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Abstract

To function during social interactions, we must be able to consider and coordinate our

actions with other people’s perspectives. This process unfolds from decision-making, to

anticipation of that decision’s consequences, to feedback about those consequences, in

what can be described as a “cascade” of three phases. The iterated Prisoner’s Dilemma

(iPD) task, an economic-exchange game used to illustrate how people achieve stable coop-

eration over repeated interactions, provides a framework for examining this “social decision

cascade”. In the present study, we examined neural activity associated with the three

phases of the cascade, which can be isolated during iPD game rounds. While undergoing

functional magnetic resonance imaging (fMRI), 31 adult participants made a) decisions

about whether to cooperate with a co-player for a monetary reward, b) anticipated the co-

player’s decision, and then c) learned the co-player’s decision. Across all three phases, par-

ticipants recruited the temporoparietal junction (TPJ) and the dorsomedial prefrontal cortex

(dmPFC), regions implicated in numerous facets of social reasoning such as perspective-

taking and the judgement of intentions. Additionally, a common distributed neural network

underlies both decision-making and feedback appraisal; however, differences were identi-

fied in the magnitude of recruitment between both phases. Furthermore, there was limited

evidence that anticipation following the decision to defect evoked a neural signature that is

distinct from the signature of anticipation following the decision to cooperate. This study is

the first to delineate the neural substrates of the entire social decision cascade in the context

of the iPD game.

Introduction

Many of the consequential decisions people make in their day-to-day lives occur within social

contexts. Social decision-making involves interdependency and mutual commitment; individ-

uals must consider not only how possible outcomes will affect them, but also how those
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outcomes will affect other people with similar or conflicting needs and desires [1]. Functional

magnetic resonance imaging (fMRI) studies that have modelled social interaction using the

Prisoner’s Dilemma (PD) paradigm have typically targeted neural activity during isolated

snapshots of the process of either making a decision or receiving feedback about one’s decision

[2–6]. The unfolding of the interaction from decision-making, to the anticipation of outcome,

to receiving feedback on one’s decision constitutes a “cascade” of events that may be better

understood as a dynamic, cyclical flow of interdependent social phenomena. The purpose of

the present paper is to provide an integrated picture of the neural mechanisms of the entire

“social decision cascade”. Of note, we include the anticipatory process that occurs between

decision-making and processing of outcome feedback, which has received minimal attention

in the literature.

The PD task is an economic-exchange game that elicits distinct, quantifiable patterns of

interaction (e.g., displays of pro-social, submissive, hostile or competitive behavior) in a struc-

tured context that models reciprocal altruism and strategic conflict [6, 7]. In this task, an indi-

vidual and a social partner engage in a series of bilateral exchanges that can yield rewards or

punishments, depending on the choices that each individual makes. Each exchange in the task

constitutes a round that unfolds as a series of three phases. First, the participant makes a

dichotomous decision (to cooperate with or defect from the other player), then the participant

waits in anticipation of the outcome (whether the co-player chooses to cooperate or defect),

and finally, the co-player’s response is revealed and the participant receives feedback regarding

the monetary reward that results from the conjunction of the two players’ decisions.

The principles underlying the application of economic-exchange tasks to the study of social

behavior stem from game theory, which describes how people navigate strategic interactions

and bargaining scenarios while aiming to optimize or maximize their interests by selecting

options that provide the greatest personal utility [8, 9]. However, the current literature indi-

cates that game theory and rational decision-making models cannot completely account for all

of human behavior when social norms, preferences, and situational context are taken into con-

sideration [10, 11]. We hope that by delineating neural mechanisms of decision-making in this

reciprocal exchange-based task we can help to further refine theoretical models that illustrate

how humans adapt their behavior within diverse social contexts.

To date, at least 42 fMRI studies have used the PD task to characterize the neural correlates

of social behavior during individual social decision-making phases (e.g., decision or feedback)

in samples drawn from diverse populations. Of these 39 studies, 34 used the iterated format

(iPD), which allows for repeated interaction with a co-player; the remaining eight used the

one-shot format, in which a participant engages in only one round with different co-players.

Of the 33 iPD studies that we located, only seven targeted healthy populations and developed

hypotheses solely focused on the neural substrates of PD behavior and gameplay in healthy

populations. The remainder focused on clinical populations or groups subjected to external

environmental constraints such as the endorsement of social preference, priming about the

reputation of co-players, and the administration of exogenous chemical substances (e.g., oxy-

tocin or vasopressin). Therefore, we will direct our attention to these seven studies for neurobi-

ological evidence of distinctive PD gameplay.

Four of these studies investigated the neural basis of social cooperation with human co-

players [2, 3, 11, 12]. Findings from the earliest of these studies indicated that decision-making

in the iPD game was associated with activity in the rostral anterior cingulate (rACC) and the

caudate [2]. This study and two subsequent studies also found activity in two additional net-

works when participants received feedback about their co-player’s decision [2, 3, 12]. Co-

player cooperation was positively correlated with activity in the orbitofrontal cortex, the

rACC, and the ventral striatum [2, 12], both of which have been shown to respond during
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subjective valuation [13, 14]. In contrast, co-player defection was positively correlated with

activity in the amygdala, anterior insula, ACC, and hippocampus [3, 12], a set of structures

implicated in fear-based associative learning [15, 16].

The last study examined neural activity averaged across the entire iPD task rather than dur-

ing isolated phases of decision-making [11], and focused on whether BOLD signals varied as a

function of the co-player’s ostensible playing style. Gameplay with “cooperative” partners pref-

erentially evoked activity in the valuation network. In contrast, gameplay against “competitive”

partners (those with a greater tendency to defect) evoked activity in the temporoparietal junc-

tion (TPJ) and the precuneus, brain regions implicated in understanding others mental states

and self-referential processing respectively [17, 18].

Given the increasing breadth of the iPD/neuroimaging literature, it is surprising that, to

date, no study has analyzed brain function during anticipation of the outcome following deci-

sion-making in the iPD. Such analyses seem important, given evidence that prior expectations

about the consequences of a decision can influence how an interaction progresses [19, 20].

Moreover, research examining gain or loss in monetary and social reward situations has

yielded evidence of a possible anticipatory processing network that comprises the dorsomedial

prefrontal cortex (dmPFC), the anterior mid cingulate [21], the anterior insula [22] and the

striatum [23].

We defined anticipation in the context of this study, as the period of time between a deci-

sion and an incentivized outcome. This period of time, during which a person presumably

generates expectations about the outcome, has been linked in cued response studies to “antici-

patory affect”, which can encompass a broad spectrum of emotions [24]. Cued response stud-

ies allow for the examination of anticipation as an independent construct that is dissociated

from, but still coupled with the decision-making process [25–27]. Cued response paradigms

contrast with paradigms such as the mixed gamble task, in which anticipation and decision-

making are modelled as a nondissociable combined unit [28–32].

The purpose of the current study was to characterize neural correlates of cognition and

behavior during the decision-making, anticipation, and feedback phases of the iPD game in a

healthy sample. We localized markers of neural activity in each phase and compared activity

between phases. We predicted, based on previous findings that a network including the

dmPFC, caudate, aMCC, and TPJ would activate preferentially during the decision-making

phase of the task. Furthermore, a network spanning the vmPFC/OFC, rostral ACC/aMCC,

TPJ, ventral striatum, anterior insula, amygdala and hippocampus would be significantly acti-

vated during processing of feedback. Although predictions about anticipation were necessarily

more speculative due to the sparse literature on this topic, we predicted that the dmPFC, ros-

tral ACC, the anterior insula and the striatum would show significant activation during the

anticipation phase of the task.

Methods

Participants

The data for this study were drawn from two independent datasets. One set was collected at

the Georgia State University/Georgia Tech Center for Advanced Brain Imaging (CABI) in

2016 and one was collected at the Emory University Biomedical Imaging Technology Center

(BITC) in 2008. Both datasets were collected using identical behavioral paradigms and subject

recruitment procedures.

The Georgia State University and Emory University Institutional Review Board (IRB)

reviewed and approved the above referenced study in accordance with 45 CFR 46.111. The

IRB has reviewed and approved the study and any informed consent forms, recruitment
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materials, and other research materials that are marked as approved in the application. Written

informed consent was obtained for this study.

For the 2008 dataset, 19 subjects were scanned; however, usable data from only 14 subjects

were available. Data for the remaining five subjects had been corrupted during storage and

could not be recovered. Subjects were recruited from the GSU undergraduate psychology stu-

dent pool via the SONA online questionnaire system. Participants were scanned at the Emory

University BITC. For the 2016 dataset, 20 subjects were recruited using the methods from the

2008 study. All 20 were scanned at the CABI; however, data from only 17 subjects were usable

(two subjects exited the study prematurely due to elevated anxiety and one subject failed to

remain engaged with the task for substantial periods of scan time). In total, we had complete

and usable data from 26 females and 5 males, with a mean age of 20.6 years (SD = 3.5 years; see

Table 1 for detailed demographic comparisons of the datasets).

Experimental design

The experimental procedure was identical for the two datasets. Following consent, an exam-

iner informed participants that they would play a 20-round game three times with different

study participants via a wireless computer network. Confederates completed consent and

training procedures with the actual participant, whom the examiner then selected from the

group (apparently at random) to play the game in the scanner, while the others ostensibly

played the game in separate rooms. During each of the three games that constituted a session,

two players (the participant and a computerized co-player that the participant was deceived

into believing was a real human) independently chose, during each of the 20 rounds, to coop-

erate with or not cooperate with each other. After both players submitted their choices, the

outcome of the round appeared on the screen, along with a running total of each player’s

cumulative earnings for a game. Periodically during and after the game, participants were

asked (via the computer screen) about their perceptions of and predictions about their co-play-

er’s intentions and goals, as well as about their own emotional responses during play and their

levels of confidence in their predictions; these self-report data are not included in the present

manuscript. A task overview, as well as timing information during scanning, is presented in

S1 Fig.

At the end of the study session, in accordance with guidelines for ethically appropriate

authorized deception [33], the examiner debriefed participants about the deception

involved in the task and the motivation for its use. No participants expressed concerns.

All subjects reported being deceived and thus their data were included in subsequent analyses

(see S1 File).

Table 1. Demographic data for participants from the CABI and Emory sites.

CABI Emory

All (N = 17) Female (N = 15) Male (N = 2) All (N = 14) Female (N = 11) Male (N = 3)

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Age 20.4 (2.5) 19.8 (1.5) 25.0 (4.2) 20.6 (4.6) 20.6 (4.9) 20.7 (3.8)

N (%) N (%) N (%) N (%) N (%) N (%)

Ethnicity

White 7 (41) 3 (20) 1 (50) 7 (29) 6 (55) 1 (33.3)

African-American 4 (29) 6 (40) 0 (0) 5 (43) 4 (36) 1 (33.3)

Hispanic 1 (.06) 2 (13) 0 (0) 1 (14) 1 (9) 0 (0)

Asian-American 4 (24) 4 (27) 1 (50) 1 (14) 0 (0) 1 (33.3)

https://doi.org/10.1371/journal.pone.0248006.t001
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Task design

In each 20-round iPD game [2] rounds proceeded as shown in Fig 1; the participant chose to

cooperate or not cooperate, and then waited for a “co-player”, who independently decided to

cooperate or to not cooperate (defect). The participant and co-player were equally rewarded

(Reward payoff—R; $2) if both cooperated; if one player defected but the other cooperated, the

betraying player received a reward (Temptation payoff–T; $3) while the cooperating player

received nothing (Sucker’s Payoff–S; $0). If both chose to defect, both received a diminished

reward (Punishment Payoff–P; $1) [34].

The monetary distributions depicted in Fig 1 are organized to conform to the universal scal-

ing parameters for the PDG as an evolutionary dyadic game that promotes cooperation

through a number of different reciprocity mechanisms [34–37]. In order to maintain universal

dilemma strength in both limited and unlimited well-mixed populations and construct the

necessary parametric constraints for the PDG, the gamble-intending dilemma (Dg’) and the

risk-averting dilemma (Dr’) must be equal and greater than 0 such that: (Dg’ = (T-R)/(R-P))

and Dr’ = (P-S)/(R-P)) [34–37]. This generates a Donor & Recipient dilemma template where,

given a single decision, defection is incentivized at no cost to the defector; however, given

repeated interactions, cooperation is incentivized but at a cost to the cooperator, who risks

betrayal and an omission of a reward for the current round [38].

All participants played three games—in two, they were deceived to believe that they were

playing with a human confederate and shown a picture of that confederate before starting the

game (but they actually played a computer algorithm) and in one they were told that they were

playing a computer program. The order of the three games was randomized for each partici-

pant (see S2 File).

The participant was given up to six seconds to make a decision in each round. The decision

was followed by a 3-, 6-, or 9-second jittered interstimulus interval which constituted the antic-

ipation phase of the round. After the jitter period, feedback regarding the round outcome was

presented for six seconds. See S3 File.

The 20-round game was split into four 5-round blocks, with an additional blank round

included in each block. After every five rounds, the participant was given an indefinite amount

of time to answer four questions (two about their feelings, two about their assessment of the

co-player’s intentions) before beginning the next 5-round block. After the last 5-round block

of the game, the participant answered four final emotional assessment questions and then

viewed their total earnings for the game. After 12–20 seconds, the participants then answered

10 additional questions about their experience of play. Each game proceeded in this fashion.

Participants were paid the average of the amount that they earned over the three games.

Out of the 40 rounds that each participant played with the “human” confederate, an average

of 12 rounds resulted in mutual cooperation (CC); 6 resulted in unreciprocated cooperation

(CD); 9 resulted in unreciprocated defection (DC); and 13 resulted in mutual defection (DD).

Out of the 20 rounds played with the computer, an average of 4 rounds resulted in CC; 3

resulted in CD; 5 resulted in DC; and 8 resulted in DD. A contingency table detailing total fre-

quencies of cooperate and defection for the human and computer games is displayed in

Table 2.

Scanning procedure

2008 data. The 2008 dataset was collected using a Siemens TIM Trio 3T MRI scanner

equipped with a 12-channel head coil. E-Prime 1.1 was used to present task stimuli (Psychol-

ogy Software Tools, Inc.). Participants recorded decisions to cooperate or defect using a hand-

held, 4-button response box. A localizer and a manual shim procedure preceded each
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functional scan. A functional task-related blood-oxygen-level-dependent (BOLD) scan was

acquired with a ZSAGA functional protocol. ZSAGA is a method for reducing the influence of

susceptibility artifacts in echo planar imaging [34]. The number of volumes varied depending

on time spent on task (participants spent variable amount of time completing emotional

assessment questions); TR = 3,000 ms; TE 1 = 30 ms; TE 2 = 65.8ms; matrix size = 64 x 64mm;

FA = 90˚; 3.3 x 3.3x 3.3 mm3 voxels; 30 interleaved slices; FOV = 210 mm. A high-resolution

anatomical image was also acquired using a T1-weighted standardized magnetization gradient

echo sequence to aid spatial normalization (MPRAGE; sagittal plane; TR = 2300 ms; TE = 3.02

ms; matrix size = 256x256 mm, 1 mm3 isomorphic voxels, 176 interleaved slices; FOV = 256

mm; flip angle 8˚).

2016 data. The 2016 dataset was collected using a Siemens TIM Trio 3T MRI scanner

equipped with a 12-channel head coil. E-Prime 2.0 was used to present the task stimuli (Psy-

chology Software Tools, Inc.), and the responses were collected using a Current Designs MRI

compatible button box. A localizer and a manual shim procedure preceded each functional

scan. A functional task-related BOLD scan was acquired with a T2�-weighted echo-planar

functional protocol (number of volumes vary depending time spent on task; TR = 2,000 ms;

TE = 30 ms; matrix size = 64 x 64mm; FA = 77˚; 3.4 x 3.4x 4.0 mm3 voxels; 33 interleaved

slices; FOV = 220 mm). A high-resolution anatomical image was also acquired using a

T1-weighted standardized magnetization spoiled gradient echo sequence to aid spatial normal-

ization (MPRAGE; sagittal plane; TR = 2250 ms; TE = 4.18 ms; GRAPPA parallel imaging fac-

tor of 2; matrix resolution size = 256x256 mm, 1 mm3 isomorphic voxels, 176 interleaved

slices; FOV = 256 mm; flip angle 9˚).

Preprocessing

2008 data. Using Statistical Parametric Mapping (SPM)12 (Wellcome Trust Center for

Neuroimaging), the 2008 functional data were corrected for slice timing and motion, realigned

and registered to the mean image, spatially normalized to the SPM Montreal Neurological

Institute (MNI) template and resliced into isotropic 2mm voxels, and smoothed using an 8mm

FWHM Gaussian kernel.

2016 data. Using Data Processing Assistant for Resting-State fMRI (DPARSF) software

[35], each subject’s functional data were corrected for slice timing and head motion, and co-

registered to their anatomical data. The images were resliced and resized to match the scale

and dimensions of the original 2008 dataset, then spatially normalized to the SPM MNI

Fig 1. An example of a mutual cooperation round (CC) during the iterated Prisoner’s Dilemma game. Each round

comprises decision, anticipation, and feedback phases of the task. The participant’s choices are located on the left of the

2x2 payoff matrix while the co-players choices are located a the top of the matrix.

https://doi.org/10.1371/journal.pone.0248006.g001

Table 2. Cooperation, defection and outcome rates in the human and computer games.

Human (40 rounds) Participant

Co player Cooperate (M/Range) Defect (M/Range)

Cooperate 12 (3–31) 9 (4–17)

Defect 6 (1–13) 13 (3–26)

Computer (20 rounds) Participant

Co Player Cooperate (M/Range) Defect (M/Range)

Cooperate 4 (0–14) 5 (2–12)

Defect 3 (0–8) 8 (3–19)

https://doi.org/10.1371/journal.pone.0248006.t002
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template and smoothed using an 8mm FWHM Gaussian kernel. The quality of the co-registra-

tion and normalization procedure was evaluated by visually inspecting the fMRI images for

any inconsistencies.

Behavioral analysis

To compare participants’ average cooperation rates during gameplay across co-players we con-

ducted a one-way repeated measures ANOVA with co-player (human, computer) as the

within-subjects factor and cooperation rate during the human and computer games as the

dependent variable.

Neuroimaging analysis

General linear modeling (GLM) in SPM12 was used to estimate event-related BOLD response

amplitudes relative to baseline (periods of the minimal task engagement between the phases)

across the three phases of the task at the individual subject level and the group level. Primary

regressors included two regressors for the decision phase, two regressors for the anticipation

phase, and four regressors for the feedback phase of the task, as listed in Table 3.

To account for unrelated cognitive processes that could confound results, a regressor was

included for the time points at which participants answered emotional assessment questions.

Further, to account for the fact that two out of the three games were played against a “human”

and one game was played against a computer, the regressors included a set that distinguished

between rounds played against a human and a computer. In total, we included 18 task regres-

sors (9 human and 9 computer regressors) in our design matrix (see S2 Fig). Finally, we

included a framewise displacement (FD) regressor in the single subject analyses as an addi-

tional motion nuisance covariate.

Two-tailed one-sample t-tests contrasted activity within each individual human regressor

versus baseline. Based on our expectation that participants would respond differently to coop-

erative vs. uncooperative (monetary gain/loss) and reciprocated vs. unreciprocated (social

coordination/conflict) feedback, we collapsed round types as follows: CC and DC (Co-Player

Cooperation), CD and DD (Co-Player Defection), CC and DD (Reciprocated), and CD and

DC (Unreciprocated). We took this approach to increase the power of the analysis and to per-

mit distinct evaluation of responses to the social conflict and monetary gain and loss, consis-

tent with previous PD research [3, 36, 37]. Additionally, direct contrasts were used to compare

BOLD responses within phases [(Ex. (CC + DD) > (CD + DC), etc.] and between phases (Ex.

Decision > Feedback etc.).

A total of sixteen group-level analyses were conducted. Site was included as a covariate in

all group-level analyses (see S3 Fig in the supplemental materials Section 6 for a visual overlay

Table 3. Description of task regressors used for fMRI analysis.

Task Regressor Symbolic Representation

Decision to Cooperate Decision (C)

Decision to Defect Decision (D)

Anticipation following Cooperation Anticipation (C)

Anticipation following Defection Anticipation (D)

Mutual Cooperation CC

Unreciprocated Cooperation CD

Unreciprocated Defection DC

Mutual Defection DD

https://doi.org/10.1371/journal.pone.0248006.t003
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of brain activity between the two sites). All results were corrected for multiple comparisons

using familywise error rate correction (FWE), and the significance threshold was established at

p< .05, with a spatial extent threshold of 30 mm3. Results for the decision and feedback con-

trasts surpassed a t-statistic of 6.05 (df = 30).

Results for the anticipation phase contrasts did not survive FWE correction, with the excep-

tion of activity in the occipital lobe. We conducted exploratory analyses using an uncorrected

voxel-wise primary threshold set at p< .001 and a cluster-wise FWE-corrected threshold

determined by SPM12 [38]. Because direct contrasts also did not survive FWE correction, we

used the same cluster-based threshold method to conduct exploratory analyses on these con-

trasts (e.g., Decision Coop>Decision Def, CC+DD<CD+DC, etc.) within and between phases

of interest.

Results

Behavioral analysis

There was a significant effect of co-player on the average cooperation rate between games, F
(1,30) = 14.37, p< 0.001. Overall, participants tended to cooperate more against “human” co-

players (M = 45.88, SD = 17.78) than they did against computer co-players (M = 34.12,

SD = 19.47; see Fig 2).

Fig 2. A graphical illustration of the participants’ average cooperation rate against “human” and computer co-players in the PD. Participants tended to cooperate

more often against their human co-players suggesting that prosocial norms were at least partially taken into consideration during these games.

https://doi.org/10.1371/journal.pone.0248006.g002
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Human game neuroimaging baseline contrast analysis

Decision phase. During the decision to cooperate, significant activation relative to base-

line was detected in diverse prefrontal cortical regions of the brain (see Fig 3)—the lateral

OFC, bilateral ventrolateral prefrontal cortex (vlPFC), and dmPFC/aMCC. Significant activity

was also identified across the parietal lobe, including the left TPJ, bilateral superior parietal

lobule and precuneus. Lastly, significant activation was detected in the bilateral anterior insula

and the bilateral hippocampus (see Table 4).

During the decision to defect, significant activation was again elicited in regions across the

prefrontal cortex (see Fig 3). Lateral OFC and bilateral vlPFC activity were consistently active

during decisions to cooperate and to defect. However, in contrast to activation patterns

observed during cooperation decisions, decisions to defect were positively correlated with

right dlPFC activity, but not dmPFC/aMCC activity. Significant activation to that observed

during cooperation decisions emerged in the parietal lobule, including left-lateralized TPJ

activity. Bilateral hippocampus activity was present; however, in contrast to what was observed

during the decision to cooperate, a significant neural response was not elicited in the bilateral

anterior insula (see Table 4).

Anticipation. During the anticipation phase, no individual voxels survived FWE correc-

tion in a whole brain voxel-wise analysis, therefore we report results were obtained using a

cluster-wise thresholding approach and FDR-correcting significant clusters. During

Fig 3. BOLD activity during all phases of the iPD task. In each contrast map the cursor is placed within the peak voxel of activity for each condition. The dmPFC and

the bilateral TPJ were the only regions that were recruited across all three phases of the task, suggesting that the PD task serves as a valid and robust model of social

reciprocation despite its underlying economic principles. (Decision and feedback phases are thresholded at t(29) = 6.00, p< .05; FWE-corrected voxel-wise threshold

while the anticipation phase was thresholded at t(29) = 3.40, p< .001 uncorrected voxel-wise threshold; FWE-corrected cluster-wise threshold determined by SPM12).

(Red = Human Game, Blue = Computer Game, C = Cooperate, D = Defect). Ex. [42, –48, 42] = peak voxel MNI coordinates.

https://doi.org/10.1371/journal.pone.0248006.g003
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anticipation following cooperation, significant cluster-wise activity was detected in the right

dmPFC, right TPJ, and right anterior insula (see Table 5 for results and details of

thresholding).

During anticipation following defection, significant cluster-wise activity was detected more

broadly across the prefrontal cortex and included the dmPFC, right dlPFC, and bilateral TPJ.

However, anterior insula activity was not detected, mirroring what we observed in the decision

contrasts (see Table 5).

Feedback. Across all four feedback conditions (reciprocated, unreciprocated, co-player

cooperation, co-player defection), a common pattern of significant activation emerged that

spanned the frontoparietal and salience networks of the brain. Active regions included the

dmPFC, right dlPFC, bilateral vlPFC, the lateral OFC, the aMCC, the bilateral TPJ, bilateral

Table 4. Significant regional activation during decision phases.

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p < .05; FWE-corrected)

Decision (C)

R dorsomedial PFC 8 46 6 26 46 7.12 .001

L lateral OFC 11 14 -42 44 -14 7.37 .001

R ventrolateral PFC 45 410 45 44 25 10.82 .001

L ventrolateral PFC 45 91 -48 38 22 8.02 .001

R ant midcingulate 32 135 6 29 34 7.92 .001

L temporoparietal junction 40 441 -36 -46 40 11.26 .001

R inf parietal lobule 40 222 48 -37 46 8.46 .001

R sup parietal lobule 7 186 27 -64 40 9.86 .001

L sup parietal lobule 7 212 -24 -67 40 10.04 .001

Precuneus 7 243 12 -70 52 9.55 .001

L ant insula 48 24 -39 14 -5 7.16 .001

R ant insula 47 14 36 17 -8 6.50 .001

R thalamus 27 18 -10 1 7.88 .001

L hippocampus 27 151 -21 -31 -2 9.29 .001

R hippocampus 37 86 24 -28 -2 9.34 .001

Occipital lobe/cuneus 17 2864 15 -97 10 13.43 .001

Decision (D)

R dorsolateral PFC 9 69 18 56 31 9.77 .001

R lateral OFC 11 27 30 56 -11 7.07 .001

R ventrolateral PFC 45 146 42 35 40 8.48 .001

L ventrolateral PFC 44 354 -48 26 34 9.52 .001

L temporoparietal junction 40 483 -45 -46 52 9.22 .001

R inf parietal lobule 40 141 39 -43 43 7.33 .001

L sup parietal lobule 7 282 -24 -64 55 9.92 .001

R sup parietal lobule 7 190 27 -61 43 12.08 .001

Precuneus 7 243 -9 -76 49 9.33 .001

R thalamus 15 15 -4 4 7.40 .001

L thalamus 100 -15 -10 1 8.72 .001

L hippocampus 27 95 -24 -31 1 12.17 .001

R hippocampus 37 43 24 -28 1 14.29 .001

Occipital lobe/cuneus 18 3010 18 -94 10 19.50 .001

Note: t(29) = 6.00, p< .05; FWE-corrected, k > 10

https://doi.org/10.1371/journal.pone.0248006.t004

PLOS ONE The Prisoner’s Dilemma models the social decision cascade

PLOS ONE | https://doi.org/10.1371/journal.pone.0248006 March 18, 2021 11 / 26

https://doi.org/10.1371/journal.pone.0248006.t004
https://doi.org/10.1371/journal.pone.0248006


superior parietal lobules, the precuneus, the bilateral anterior insula, and the bilateral hippo-

campi. Unique regions of activity included the right temporal pole during unreciprocated

feedback and feedback following co-player defection and bilateral lateral OFC activity during

reciprocated feedback and feedback following co-player cooperation. See Table 6 for detailed

results.

Human game direct contrasts analysis

Direct contrasts were delineated between sub-epochs within the three phases of the task (e.g.,

decision to cooperate versus decision to defect). The results of these analyses did not survive

voxel-wise FWE correction, necessitating the use of a cluster-wise, FDR corrected threshold.

(see Table 7). A direct contrast between the decision to cooperate versus the decision to defect

revealed limited relative elevation of activation in the calcarine sulcus during the decision to

cooperate, t(29) = 5.05, p< .001.

There was significantly greater activity in the hippocampus during anticipation following

cooperation versus anticipation following defection, t(29) = 4.96, p< .001, while anticipation

following defection elicited greater activity in the right dlPFC, t(29) = 4.36, p< .001, the pre-

central gyrus, t(29) = 5.55, p< .001, and the postcentral gyrus, t(29) = 4.82, p< .001 (see Fig 4)

For the feedback conditions, a direct contrast between reciprocated and unreciprocated

feedback revealed heightened activity in the precuneus when participants experienced unreci-

procated feedback, t(29) = 4.33, p< .001. A similar result was found in the direct contrast

between feedback following co-player cooperation and defection. Significant activity was elic-

ited in the precuneus when participants experienced co-player defection in comparison to co-

player cooperation, t(29) = 5.05, p< .001.

Lastly, direct contrasts were implemented between phases in the task irrespective of the

decision made by the participant (see Table 8; see Fig 5). Significant activity was only detected

in the Decision>Feedback, Decision>Anticipation, and Feedback>Anticipation contrasts.

Within these contrasts, significant activity was identified in the dlPFC, vlPFC, TPJ, superior

parietal lobules, anterior insula, bilateral hippocampi, and thalami. However, while the Deci-

sion>Anticipation and Feedback>Anticipation contrasts also revealed activity in the right lat-

eral OFC, aMCC, and precuneus, the Decision>Feedback contrast did not. Lastly, activity in

Table 5. Significant regional activation during anticipation phases.

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p < .001; Clusterwise-FDR corrected)

Anticipation (C)

R dorsomedial PFC 9 53 6 38 37 5.36 .03

R temporoparietal junction 40 53 39 -55 46 4.61 .03

R anterior insula 47 91 36 26 -5 5.51 .01

Occipital lobe/cuneus 17 153 15 -97 10 6.89 .001

Anticipation (D)

Dorsomedial PFC 8 155 9 35 46 5.55 .001

R dorsolateral PFC 9 113 36 11 52 4.77 .001

L ventrolateral PFC 45 56 -45 47 1 4.87 .01

L temporoparietal junction 40 217 -39 -58 43 5.05 .001

R temporoparietal junction 40 232 60 -31 49 4.70 .001

Occipital lobe, cuneus 17 241 18 -97 10 6.35 .001

Note: All results were thresholded at t(29) = 3.41, p < .001 uncorrected voxel-wise threshold; cluster-wise FDR-corrected threshold determined by SPM12.

https://doi.org/10.1371/journal.pone.0248006.t005
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Table 6. Significant regional activation during feedback phases.

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p< .05; FWE-corrected)

Reciprocated (CC+DD)

Dorsomedial PFC 32 60 0 29 40 10.41 .001

R dorsolateral PFC 9 660 39 29 43 8.92 .001

L ventrolateral PFC 45 230 -33 8 55 9.18 .001

R ventrolateral PFC 45 133 45 44 25 9.83 .001

L lateral OFC 11 42 -45 50 -2 8.55 .001

R lateral OFC 11 189 39 50 -11 7.55 .001

R ant midcingulate 32 40 3 35 34 7.59 .001

L temporoparietal junction 40 263 -48 -49 49 10.41 .001

R temporoparietal junction 40 202 48 -49 46 11.33 .001

R sup parietal lobule 7 82 36 -61 52 10.55 .001

L sup parietal lobule 7 93 -30 -67 37 11.99 .001

Precuneus 7 172 6 -73 46 8.71 .001

R ant insula 13 128 39 17 -8 8.97 .001

L ant insula 47 11 -33 17 -5 6.66 .001

R hippocampus 37 22 24 -28 -2 7.60 .001

Occipital lobe/cuneus 17 2645 15 -94 7 12.71 .001

FeeUnreciprocated (CD+DC) .001

Dorsomedial PFC 32 83 6 24 42 7.27 .001

R dorsolateral PFC 9 109 48 17 43 8.49 .001

R ventrolateral PFC 45 599 45 29 37 10.20 .001

L ventrolateral PFC 45 330 -45 26 31 7.96 .001

L lateral OFC 46 47 -42 50 -2 6.96 .001

R ant midcingulate 32 41 6 32 40 9.28 .001

R temporoparietal junction 40 207 45 -58 40 8.55 .001

L temporoparietal junction 40 320 -42 -46 40 8.55 .001

R sup parietal lobule 7 77 24 -67 49 7.16 .001

L sup parietal lobule 7 132 -30 -64 43 10.85 .001

Precuneus 7 187 3 -70 43 8.14 .001

R temporal pole 38 152 42 20 -20 9.20 .001

L ant insula 47 102 -30 17 -17 9.67 .001

R ant insula 47 73 30 17 -14 9.06 .001

L hippocampus 27 37 -24 -28 -2 9.14 .001

R hippocampus 37 43 24 -28 -2 9.52 .001

Occipital lobe/cuneus 17 2329 18 -94 7 10.92 .001

FeeCo-Player Cooperation (CC+DC)

Dorsomedial PFC 32 231 6 44 43 7.74 .001

R dorsolateral PFC 9 145 39 11 52 10.03 .001

L ventrolateral PFC 44 180 -48 23 28 7.93 .001

R ventrolateral PFC 48 69 51 32 28 9.07 .001

R lateral OFC 46 63 36 53 -2 7.14 .001

L lateral OFC 47 31 -42 50 -5 8.74 .001

R ant midcingulate 32 29 6 38 31 9.28 .001

R temporoparietal junction 40 274 39 -58 52 7.19 .001

L temporoparietal junction 40 357 -42 -55 49 9.32 .001

R sup parietal lobule 7 51 30 -67 49 8.13 .001

(Continued)
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the right temporal pole and posterior midcingulate was unique to the Feedback>Anticipation

contrast. See S4 File and S1–S4 Tables for the results of the neuroimaging analysis for the com-

puter game. See S5 File and S5–S9 Tables for neuroimaging findings directly contrasting neu-

ral activity between human and computer gameplay.

Discussion

The goal of the current study was to characterize neural substrates of reciprocal social

exchange, modelled as phases of a prospective “social decision cascade” using the iPD task. As

expected, we found both common and distinct patterns of neural activity across phases. Our

results reaffirm findings in the iPD literature that implicate functional nodes associated with

social reasoning as active during decision-making and feedback appraisal [2–6]. Additionally,

our findings offer tentative support for the significance of internal conflict as a predictor of

regional activity during the anticipation phase. Notably, only structures previously implicated

in ToM reasoning (TPJ and dmPFC; [39, 40] reached a significant threshold of activation dur-

ing all phases of the task. Our results, taken collectively, paint a more complete picture of the

social decision cascade and its neural correlates than the literature to date has presented, and

several key points warrant mention.

Table 6. (Continued)

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p< .05; FWE-corrected)

L sup parietal lobule 7 51 -27 -67 49 7.34 .001

Precuneus 7 57 6 -73 40 7.88 .001

R hippocampus 37 19 24 -28 -2 8.04 .001

L hippocampus 27 13 -24 -31 -2 7.47 .001

R ant insula 48 58 36 20 -8 7.56 .001

Occipital lobe 17 2885 18 -94 7 10.58 .001

FeeCo-Player Defection (CD+DD)

Dorsomedial PFC 8 154 3 26 43 10.82 .001

R dorsolateral PFC 9 159 45 29 37 11.97 .001

L dorsolateral PFC 46 59 -39 23 40 10.81 .001

R ventrolateral PFC 48 27 54 17 13 8.24 .001

L ventrolateral PFC 45 115 -45 29 31 10.26 .001

R lateral OFC 11 69 30 47 -14 7.96 .001

R ant midcingulate 32 42 6 38 25 7.59 .001

L temporoparietal junction 40 354 -48 -46 46 12.07 .001

R temporoparietal junction 40 219 39 -58 46 11.44 .001

L sup parietal lobule 7 185 -30 -64 43 11.28 .001

R sup parietal lobule 7 105 33 -64 52 9.55 .001

Precuneus 7 117 -3 -73 46 9.60 .001

R temporal pole 38 133 45 17 -17 7.52 .001

R ant insula 48 90 30 17 -11 10.26 .001

L ant insula 47 93 -30 17 -14 8.98 .001

R hippocampus 37 35 24 -28 -2 8.53 .001

L hippocampus 27 20 -21 -28 -5 7.43 .001

Occipital lobe 17 2405 18 -94 1 12.05 .001

Note: t(29) = 5.98, p< .05 FWE-corrected, k> 10

https://doi.org/10.1371/journal.pone.0248006.t006
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Table 7. Regional activation during direct comparison contrasts (within-phase).

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p< .001; Clusterwise-FDR corrected)

Decision (C) > Decision (D)

L Calcarine Sulcus 18 171 -15 -76 8 5.05 .001

Decision (D) > Decision (C)

No suprathreshold voxels

Anticipation (C) > Anticipation (D)

R hippocampus 27 41 39 -28 -8 4.96 .05

Anticipation (D) > Anticipation (C)

R precentral gyrus 4 510 33 -22 55 5.55 .001

L postcentral gyrus 2 229 -18 -37 70 4.82 .001

R dorsolateral PFC 9 69 27 29 52 4.36 .01

Reciprocated > Unreciprocated

No suprathreshold voxels

Unreciprocated > Reciprocated

R precuneus 7 100 3 -58 43 4.33 .01

Co-Player Cooperation > Defection

No suprathreshold voxels

Co-Player Defection > Cooperation

L precuneus 7 403 -21 -61 64 5.05 .001

Note: t(29) = 3.38, p< .001 uncorrected voxel-wise threshold; FWE-corrected cluster-wise threshold determined by SPM12.

https://doi.org/10.1371/journal.pone.0248006.t007

Fig 4. BOLD activity illustrating direct comparison contrasts within-phase. The most salient finding was the activation of the precuneus, involved in self-referential

processing, during aversive social outcomes regardless of context (monetary vs social). This result also supports the precuneus’s potential role in conflict monitoring and

social adapation in response to negative outcomes. All results for these contrasts were thresholded at t(29) = 3.40, p< .001 uncorrected voxel-wise threshold; FWE-

corrected cluster-wise threshold determined by SPM12. (Red = Human Game, Blue = Computer Game, C = Cooperate, D = Defect). Ex. [42, –48, 42] = peak voxel

MNI coordinates.

https://doi.org/10.1371/journal.pone.0248006.g004
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Table 8. Regional activation during direct comparison contrasts (between-phase).

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p< .05; FWE-corrected)

Decision > Feedback

R dorsolateral PFC 9 44 27 53 34 8.29 .001

L ventrolateral PFC 45 62 -45 41 22 7.86 .001

L temporoparietal junction 40 419 -42 -37 43 11.21 .001

R inf parietal lobule 40 64 30 -43 43 10.28 .001

L sup parietal lobule 7 231 -18 -67 46 8.61 .001

R sup parietal lobule 7 143 15 -67 58 8.39 .001

L ant insula 13 15 -48 14 -5 6.75 .01

R hippocampus 27 31 24 -31 1 11.57 .001

L hippocampus 37 33 -18 -31 -2 10.70 .001

L thalamus 173 -15 -10 1 8.90 .001

R thalamus 70 15 -7 1 8.13 .001

L precentral gyrus 6 51 -48 2 28 8.22 .001

R cerebellum 8 64 15 -64 -44 8.09 .001

Mid occipital lobe 17 2956 30 -91 4 16.27 .001

Feedback > Decision

No suprathreshold voxels

Decision > Anticipation .001

R dorsolateral PFC 9 555 27 53 34 12.08 .001

L dorsolateral PFC 46 194 -33 56 19 8.77 .001

L ventrolateral PFC 45 367 -45 29 34 10.74 .001

R lateral OFC 11 30 30 56 -11 7.35 .001

Ant midcingulate 32 94 9 29 28 8.36 .001

R post midcingulate 23 71 0 -25 28 9.40 .001

L temporoparietal junction 40 549 -36 -46 40 14.22 .001

R temporoparietal junction 40 234 39 -40 40 9.94 .001

L sup parietal lobule 7 302 -24 -64 52 9.39 .001

R sup parietal lobule 7 221 36 -58 55 9.42 .001

Precuneus 7 351 12 -70 49 10.45 .001

L ant insula 47 52 -39 14 -2 7.09 .001

L hippocampus 27 40 -24 -34 -2 13.08 .001

R hippocampus 37 39 24 -28 -2 14.18 .001

L thalamus 195 -12 -16 7 8.97 .001

R thalamus 110 15 -13 10 7.53 .001

Occipital lobe, cuneus 18 3148 18 -94 10 15.77 .001

Anticipation > Decision

No suprathreshold voxels

Feedback > Anticipation

R lateral OFC 111 119 24 50 -14 7.88 .001

R dorsolateral PFC 9 1065 30 29 49 9.23 .001

L dorsolateral PFC 46 111 -42 50 7 10.09 .001

R ventrolateral PFC 45 111 51 29 28 10.80 .001

L ventrolateral PFC 45 368 -42 29 31 11.51 .001

R ant midcingulate 32 82 6 35 25 11.13 .001

R post midcingulate 23 71 3 -25 31 7.84 .001

L temporoparietal junction 40 468 -42 -49 43 13.74 .001

(Continued)
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Table 8. (Continued)

MNI Coordinates

Name of Region Brodmann Area Voxels x y z t(29) p-value (p< .05; FWE-corrected)

R temporoparietal junction 40 266 42 -49 40 12.22 .001

L sup parietal lobule 7 215 -30 -64 43 10.62 .001

R sup parietal lobule 7 133 33 -67 49 10.47 .001

Precuneus 7 432 9 -70 40 10.83 .001

R temporal pole 38 145 45 20 -17 10.56 .001

R ant insula 47 63 36 17 -14 7.62 .01

L ant insula 47 23 -45 17 -8 7.03 .01

R hippocampus 37 131 24 -28 -5 12.17 .001

L hippocampus 27 87 -31 -31 1 9.70 .001

L mid occipital lobe 507 -36 -88 -5 10.44 .001

R mid occipital lobe 353 33 -79 10 10.02 .001

L cerebellum 9 56 -6 -55 -50 8.10 .001

Anticipation > Feedback

No suprathreshold voxels

Note: t(29) = 6.0, p< .05 FWE-corrected voxel-wise threshold, k > 10

https://doi.org/10.1371/journal.pone.0248006.t008

Fig 5. BOLD activity displaying direct comparison contrasts between phases. The decision-making phase exhibited the strongest neural signature in comparison to

the other phases of the task, suggesting a significantly elevated cognitive and neural resource requirement for that phase. All contrasts were thresholded at t(29) = 6.00, p
< .05; FWE-corrected voxel-wise threshold. Direct contrasts not displayed returned no suparthreshold voxels of activation using voxel-wise or cluster-wise thresholding.

(Red = Human Game, Blue = Computer Game, C = Cooperate, D = Defect). Ex. [42, –48, 42] = peak voxel MNI coordinates.

https://doi.org/10.1371/journal.pone.0248006.g005
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We had hypothesized that activity in the dmPFC, the caudate, rostral ACC/aMCC, and the

TPJ would significantly be associated with decision-making in the task. Our results revealed a

larger distribution of regions that, taken together, could constitute a social decision-making

network. This network included among its nodes the dmPFC, aMCC and the left TPJ; how-

ever, activity in the caudate was absent. This finding was unexpected especially given the

wealth of literature that supports the caudate’s involvement in mediating goal-oriented deci-

sion-making and adaptive behavior in social tasks [41–43]. A possible explanation is that the

repetitive nature of the task diminished the motivational efficacy of the reward derived from

gameplay and rendered goal formation inconsequential; however this outcome is unlikely

given previous iPD findings [3, 44, 45]. A more plausible explanation could be that our prepro-

cessing pipeline, which included smoothing images with a relatively large Gaussian kernel of

8mm FWHM as a noise reduction approach, may have hindered detection of localized brain

activity within small, subcortical structures such as the striatum and the amygdala [46]. A

number of additional regions that had been implicated in iPD studies targeting specific popu-

lations were recruited; these included the precuneus and the anterior insula. Of note, we also

observed activity in the dmPFC and the vlPFC, which are regions that had not shown signifi-

cant activation in prior iPD studies. These findings suggest additional regions to consider as

salient to social decision-making in the context of the iPD.

Of all of the phases, the feedback phase has been the most clearly characterized in the iPD

fMRI literature to date [3–6, 13]. The present findings extend this work by providing evidence

of significant engagement during feedback of our hypothesized social decision-making net-

work, along with the dlPFC, vlPFC, precuneus, and temporal pole. Previous iPD studies had

detected no more than three of these regions activated concurrently during trials; our findings,

however, suggest the possibility of large-scale interdependency among these neuroanatomical

structures that supports the appraisal of either social harmony/conflict or monetary gain/loss.

This interpretation is bolstered by the observation that the same regions were recruited across

each feedback outcome (Social outcome: reciprocated and unreciprocated; Monetary out-

come: co-player cooperation and co-player defection). Additionally, the majority of the

detected regions are part of the frontoparietotemporal network of the brain, a multi-faceted

and dynamic network that mediates cognitive flexibility, problem-solving and emotional regu-

lation more broadly in task-related contexts [47, 48]. This observation provides a foundation

for future functional connectivity analyses that could elucidate whether the neural substrates

of social reasoning conform to a larger coherent executive functioning network or whether

social cognition and executive functioning are dissociable at the neural level [49–53].

A qualitative examination of findings for the decision and feedback phases of iPD rounds

revealed that they share substantially overlapping neural networks. We observed common acti-

vation across these phases in several regions involved in subjective valuation, social reasoning

and problem solving such as the lateral frontal gyri, the dmPFC, lateral OFC, bilateral TPJ, pre-

cuneus, bilateral anterior insula, bilateral hippocampi and the bilateral thalami [14, 40, 54].

The striking similarities in patterns of activation during the decision and feedback phases raise

the possibility that the same neural networks contribute to both, at a domain-general level.

However, it is difficult to say, based on our data, whether these networks would support social

reasoning specifically or general executive functioning more broadly.

However, a direct contrast between the two phases yielded evidence that the phases might

also appropriately be treated as distinct. In particular, all commonly activated neural regions

exhibited significantly stronger BOLD activity during decision-making than during feedback.

This finding suggests that the mental processes involved in making a social choice and those

involved in processing feedback about whether one’s social choice yields reward or punish-

ment draw on a common neural network, but do so in different ways. Stronger inferences
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concerning the behavior of these networks could be facilitated through the utilization of robust

functional connectivity techniques. For example, mapping changes in dynamic functional con-

nectivity within the network over the course of task engagement could be an appropriate

approach to determining the magnitude and temporal stability of network recruitment over

the course of gameplay. Network dynamics research suggests that moment-to-moment fluctu-

ations in functional connectivity are more stable during complex task performance than at rest

and that interregional neuronal hubs often reorganize during tasks, a phenomenon that could

easily be captured with the iPD, given the breadth of regional activation identified in this study

[55]. However, such research would require a much larger participant sample than we

recruited for the present study.

Another direct contrast within the decision-making phase of the game revealed an ampli-

fied neural response in the visual cortex when making cooperative versus defection-based deci-

sions. PD fMRI literature overwhelmingly suggests that most individuals oftentimes find the

prospect of defecting against their partner to be more aversive and conflict-laden that cooper-

ating [3, 4, 13], which we posited would evoke a heightened neural signature during defection

in a direct contrast to cooperation. This outcome may possibly be the result of our reduced

dilemma strength for our version of the PDG (Dg’ = Dr’ = 1). It is possible that the various out-

comes did not register as significantly differentiated for our participants, which could also

explain the lack of reward-based striatal activity over the course of the task. If the dilemma

strength was increased by a factor of 5, for example, to increase the earning stakes of the game,

this could significantly augment the neural response to defection by intensifying the desire to

betray the partner for elevated gains, even while risking periods of social disintegration due to

fear of betrayal from the participant. This is another avenue that we believe is worth explora-

tion in future research utilizing this paradigm., especially given the fact that the vast majority

of PD fMRI research also employs this same reduced strength variant as the prototypical

model of the PD.

Although our findings regarding activity during the anticipation phase are necessarily ten-

tative, given that significant activations only emerged at a liberal cluster-wise threshold, they

offer potential evidence that anticipation following participant defection is functionally disso-

ciable from anticipation following participant cooperation. This finding raises the possibility

that sensitivity to social conflict may modulate brain activity during the anticipatory process.

Anticipation following the decision to cooperate elicited a cluster of activity within the anterior

insula, while anticipation following defection elicited clusters of activity within the aMCC,

right dlPFC, dmPFC, and bilateral TPJ. Striatum activity was absent in this phase, remaining

consistent with observations in the decision and feedback phases.

With regard to anticipation following cooperation, research suggests that the anterior insula

is involved in self-awareness and subjective emotional experience [56, 57]. In the context of

social interaction, this region has been implicated in mediating affective empathic response,

and more specifically generating shared representations of the feelings others [58, 59]. It is pos-

sible that the anterior insula facilitated reciprocation in the iPD task by processing emotions

associated with desirable positive outcomes of decisions [60]. If this interpretation is accurate,

it would align with prior evidence that humans receive emotional reward from cooperating

with their peers and anticipating positive outcomes in the social situations such as the PD [61,

62]. However, the anterior insula has also been heavily implicated in associative fear-based

learning and the anticipation and processing of aversive outcomes [56, 63, 64]. From this view-

point, engagement of the anterior insula may signal a fear of betrayal after making the risky

decision to cooperate with an unpredictable and previously unknown social partner. Greater

insight into the motivations and perceptions of the participants is required to decompose these

possibilities.
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In contrast, anticipation following defection elicited activity in a network involving aMCC,

dmPFC, right dlPFC, and TPJ. Converging neural activity within the rostral ACC and dlPFC

has been associated with conflict monitoring/resolution, cognitive control and feedback-medi-

ated decision-making based on the evaluation of previous action outcomes [65–67]. Further-

more, the joint recruitment of the TPJ and dmPFC could suggest activation of a network that

differentiates the processing of socio-cognitive conflict (e.g., social cues suggesting conflicting

assumptions about the subjective states of an individual) from the processing of general con-

flict (e.g., interpreting descriptive or declarative sentences) [68] It is possible that participants

perceive the decision to defect as conflict-laden because it contradicts social norms, and thus

must recruit greater cognitive and neural resources to prepare for the prospect of further social

conflict introduced by the participant or the co-player. Alternatively, these regions could be

operating independently and be constrained by domain-specific functions attached to the

anticipatory process. Replication in larger datasets will be necessary to obtain more robust

results and examine each of these possibilities; the current results, however, provide a starting

point from which to approach the examination of this phase of the social decision cascade.

We found evidence that the TPJ and the dmPFC were both active during all phases of the

cascade. This finding merits note, given that multiple meta-analytic studies have identified

these areas as “core” nodal regions underlying social cognition and Theory of Mind (ToM).

ToM is defined as the ability to attribute goals, intentions, and beliefs to other individuals [69–

71]. The TPJ has specifically been implicated in third person perspective-taking and in creating

temporary representations of other peoples’ mental states [72, 73], while the dmPFC appears

to support inferences from a first person perspective about stable personality dispositions of

the self as well as others, along with mediating the application of social norms and scripts [71].

These functions are essential during a task like the iPD game, which requires participants to

attempt to predict partner behavior on a round by round basis. They are asked to think from

their own and their partner’s perspectives and coordinate responses with the partner in order

to mutually benefit from the interaction or adapt to the partner’s inconsistent behavior [74].

The iPD task should thus tend to consistently recruit social cognition nodes such as the TPJ

and dmPFC, and the presence of activation in these regions could serve as a quality check

when assessing the effectiveness and utility of the iPD task as a model of social interaction.

Lastly, the anterior insula showed stronger activation when processing “human” co-player

defection versus computer co-player defection, based on findings from a direct comparison of

brain activity following these negative outcomes. Previous iPD findings support the idea that

people tend to treat their decisions as more important and to show more willingness to con-

form to social standards when they believe their partner is a human being whose actions are

perceived as more deliberate and intentional [75, 76]. It is unsurprising then that co-player

defection was met with a salient aversive response in the anterior insula when perpetrated by a

human partner rather than a computer partner.

A few limitations of this study warrant mention. First, data were collected at two indepen-

dent sites, with several years separating time of collection. Scanner and MR sequence protocols

diverged across the two studies, which necessitated data correction during preprocessing to

ensure that parameters were consistent across the final dataset (see S4 Fig in the supplemental

materials for a comparison of activity between our two datasets). We included site as a regres-

sor in all analyses to mitigate the impact of site effects. Second, a number of participants

defected much more often than they cooperated. Consequently, only a limited number of CD

trials could be sampled for those participants. These contrast images were still included in the

subsequent group analysis, which could have reduced the overall power of the analysis.

Another limitation was the lack of an explicit baseline condition (e.g., cross fixation). All peri-

ods in which the participant was not engaged in playing the PD task or answering emotional
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assessment questions acted as an “implicit” baseline. An additional limitation concerning the

emotional assessment questions is the possibility that interruptions during gameplay could

have affected the “natural” experience and engagement during play. We decided to use an

“online” rating with the knowledge that while disrupting the flow of an ongoing task might

alter the emotions being measured, online ratings do show a resistance to degeneration due to

memory limitations and allow researcher to more effectively probe emotions related to specific

events [25].

Our findings complement the existing iPD fMRI literature by providing evidence that a

shared neural network may support social cognition during decision-making and feedback

appraisal. The findings lend support to the idea that the dmPFC and TPJ play roles in social

reasoning and suggest that these regions should be focal points of analysis in future economic-

exchange studies. We also provide a foundation for the examination of the anticipation phase

of iPD task rounds, which has received little research attention to date. Future research aimed

at replicating and extending our findings regarding the social decision cascade could help fur-

ther validate the use of economic exchange paradigms as models of social interaction in social

neuroscience research.
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