifications of the discount rate. Even for a very high dis-
count rate of 5 percent per week, the general pattern of optimal dynamics remain similar,
except that the quasi-steady state is approached more quickly. Also in the other extreme, if we
set the discount rate to zero, results remain robust. We also compute optimal dynamics when
individual expected present values of an infection would be at the median instead of mean val-
ues reported in S3 Table in S1 File, and if we re-calibrate these values assuming £ = 0.5 in the
utility function (17), instead of € = 0.7, as in the baseline calibration. The optimal policy is also
robust against these alternative specifications of preference parameters.

Finally, we re-calibrate the model considering only a sub-sample of survey respondents. We
turn to this in the next subsection.

Effects of the contact ban and other distancing policies

During our data collection, the German government announced a nation-wide contact ban on
March 22, 2020. This regulation did not allow meeting more than one other person at a time,
except for members of the same household, but it did not constrain the total number of daily
meetings. This regulation could have affected both the reduction in contacts and the motiva-
tion to engage in defense efforts. Table shows the result of the statistical test if there is a differ-
ence in the responses collected before and after the introduction of the contact ban. We do not
find evidence that the contact ban affected the weights attached to the different reasons for
individual protection efforts. Thus, we do not find any evidence for a crowding out of intrinsic
motivation. With regard to the reported change of contacts during the past week, we observe a
negative impact: after the contact ban, survey respondents tend to report stronger protection
efforts, on average 0.442 points less on the 15-point Likert scale. However, we do not see a
clear shift after the contact ban. To the contrary, we observe a continuous downward trend in
contacts, as Fig 5 shows.

To study if our main results are affected by the different in social distancing behavior by
early and late participants in the survey, we re-calibrate the model using data for the period
March 20 to 22 only, ignoring all responses after the contact ban has been in force. This results
in mean individual expected present values of an infection of Vi, = —5, 435 for young men,
V,, = —7,475 for young women, V}, = —6, 208 for old men and V), = —8,573 for old
women. The main effect is that the difference in mean values for men and women become
more pronounced. Whereas the values for V}, for men in the early-respondent subsample are

larger (smaller in absolute value) than for the whole sample, the values are smaller (larger in
absolute values) for women. Overall the values are similar for both subsamples, however.
Accordingly, the socially optimal frequency of physical social contacts is very similar for the
re-calibrated model and for the baseline calibration using the full sample.
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Fig 5. The graph shows the mean reduction in contacts, measured in percentage reduction from the same week of

last year, grouped by day and daytime (before and after 12pm). The shaded area indicates deviations by two
standard errors, and the red line the announcement of the contact ban in the evening of March 22, 2020.

https://doi.org/10.1371/journal.pone.0248288.9005

More generally, we consider the ‘selfish’ part of the individual reduction in the frequency of
physical social distancing as the voluntary and unconstrained choice of the individual respon-
dent, resulting in frequencies of contacts between 29.27 and 40.00 percent of normal (cf.

Table 2). Our analysis has consistently shown that also in the Nash equilibrium with purely
selfish individuals, eventually the epidemic will enter a quasi-steady state where individuals
choose contacts ¢, such that their group-specific basic reproduction number would be equal to
unity, Ry, = B, ¢;./ (o +7; +0,) = 1.

We now turn to the question how robust this result is and in particular to what extent it
would be changed if the voluntary part of social distancing would be less (or more) than
according to our estimates. A key parameter that we calibrate based on data on the observed
physical social contacts (cjp) and prevalence of infections (o) is the expected present value of
an infection for an individual of type i, Vj,. We are interested in the question which other com-

binations of input data ¢; and I would yield the same estimate for V- We use equation (17)

that determines the individual expected present value of an infection and compute the combi-
nation of ¢; and I from the condition:

(1-6)Vi=¢, (' =1~ I—¢ - (@' —1) 5 (18)

1-g
By rearranging the second and third part of (18), we obtain from this the share of infected indi-
viduals I as a function of ¢; in quasi-steady state in the Nash equilibrium

(19)
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measured as infected per 100,000 individuals) give rise to the same calibration of the individual costs of an
infection as the actual data we used (shown as vertical lines). We conclude that a broad range of plausible input data
leads to a similar calibration.

https://doi.org/10.1371/journal.pone.0248288.9006

Using the epidemiological data reported in S1 Table in S1 File, and the calibrated preference
parameters ; and &, we obtain the results shown in Fig 6.

This analysis shows that the calibration is robust over a wide range of alternative input data
on the prevalence of infections and physical social contacts at the start of the pandemic. This is
particularly true for prevalence rates between 10 and several hundred infected per 100,000
individuals, and for reductions in physical social contacts between 10% and 60%.

Measuring physical distancing using cell-phone data

We finally compare the results of our calibrated model with movements from cell phone data.
We use data from [59], which provides information on the number of cell phone movements
at the county level in Germany (see [60] for an in-depth analysis). These movements capture
switches in cell phone tower areas for users of the mobile phone providers Telekom and Tele-
fonica, who account for a combined market share of around two-thirds [61]. In contrast to
other studies that use mobility data from SafeGraph [12], Baidu [62], Apple [28], or Google,
there are two major distinctions to highlight. First, the data we use are retrieved from mobile
phone providers. Hence, they capture movements of cell phone users regardless of their
installed apps, operating systems, or devices. Similarly, datasets on mobility patterns, as pro-
vided by Apple, Google, and Baidu, rely on the users of their navigation applications. Second,
these cell phone movements reflect the number of trips instead of the number of devices at a
specific location, like Point of Interest, or the time spend at home as provided by SafeGraph.
While the latter is especially relevant for a US-style shelter-in-place policy, the German govern-
ment introduced a contact ban but did not impose a nationwide curfew. Hence, the actual
number of trips is the appropriate data to use for the case of Germany.

PLOS ONE | https://doi.org/10.1371/journal.pone.0248288 March 19, 2021 22/29


https://doi.org/10.1371/journal.pone.0248288.g006
https://doi.org/10.1371/journal.pone.0248288

PLOS ONE

The social cost of contacts: Theory and evidence for the first wave of the COVID-19 pandemic in Germany

Reduction in cell phone movements over

Reduction in cell phone movements as

time function of prevalence
-1
20 5 Iospe
04427
O‘¥@5‘04 /““\\\
E E \ [\
Q 0 § —20 | oo ) 04420
g g | [\ [oales \
£ 2 \ 8 M0
g g | [oa%s |/ 0451 |
| 0l/24 \
i s \ \
2 20 2 25 051\0:/;/ 04-/:5 \ 04412
o Q \if \
< = \/ 401916 04106
—i — / [\
o} i} 044174 ol
g —40 g —30 T@of%%g@ [\
04-18 =11 |
2 = 04 70’2& 7
g g 0405
e e
S —60 S 35 0402 /
03+ 3 /
3 3 —
e
—80 —40

9 10 11 12 13 14

30 35 40 45 50 55 60 65 70 75 80

week of the year 2020 infected per 100,000 individuals

Fig 7. Reduction in cell phone movements in Germany during the COVID-19 spread the graphs show reduction in cell phone
movements over a week(day) in Germany in 2020 relative to the average corresponding week(day) in 2019, excluding public
holidays, aggregated to the county level (left-hand panel), and over the fraction of infected, starting on March 30, 2020 (week
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contact ban announcement. Data is based on [59], using provider data from Telekom and Telefonica. A cell phone movement
indicates a switch in cell phone tower areas after a person becomes stationary again.

https://doi.org/10.1371/journal.pone.0248288.9007

Fig 7 (left-hand panel) shows cell phone movements in 2020 relative to the corresponding
weekday in March 2019 over time. We observe are sharp reduction in cell phone movements
of 40 to 50 percent starting from the beginning of March, but no clear reduction following the
contact ban. During April, however, there is a steady convergence back to previous levels such
that there are 20 percent fewer cell phone movements at the beginning of May. The right-hand
panel in Fig 7 shows the same data, for the period March 30 to May 6, 2020, plotted over the
estimated number of COVID-19 infections. Consistent with the model, cf. (8), there is a nega-
tive correlation between the reduction of cell phone movements, as a proxy for the reduction
in the number of physical social contacts, and the number of infected individual.

Discussion of potential extensions

As any model analysis, ours abstracts from a number of potentially interesting issues. In the
following, we discuss potential extensions and the likely effects on results, based on the
literature.

We do not consider limits to the health care system and thus a ‘health care externality’ in
addition to the infection externality (see, e.g., [12, 15]), as it does not seem to be of practical
relevance for our German case study. Yet, in principle, the model could be readily extended
along these lines by making transition rates 7/, and o/ dependent on I,. This would likely have
the effect that the social cost of an elderly infection will rise, due to longer stay in hospitals. For
instance, Farboodi et al. [12] find that considering in addition to the infection externality also
a health care externality, i.e. that the quality of health care decreases as more individuals get
infected due to capacity constraints and congestion of the health care system, leads to an even
stronger ‘flattening of the curve’ in the social optimum.
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Second, we did not consider issues of detecting infectious individuals and optimal testing.
In the framework of our model this would mean to endogenize the rates 6; at which infections
are detected. Such a model could be used to study optimal population group-specific testing in
a situation where testing is costly with increasing marginal costs. For instance, Brotherhood
etal. [21] augment the SIR model to include an additional health state at which individuals
show symptoms, but uncertainty about whether they have COVID-19 or a common flu only
resolves after some time. Acemoglu et al. [63] model a situation where testing allows for a
faster isolation of infectious individuals, but also increases contacts and thus can result in
more infected.

Third, the model used here can facilitate any number of population groups and our empiri-
cal analysis can be extended accordingly. For instance one could consider age classes of
10-years, distinguish by income or pre-existing illnesses. We have limited our analysis to four
population groups (distinguished by age and gender) that show significant differences in their
contact reductions and in other key characteristics in our German data for expositional pur-
poses. As the virological literature on more fine-grained differences across population groups
is in flux, such extensions would be worthwhile retrospectively when sufficient clarity has been
achieved.

Fourth, our models leaves aside a number of uncertainties about the evolution and the
effect of COVID-19 that should be considered in follow-up work, such as when an effective
vaccine becomes available, how long immunization holds for previously infected individu-
als, or virus mutations that change epidemiological parameters such as infectiousness and
mortality.

Finally, we have taken a Utilitarian welfare function as the social objective, thereby fol-
lowing an approach common in both economics and moral philosophy. However, it would
be interesting to compare this to alternative objectives, such as Prioritarianism [64], or
approaches that specifically value individual freedom of movement or choice of contacts,
for instance.

Conclusion

Extending the epidemiological SIR model we have developed an economic-epidemiological
model with forward-looking heterogeneous individuals susceptible to virus infection. Imper-
fectly altruistic subjects choose their number of contacts balancing current utility from physi-
cal social contacts with the expected present value of the infection risk. We have characterized
private behavior of individuals susceptible to a virus infection, and socially optimal distancing.
We have quantified the model with unique data on social distancing behavior and impure
altruistic motivations from a large, representative survey among around 3,500 Germans con-
ducted at the beginning of the COVID-19 pandemic, and we have calibrated our model to
official epidemiological data for the first wave of the pandemic in spring and summer 2020 in
Germany.

We find that the optimal policy would have reduced contacts drastically at the beginning of
the pandemic to virtually eradicate the virus and to stabilize the spread at a quasi-steady state
until a vaccine becomes tangible. Moreover, we find a substantial gap between private and
social costs of contacts. The social costs of an infection are around twice as high as the private
costs at the selfish Nash equilibrium, and more than five times higher at the socially-optimal
level of infected. Pure selfish behavior does not lead to such a drastic initial reduction in con-
tacts, but also reaches a quasi-steady state at infection levels of around 10 infected per 100,000
individuals. This is very moderate compared to a potential peak without behavioral adjust-
ments, but far higher than in the social optimum. Moreover, the impure altruistic behavior of
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our respondents closes around one third of the gap between the selfish ‘laissez-faire” and
socially optimal contact reductions. Altruism also increases welfare compared to the selfish
‘laissez-faire’, but a gap still remains as selfish motives still play a more important role than
altruism.

This adds new evidence to a long-standing literature by pointing towards an important role
of impure altruism for the private provision of a public good—in an environment where both
the externality and the number of people benefiting from a reduction in externality are very
large [38-41, 65]. Overall, we find that although there is a considerable gap between the private
and social costs of contacts, private measures for self-protection and the protection of others
can contribute significantly to mitigating the problem of social costs. Our study thus also con-
tributes with a high-stakes case study to the literature on the private provision of a public good
under uncertainty [2, 34-37].

Of course, our study is subject to a number of limitations. First, our contact reduction sur-
vey responses are based on reported rather than observed behavior. However, the comparison
with contacts based on mobile phone data showed that both approaches to observing social
distancing behavior were broadly consistent. In addition, reported contact reductions may
mitigate the effects of milder regulations prior to the contact ban through reduced contact
opportunities, such as the cancellation of major events. Our survey data show that the majority
of respondents in all groups reduce contacts more than necessary. So while it seems difficult to
disentangle voluntary action from regulatory responses, our interpretation of the selfish Nash
equilibrium may be too optimistic about what private action can do to help contain the pan-
demic. However, our analysis shows that our results are qualitatively robust to significant mis-
interpretations of this kind.

Secondly, we have not explicitly studied income losses due to social distancing during the
pandemic. Rather, we assumed that individuals would include their contact-related income
losses in their internal decisions for contact reduction, since our survey question did not dis-
tinguish between work-related or leisure-related contacts. Future work should include the util-
ity depending on health status, (social) contacts and income from work contacts and examine
to what extent the production depends on contacts and to what extent work can be carried out
remotely [66, 67].

Finally, we have assumed that the marginal utility of physical social contacts is decreasing,
implying that some types of contacts are more important than others. However, while individ-
uals have a priority order of contacts and would choose their contracts differently from those
prescribed by governments, contact bans have an additional loss of value compared to volun-
tary choice. Because our data does not unravel the different types of contacts, we cannot rec-
ommend what types of contacts should be prohibited or allowed, nor can we discuss possible
“social contact budget” mechanisms, such as individually transferable quotas for contacts or
liability rules.

One aim of this paper was to study what would have been the dynamic of the pandemic
during the first wave in Germany under the assumption of purely selfish or imperfectly altruis-
tic behavior. In the context of the COVID-19 pandemic, our results imply that the “flattening
of the curve” observed in several Western societies, particularly in Germany, could be
explained as a result of the Nash equilibrium outcome where imperfectly altruistic, risk-averse
individuals choose distancing to protect themselves and others from an infection. While our
data is for the German population, the model is generally applicable to all contexts where vol-
untary behavior during a pandemic plays a major role. This includes the United States where
prevalence rates have been much higher than in Germany. Our model suggests that differences
in individual risk preferences may (at least in part) explain differences in voluntary individual
social distancing and thus differences in prevalence. Indeed, empirical evidence suggests that
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US Americans have a higher willingness to take risks than Germans [48], which provides an
explanation why they also take higher individual health risks and thus contribute less to the
protection of others as well.

While we can attribute most of the contact reductions observed in Germany to voluntary
behaviour—in line with the evidence for COVID-19, for example by [49] and for A/HIN1
swine flu by [68]—the substantial gap between the prevalence of the disease in the Nash equi-
librium and the social optimum clearly shows that government intervention remains neces-
sary. In addition to strict contact regulations, public actors can play important roles informing
about the risks, appealing to social norms [69], and making the infection risks salient.
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