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Abstract

The large amounts of engineered titanium dioxide nanoparticles (TiO2NPs) that have been

manufactured have inevitably been released into the ecosystem. Reports have suggested

that TiO2 is a relatively inert material that has low toxicity to animals. However, as various

types of NPs increasingly accumulate in the ocean, their effects on aquatic life-forms remain

unclear. In this study, a zebrafish model was used to investigate TiO2NP-induced injury and

mortality. We found that the treatment dosages of TiO2NP are positively associated with

increased motility of zebrafish and the bacterial counts in the water. Notably, gill but not dor-

sal fin and caudal fin of the zebrafish displayed considerably increased bacterial load. Meta-

genomic analysis further revealed that gut microflora, such as phyla Proteobacteria,

Bacteroidetes, and Actinobacteria, involving more than 95% of total bacteria counts in the

NP-injured zebrafish gill samples. These results collectively suggest that opportunistic bac-

terial infections are associated with TiO2NP-induced mortality in zebrafish. Infections sec-

ondary to TiO2NP-induced injury could be a neglected factor determining the detrimental

effects of TiO2NPs on wild fish.

Introduction

Titanium dioxide (TiO2) forms naturally as the well-known minerals rutile, anatase, and

brookite phases. Industrial production of TiO2 occurs at a large scale, and an estimated

165,050,000 metric tons of TiO2 were produced worldwide between 1916 and 2011 [1]. Prod-

ucts containing TiO2 nanoparticles (TiO2NPs), such as sunscreen, cosmetics, paints, and semi-

conductors, are widely manufactured in various industries [2, 3]. For example, upon

ultraviolet (UV) irradiation, the photocatalytic properties of TiO2 in the form of anatase enable

it to catalyze H2O to release reactive oxygen species [4–6], which can be used in disinfectants
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and self-cleaning products [4, 5, 7–12]. The UV-shielding property of TiO2 has led to its use in

skin-protecting sunscreens and cosmetics [13–15]. Although TiO2 is a vital component of

these everyday products, its use means that human-made TiO2NPs will inevitably be released

into the ecosystem. Experimental data–based safety guidelines for the release of TiO2NPs into

fresh or salt water are not yet available. For example, neither the United States Environmental

Protection Agency Aquatic Life Criteria nor the United Kingdom Environmental Quality

Standards clearly indicate specific standards for the release of TiO2NPs [2]. Contamination by

TiO2NPs has been proven to negatively affect aquatic life-forms, primarily through direct NP-

induced toxicity [16, 17], although the other indirect damages remain unclear.

Zebrafish (Danio rerio) are widely used for vertebrate models in the study of diseases and is

increasingly being used in preclinical and toxicological studies [16]. As many fundamental cel-

lular pathways involved in the response to toxicants or stresses are highly conserved between

the zebrafish and mammals, it has been considered as a ‘gold standard’ for environmental tox-

icity assessment [18]. More recently, it has been demonstrated to be a useful model for evaluat-

ing the environmental health and safety impacts of engineered nanomaterials and nanoscale

products, which are increasingly being produced as a result of developments in nanotechnol-

ogy [17–26]. In addition, benefited by the size and transparent body, zebrafish could be used

to observe the impact of NPs on the induction of reactive oxygen species and apoptosis path-

ways at the cellular level [17, 20, 23, 24, 26, 27]. Furthermore, various analysis methods and

high-throughput screening systems have been developed for use in toxicological evaluations

[28, 29].

The direct effects of NP-induced toxicity have been revealed by recent studies [19–27, 30–

34]. However, the NP-induced collateral damages, such as interactions between injured fish

and surrounding microorganisms, have not been considered, and their role remains unclear.

We hypothesized that NP-induced injuries are desired conditions for the amplification of

those opportunistic infectious bacteria, which may be involved in NP-induced detrimental

effects in aquatic life forms. Accordingly, in this study, we investigated the progression of

photocatalysis-independent TiO2NP-induced injury using a zebrafish model. We found that

TiO2NP-induced opportunistic bacterial gill infections play a critical role in TiO2NP-induced

zebrafish death. Potential implications are also discussed.

Materials and methods

Chemicals and TiO2NPs

The chemicals used in this study were purchased from Sigma-Aldrich (St. Louis, MO, USA).

To prepare the stock solutions of 1 mg/mL Degussa P25 (Evonik Degussa, Essen, Germany)

TiO2NPs (21 ± 5 nm) [4, 8, 35], the NPs were dispersed in distilled deionized water under son-

ication (50 W/L, 40 kHz) for 20 min. Test TiO2NP solutions were prepared immediately before

use through dilution of the stock solutions with distilled deionized water and sonication (50

W/L, 40 kHz) for 20 min. In our studies, the particle size distributions and z-potential were

estimated using the dynamic light scattering method (DLS) with a Zetasizer Nano ZS (Malvern

Instruments, Malvern, UK) [36, 37]. The averaged z-potential of the used TiO2NPs in solution

was 22.08 ± 0.32 mV, with pH value around 5.35–5.45. The TiO2NPs obtained (from Sigma

Aldrich) has an averaged particle size about 20 nm according to company specification, but in

medium the particles aggregated and measured to be 100 nm.

Zebrafish maintenance and experimental procedure

Adult wild zebrafish were used in the experiment and were kept in a semistatic system with

charcoal-filtered tap water (pH 7.0–7.4) at 28 ± 0.5˚C as recommended in a previous study
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[38], with a 12-h light–12-h dark (12L:12D) photocycle (Classictone incandescent lamp, Phil-

ips; Taiwan, without illuminating UV to avoid UV-induced photocatalysis [5, 11, 12, 33, 39,

40]). The fish were fed newly hatched brine shrimp and pellet food (Zeigler Brothers, Gard-

ners, PA, USA) and were kept in 30-L glass tanks with 20 L of water per tank. The zebrafish

undergoing testing were exposed to TiO2NPs in well water for 21 days, and the mortality was

recorded each day. The Kaplan Meier curves are plotted using the Online Application for the

Survival Analysis of Lifespan Assay (http://sbi.postech.ac.kr/oasis) [41–44]. Fish from three of

the 3-L tanks were selected for behavior analysis, in which the swimming speed of the zebrafish

was analyzed using Kinovea software (version 0.8.24; available at http://www.kinovea.org/) in

accordance with methods used in previous studies [45, 46]. After the experiment, the fish were

euthanized with an overdose of tricaine methanesulfonate MS-222 (0.03%; Sigma-Aldrich).

The gill and fin tissue samples were excised, weighed, cut into small pieces, and homogenized

with 100 μL of phosphate-buffered saline at 4˚C. Next, the 30-μL tissue homogenates were

placed on luria broth (LB) agar plates (BD Difco LB Agar; Becton Dickinson, Taipei, Taiwan),

using standard bacterial culture protocols [39, 47]. The bacteria colony–forming unit on the

plates was determined at a 24-h incubation period at 37˚C according to previously described

methods [39]. The zebrafish (AB strain) used in the present study were obtained from the zeb-

rafish facility at the Laboratory Animal center of Tzu Chi University. Institutional Animal

Care and Use Committee of Tzu Chi University approved all animal experiments in this study

(approval ID: 105060).

Ethics statements

All methods on the collection and analyses of zebrafish samples were performed in accordance

with Animal Protection Act, Taiwan, and were approved by the Institutional Animal Care and

Use Committee of Tzu-Chi University, Hualien, Taiwan (approval ID: 105060).

Microbiome analysis

DNA preparation. The bacterial genomic DNA was extracted from the 200-mg frozen

gill samples with a QIAamp Fast DNA Stool Mini Kit (Qiagen, Venlo, Netherlands). After iso-

lation, the DNA yield was approximately 1–2 μg. The DNA sample was stored at −20˚C before

polymerase chain reaction (PCR) amplification.

PCR amplification. The DNA samples were adjusted to 25 μg/mL. Forward and reverse

primers that were complementary upstream and downstream of the V3-V4 region of 16S were

designed with Illumina overhang adapters, and used to amplify templates from bacterial genomic

DNA. The following 16S amplicon PCR primer sequences were shown: forward, 5’-TCG TCG
GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC AG-3’;

reverse, 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV
GGG TAT CTA ATC C-3’. The PCR products were then purified with a GenepHlow Gel/

PCR purification kit (Geneaid, New Taipei City, Taiwan).

Index PCR and clean up. The Illumina sequencing adapters and dual indices were

attached to the PCR products using the Nextera XT Index Kit (Illumina Inc, San Diego, CA,

USA). Next, AMPure XP beads were used to clean up the final libraries, and the expected size

on the Bioanalyzer trace of the final libraries was approximately 630 bp.

Normalization and sequencing. Libraries were normalized and pooled and then

sequenced on the MiSeq System using v3.0 reagents (paired-end 250 bp, Illumina Inc).

Data analysis. Because microbiota profiling using specific hypervariable regions of 16S

ribosomal RNA cannot reach taxonomic levels lower than the family or genus level [48], we
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obtained the results at the family level. The microbiome analysis data is available at NCBI

Sequence Read Archive, Accession: SRR14876120.

Statistical analysis. The mortality of zebrafish was calculated using Online Application

for the Survival Analysis of Lifespan Assay (http://sbi.postech.ac.kr/oasis) [41–44]. A t test was

used to assess the statistical significance of differences in antimicrobial effects. A P -value of

less than 0.05 (P< 0.05) was considered significant. The statistical tests were performed and

output to graphs using Microsoft Excel (Microsoft, Taipei, Taiwan) and SigmaPlot (Systat

Software, Point Richmond, CA, USA).

Results

Increased TiO2NP levels in water reduced motility and induced mortality

in adult zebrafish

Two doses (5 and 40 mg/L) of TiO2NPs were used in the investigation of TiO2NP-induced

mortality in adult zebrafish (Fig 1). We found that the 5 and 40 mg/L doses of TiO2NPs

induced 100% mortality in adult zebrafish after 20 and 7 days, respectively (Fig 1A experiment

outline; Fig 1B).

Although no mortality had occurred by day 6, the absorbance of water in the zebrafish

tanks was considerably increased compared with that of the untreated control groups (Fig

1C, untreated groups vs. groups treated with 5 mg/L TiO2NPs). For this reason, we hypothe-

sized that the zebrafish in the groups treated with 5 mg/L TiO2NPs may have been subject

to TiO2NP-induced injury prior to mortality, and the resulting release of blood or tissue flu-

ids would subsequently cause optical-density changes in the water. Consequently, to assess

the physical condition of the fish, the motility (Fig 2A–2C, experiment setting; Fig 2D–2F)

and body weight (Fig 2G) of the fish in the untreated groups were compared with those of

the groups treated with 5 mg/L TiO2NPs prior to mortality (day 6 in the 5 mg/L TiO2NPs

groups). We found that when compared with the untreated groups, the groups treated with

5 mg/L TiO2NPs exhibited remarkably reduced motility, as indicated by decreases in both

the average swimming speed and spot swimming speed of the zebrafish (Fig 2D–2F). These

results indicated that the fish in the groups treated with 5 mg/L TiO2NPs were harmed by

the TiO2NPs.

Fig 1. Zebrafish mortality is associated with increased TiO2NP levels in the water. (A) Experiment outline. (B)

TiO2NP dose–dependent induction of mortality in zebrafish. (C) Increase in water OD after the addition of TiO2NPs.
� P< 0.05, compared with the untreated group; † P< 0.05, compared with the 40 mg/L treatment groups (B); �

P< 0.05, compared with the untreated groups; † P< 0.05, compared with the groups at day 0 (C) n = 16.

https://doi.org/10.1371/journal.pone.0247859.g001
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TiO2NP-induced mortality in zebrafish is associated with increased gill

bacterial counts

Pure TiO2NPs do not display antibacterial property unless with exposure of UV [4, 10–12, 33,

39, 40, 49]. To maintain zebrafish, incandescent lamps were used as a light source, which does

not irradiate UV light to induce photocatalysis, and thus the TiO2NPs will not exert antibacte-

rial effects in this experimental condition [5, 11]. To further investigate whether the increased

water optical density (OD) was caused by an overgrowth of bacteria, we analyzed bacteria colo-

nies from the water and the zebrafish tissues by using a plating method (Fig 3 and S1 Fig in S1

Data). We found that the TiO2NP treatments substantially increased the number of bacteria

colonies in the water samples. Among the analyzed zebrafish tissues, including those from

gills, dorsal fins, and caudal fins, only the gill samples exhibited a significant increase in the

number of bacteria colonies (Fig 3; �� P< 0.01, TiO2-treated groups vs. untreated groups).

This result indicates that TiO2NP-induced zebrafish injury involves gill infection.

Because the plating method can only reveal culturable bacteria [50, 51], metagenomic anal-

ysis was performed to investigate the entire spectrum of the bacteria population in the infected

zebrafish gills. The relative abundance (% relative to the total) of the bacteria populations was

analyzed in specific hypervariable regions of 16S ribosomal RNA through new-generation

sequencing analyses (Fig 4 and S2 Fig in S1 Data). We found that the phyla Proteobacteria,

Bacteroidetes, and Actinobacteria, all of which are bacteria found in normal zebrafish gut

microbiomes [52–55], accounted for more than 95% of the total bacteria counts (Fig 4).

Because the fish culture conditions did not include pathogens, these results indicate that

TiO2NP-induced zebrafish gill injury is associated with opportunistic infection of the gut nor-

mal flora.

Discussion

Zebrafish have been used to study engineered nanomaterials and NPs in various fields, such as

biomedical research [38, 56–58] and studies on environmental health and safety [59, 60]. Most

relevant studies have reported that TiO2NPs are toxic and induce mortality in zebrafish

embryos but are less toxic and cause less mortality in adult zebrafishes; this finding is likely

attributable to the fact that these studies have tended to focus only on observations of acute

stimulation [18, 61–64]. In addition, although researchers have concluded that the injury and

mortality in the tested zebrafish were attributable to the chemical and physical properties of

NPs [18, 61–64], damage caused by secondary infections has yet to be investigated.

In our study, we found that treating adult zebrafish with 1–3 weeks of relatively low doses

(5–40 mg/L) of TiO2NPs led to reduced motility, reduced body weight, and increased mortal-

ity. Additionally, we also found that the adverse effects of TiO2NPs were associated with gill

infection. Accordingly, we postulate a hypothetical model, in which TiO2NPs-induced gill

injury the fish at the first stage, while opportunistic gill infection may further exacerbate the

injury and then lead to mortality (Fig 5). This suggests that wild fish inhabiting rivers, lakes,

and oceans may not immediately die upon exposure to water contaminated by TiO2NPs but

that subsequent opportunistic infections determine the survival of aquatic life-forms subject to

NP-induced injury.

Through metagenomic analysis, we discovered that bacteria found in the gill samples of

zebrafish with NP-induced injury, such as the phyla Proteobacteria, Bacteroidetes, and Actino-
bacteria, accounted for more than 95% of the total bacteria count; these types of bacteria are all

found in normal zebrafish gut microflora [52–55]. This result is likely attributable to the fact

that the zebrafish in the experiment were kept under pathogen-free conditions; no pathogens

other than normal flora were present. However, considering the fact that a larger number of
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pathogenic microorganisms coexist in the normal habitats of wild aquatic life-forms, TiO2NPs

may theoretically be more toxic to wild fish and lead to higher mortality. As an increasing

amount of NPs are released into rivers, lakes, and oceans [65, 66], infections in wild fish and

Fig 2. Analysis of zebrafish motility in water containing TiO2NPs. (A) Experiment outline and settings. (B, C)

Sequential images of zebrafish in tanks with water containing TiO2NPs. (D) 2D plots of zebrafish spot swimming speed

versus average swimming speed at day 0 (untreated) and (E) day 6 (with or without TiO2NPs); dashed lines represent the

average spot speed and average swimming speed of the groups at day 0. (F) Statistical analysis of zebrafish swimming

speed and (G) body weight under various conditions. � P< 0.05, compared with the untreated groups at day 6. n = 7.

https://doi.org/10.1371/journal.pone.0247859.g002
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other aquatic life-forms as a result of NP-induced injury represent a serious issue worthy of

further investigation.

Top 10 bacteria families and abundance (% total counts) in all detections

(Fig 4B) (k: Kingdom; P: Phylum; c: Class; o: Order; f: Family)

1. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Betaproteobacteriales;

f__Burkholderiaceae;g__Sphaerotilus.

Fig 3. Analysis of the relative number of bacteria found in the water and zebrafish tissue samples. (A) Experiment outline and (B) sampling positions for

bacterial culture. The culturable bacterial number in (B) the water, (C) zebrafish gill, (D) dorsal fin, and (E) caudal fin after analysis with the plating method. ��

P< 0.01, compared with the untreated control groups.

https://doi.org/10.1371/journal.pone.0247859.g003
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2. k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Sphingobacteriales;f__env.OPS_17;

g__Ambiguous_taxa;s__Ambiguous_taxa

3. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Aeromonadales;f__Aeromo-

nadaceae;g__Aeromonas.

4. k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Corynebacteriales;f__Mycobacteria-

ceae;g__Mycobacterium.

5. k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;

g__Cetobacterium

6. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Betaproteobacteriales;

f__Rhodocyclaceae;g__Methyloversatilis

7. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Entero-

bacteriaceae;g__Plesiomonas;s__Ambiguous_taxa.

8. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Betaproteobacteriales;

f__Methylophilaceae;g__Methylophilus

9. k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Devosiaceae;

g__Devosia.

10. k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Chitinophagales;f__Chitinophagaceae;

g__Terrimonas.

Fig 4. Metagenomic analysis of bacterial communities in the gill samples of zebrafish with TiO2NP-induced injury.

(A) Relative abundance (% relative to the total) of the bacteria populations calculated for specific hypervariable regions of

16S ribosomal RNA through new-generation sequencing analyses. (B) Relative abundance (% counts of total) of the top

10 overall bacteria families (listed in the following paragraph). (C) Top 5 bacteria families in the Proteobacteria phylum

(most abundant phylum; listed below). (D) Top 4 bacteria families in Bacteroidetes phylum (second abundant phylum;

listed below).

https://doi.org/10.1371/journal.pone.0247859.g004
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Top 5 bacteria families and abundance (% of total counts) in Proteobacteria
phylum (Fig 4C)

1. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Betaproteobacteriales;

f__Burkholderiaceae;g__Sphaerotilus.

2. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Aeromonadales;f__Aeromo-

nadaceae;g__Aeromonas.

3. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Betaproteobacteriales;

f__Rhodocyclaceae;g__Methyloversatilis.

4. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Entero-

bacteriaceae;g__Plesiomonas;s__Ambiguous_taxa.

5. k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Betaproteobacteriales;

f__Methylophilaceae;g__Methylophilus.

Top 4 bacteria families and abundance (% of total counts) in Bacteroidetes
phylum (Fig 4D)

1. k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Sphingobacteriales;f__env.OPS_17;

g__Ambiguous_taxa;s__Ambiguous_taxa.

Fig 5. A model for putative role of opportunistic gill infection in TiO2NP-induced mortality in zebrafish. After TiO2NP treatments, the gill

of healthy zebrafishes (A) become injured (B). The gill injury further leads to opportunistic infection and increased mortality in zebrafish (C).

https://doi.org/10.1371/journal.pone.0247859.g005
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2. k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Chitinophagales;f__Chitinophagaceae;

g__Terrimonas.

3. k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Cytophagales;f__Spirosomaceae;

g__Emticicia.

4. k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Chitinophagales;f__Chitinophagaceae;

g__Sediminibacterium

Supporting information

S1 Data.

(DOCX)

S1 Checklist.

(PDF)
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