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Abstract

Ever since the outbreak of the COVID-19 epidemic, various public health control strategies

have been proposed and tested against the coronavirus SARS-CoV-2. We study three spe-

cific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered

(SEIR) model with vaccination control; the SEIR model with shield immunity control; and the

susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC)

model with quarantine control. We express the control requirement in metric temporal logic

(MTL) formulas (a type of formal specification languages) which can specify the expected

control outcomes such as “the deaths from the infection should never exceed one thousand

per day within the next three months” or “the population immune from the disease should

eventually exceed 200 thousand within the next 100 to 120 days”. We then develop methods

for synthesizing control strategies with MTL specifications. To the best of our knowledge,

this is the first paper to systematically synthesize control strategies based on the COVID-19

epidemic models with formal specifications. We provide simulation results in three different

case studies: vaccination control for the COVID-19 epidemic with model parameters esti-

mated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with

model parameters estimated from data in Lombardy, Italy; and quarantine control for the

COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The

results show that the proposed synthesis approach can generate control inputs such that

the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy

the MTL specifications. The results also show that early intervention is essential in mitigating

the spread of COVID-19, and more control effort is needed for more stringent MTL specifica-

tions. For example, based on the model in Lombardy, Italy, achieving less than 100 deaths

per day and 10000 total deaths within 100 days requires 441.7% more vaccination control

effort than achieving less than 1000 deaths per day and 50000 total deaths within 100 days.
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1 Introduction

The COVID-19 pandemic [1] has caused over 28 million confirmed cases and over 0.91 mil-

lion deaths globally as of September 12, 2020. Ever since the outbreak of COVID-19, various

public health control strategies have been proposed and tested against the coronavirus SARS-

CoV-2 [2–4].

Currently, over 90 vaccines are being developed against SARS-CoV-2 by research teams

across the world [5]. Besides vaccination, other strategies have also been proposed to control

the spread of SARS-CoV-2. In [6], the authors proposed shield immunity to protect the suscep-

tible people from getting infected with SARS-CoV-2. Specifically, shield immunity works by

first identifying and deploying recovered individuals who have protective antibodies to SARS-

CoV-2, and then increasing the proportion of interactions with recovered individuals as

opposed to other individuals. In [7], the authors analyzed how quarantine has mitigated the

spread of SARS-CoV-2 based on a model that differentiates quarantined infected individuals

and un-quarantined infected individuals.

Despite the fact that various promising control strategies have been proposed against

SARS-CoV-2, such control strategies still suffer from several limitations. (a) The control strate-

gies against SARS-CoV-2 often treat the control inputs (e.g., the shield strength in shield

immunity and the quarantine rate in quarantine control) as parameters that stay constant dur-

ing one stage of time, while in reality such parameters may change on a daily basis with more

fine-tuned control. (b) The control inputs in the literature are often tuned manually through

trial-and-error instead of being synthesized systematically. (c) There is a lack of specific and

formal specifications for the expected effects and outcomes of the control strategies.

To address these limitations, we propose a systematic control synthesis approach for three

control strategies against SARS-CoV-2. We use metric temporal logic (MTL) formulas to spec-

ify the expected control outcomes such as “the deaths from the infection should never exceed
one thousand per day within the next three months” or “the population immune from the disease
should eventually exceed 200 thousand within the next 100 to 120 days”. Such temporal logic

formulas have been used as high-level knowledge or specifications in many applications in

artificial intelligence [8], robotic control [9], power systems [10], etc.

The proposed control synthesis approach is based on three specific COVID-19 epidemic

mitigation models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccina-

tion control; the SEIR model with shield immunity control; and the susceptible, un-quaran-

tined infected, quarantined infected, confirmed infected (SUQC) model with quarantine

control. We develop methods for synthesizing control strategies based on the three specific

COVID-19 epidemic models with MTL specifications. Specifically, we convert the synthesis

problem into mixed-integer bi-linear programming or mixed-integer fractional constrained

programming problems, and solve the optimization problems using highly efficient solvers

[11].

We provide simulation results in three different case studies: vaccination control for

COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield

immunity control for COVID-19 epidemic with model parameters estimated from data in

Lombardy, Italy; and quarantine control for COVID-19 epidemic with model parameters esti-

mated from data in Wuhan, China. The proposed synthesis approach can generate control

inputs such that the time-varying numbers of individuals in each category (e.g., infectious,

immune) satisfy the MTL specifications.

Based on the simulation results, we observe that early control is essential in mitigating the

spread of COVID-19, and more control effort is needed for more stringent MTL specifications.

For example, based on the model in Lombardy, Italy, achieving less than 100 deaths per day
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and 10000 total deaths within 100 days requires 441.7% more vaccination control effort than

achieving less than 1000 deaths per day and 50000 total deaths within 100 days. As the control

inputs are generated on a daily basis, the proposed approach can be used to assist and provide

quantitative guidelines in public health control strategies to achieve specific specifications for

mitigating the spread of COVID-19.

2 Related work

COVID-19 epidemic modeling and control strategies. Ever since the outbreak of COVID-

19, there has been numerous research focusing on the modeling of COVID-19 epidemic based

on data collected from both the epicenters and other places [12–17]. Among the various mod-

els, compartmental models such as SEIR and SUQC models have been used frequently for the

analysis of COVID-19. There has also been work in analyzing or predicting the spread of

COVID-19 using artificial intelligence models [17, 18], stochastic intensity models [13], etc.

The models we use in this paper are based on the SEIR (both the standard and with shield

immunity) and SUQC models, but we have replaced some essential parameters (e.g., the shield

strength in shield immunity, the quarantine rate in quarantine control) with control inputs

which can be synthesized to vary on a daily basis.

Optimal control of epidemic models. There exist works in designing vaccination control

for the SEIR or SIR models of epidemics [19, 20]. However, such methods have not been

applied in the setting of COVID-19. Besides, there has been no work in optimal control of epi-

demic models with formal specifications (e.g., expressed in temporal logic formulas).

Control synthesis with temporal logic specifications. There are three main categories of

approaches to designing controllers that meet temporal logic specifications [21–31]. The first cat-

egory of approaches abstract the system as a transition system and transform the control synthe-

ses problem into a series of constrained reachability problems [32–34]. The second category of

approaches mainly focus on linear dynamical systems and they convert the control synthesis

problem into a mixed-integer linear programming (MILP) problem [35–40] which can be solved

efficiently by MILP solvers. The third category of approaches substitute the temporal logic con-

straint into the objective function of the optimization problem and apply a functional gradient

descent algorithm on the resulting unconstrained problem [10, 41–43]. The control synthesis

approach in this paper is based on the second category of approaches, but we have extended the

method to non-linear dynamical systems to fit the epidemic models for COVID-19.

3 Methodology

In this section, we provide the descriptions of methodology for synthesizing control strategies

based on the three specific COVID-19 epidemic models with metric temporal logic (MTL)

specifications. We first review MTL in Section 3.1, then introduce three control models for

COVID-19 epidemic (vaccination control, shield immunity control and quarantine control)

in Section 3.2, and finally present the control synthesis methods for the three COVID-19 con-

trol models in Section 3.3.

3.1 Metric Temporal Logic (MTL)

In this subsection, we briefly review metric temporal logic (MTL) [44] interpreted over dis-

crete-time trajectories. The state x belongs to the domain X � Rn
. The time set is T ¼ R�0.

The domain B ¼ fTrue; Falseg is the Boolean domain, and the time index set is

I ¼ f0; 1; . . .g. We use t½k� 2 T to denote the time instant at time index k 2 I and

x½k�¼4 xðt½k�Þ to denote the value of x at time instant t[k]. We use ξ to denote a trajectory as a
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function from T to X . A set AP is a set of atomic propositions, each mapping X to B. For

example, the state x can be in the form of [x1, x2], where x1 and x2 represent the number of

deaths from COVID-19 and the number of recovered patients from COVID-19 in a certain

geographic region, respectively. Then, an atomic proposition could be in the form of (x1�

0.01), which means “the number of deaths from COVID-19 in the region does not exceed 0.01

million”, or in the form of (x2� 6), which means “the number of recovered patients from

COVID-19 in the region is at least 6 million” (in this paper we assume that the unit in the state

is million, unless otherwise indicated). In such context, if x1 = 0.002 and x2 = 4, then (x1�

0.01) is True, and (x2� 6) is False.

The syntax of MTL is defined recursively as follows:

φ≔> j p j :φ j φ
1
^ φ

2
j φ

1
_ φ

2
j φ

1
UIφ2

; ð1Þ

where> stands for the Boolean constant True, π 2 AP is an atomic proposition, ¬ (negation),

^ (conjunction), _ (disjunction) are standard Boolean connectives, U is a temporal operator

representing “until”, I is a time index interval of the form I ¼ ½i1; i2� (i1� i2, i1; i2 2 I). We

can also derive two useful temporal operators from “until” (U), which are “eventually” ♢Iφ ¼
>UIφ and “always” □Iφ ¼ :♢I:φ. Following the example of x = [x1, x2], where x1 and x2 rep-

resent the number of deaths from COVID-19 and the number of recovered patients from

COVID-19 in a certain geographic region, respectively, an MTL formula can be in the form of

□½0;100�ðx1 � 0:01Þ ^ ♢½40;60�ðx2 � 6Þ; which means “the number of deaths from COVID-19

should never exceed 0.01 million within the next 100 days, and the number of recovered

patients from COVID-19 should be at least 6 million for at least one day within the next 40 to

60 days” (in this paper we assume that the unit in I is day in this paper, unless otherwise

indicated).

We define the set of states that satisfy the atomic proposition π as OðpÞ � X . We denote

hhφii(ξ, k) => if the trajectory ξ satisfies the formula φ at discrete-time instant t[k] (k 2 I).
Then the Boolean semantics of MTL are defined recursively as follows [45]:

hh>iiðx; kÞ≔ >;

hhpiiðx; kÞ≔ x½k� 2 OðpÞ;

hh:φiiðx; kÞ≔ :hhφiiðx; kÞ;

hhφ
1
_ φ

2
iiðx; kÞ≔ hhφ

1
iiðx; kÞ _ hhφ

2
iiðx; kÞ;

hhφ
1
UIφ2

iiðx; kÞ≔
_

k02ðkþIÞ

ðhhφ
2
iiðx; k0Þ ^

^

k�k00<k0
hhφ

1
ii

ðx; k00ÞÞ;

ð2Þ

where kþ I ¼ fkþ ~kj~k 2 Ig.

3.2 COVID-19 models with control strategies

In this subsection, we study three models for COVID-19 epidemic [6, 7, 14] and introduce the

corresponding models with vaccination control, shield immunity control and quarantine

control.

COVID-19 SEIR model with vaccination control. The susceptible, exposed, infectious,

recovered (SEIR) model has been frequently used in epidemic analyses. As shown in Fig 1, the

total population is divided into five subgroups:
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• The susceptible population S: everyone is susceptible to the disease by birth since immunity

is not hereditary;

• The exposed population E: the individuals who have been exposed to the disease, but are still

not infectious;

• The infectious population I: the individuals who are infectious;

• The immune (recovered) population R: the individuals who are vaccinated or recovered

from the disease, i.e., the population who are immune to the disease;

• The dead population D: the dead individuals from the disease.

We consider a COVID-19 SEIR model [14, 15] with vaccination control [19] as follows.

_I ¼ �E � ðgþ mþ aÞI;

_E ¼ bSI=N � ðmþ �ÞE;

_S ¼ lN � mS � bSI=N � V;

_R ¼ gI � mRþ V;

_D ¼ aI;

ð3Þ

where the control input V is the number of vaccinated individuals per day, N = S + E + I + R�
N0 is the total population in the region (N0 is the initial total population in the region), S, E, I,
R and D are the number of susceptible, exposed, infectious and recovered population in the

Fig 1. Block diagram of the COVID-19 SEIR model with vaccination control.

https://doi.org/10.1371/journal.pone.0247660.g001
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region, respectively, and D is the number of deaths from SARS-CoV-2 in the region. For the

parameters, λ denotes the per-capita birth rate, μ is the per-capita natural death rate (death

rate from causes unrelated to SARS-CoV-2), α is the SARS-CoV-2 virus-induced average fatal-

ity rate, β is the probability of disease transmission per contact (dimensionless) times the num-

ber of contacts per unit time, � is the rate of progression from exposed to infectious (the

reciprocal is the incubation period), and γ is the recovery rate of infectious individuals (the

reciprocal is the infectious period). In this paper, we assume that the birth rate and the natural

death rate are the same for the population we are investigating, i.e., λ = μ. Hence, from (3) we

can derive that _D ¼ � _I � _E � _S � _R which means that I + E + S + R + D does not change

over time. Therefore, we have D = N0 − I − E − S − R = N0 − N.

Remark 1. Note that one difference between this model and the vaccination control model in
[19] is that we control V as the number of vaccinated individuals per day (constrained to be less
than the susceptible population S), while in [19] the control input is the ratio of the vaccinated
individuals per day to the average born population per day. We found it more convenient this
way for computational convenience in the control synthesis in Section 3.3.

COVID-19 SEIR model with shield immunity control. Shield immunity is a strategy

recently proposed in [6] to limit the transmission of SARS-CoV-2. The basic idea of this strat-

egy is to increase the proportion of interactions with recovered individuals as opposed to the

other individuals in the population. The effectiveness of this strategy is based on the assump-

tion that recovered individuals (virus-negative and antibody-positive) can safely interact with

both susceptible and infectious individuals without getting infected with the disease.

As the model used in [6] is modified from an SIR model, we consider a corresponding SEIR

model with shield immunity control as follows (see Fig 2 as an illustration).

_I ¼ �E � ðgþ mþ aÞI;

_E ¼ bSI=ðN þ wRÞ � ðmþ �ÞE;

_S ¼ lN � mS � bSI=ðN þ wRÞ;

_R ¼ gI � mR;

_D ¼ aI;

ð4Þ

where the states and parameters are the same as in (3), while χ(�) is the shield strength [6] as

control input to be synthesized for the recovered population to substitute the contact for the

susceptible population.

COVID-19 SUQC model with quarantine control. The susceptible, un-quarantined

infected, quarantined infected, confirmed infected (SUQC) model was recently proposed in

[7] based on the COVID-19 data in Wuhan, China. As shown in Fig 3, we consider four sub-

groups in the population:

• The susceptible population S: everyone is susceptible to the disease by birth since immunity

is not hereditary;

• The un-quarantined infected population U: the individuals who are infected and un-quaran-

tined, and they can be either asymptomatic or symptomatic;

• The quarantined infected population Q: the individuals who are infectious and quarantined

(the un-quarantined infected become quarantined infected by isolation or hospitalization,

and the quarantined infected lose the ability of infecting the susceptible individuals);
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• The confirmed infected population C: the individuals who are confirmed to be infected with

the disease (i.e., the positive cases).

We consider the SUQC model with quarantine control as follows.

_S ¼ � b0US=N;

_U ¼ b0US=N � qU;

_Q ¼ qU � ðg2 þ ð1 � g2ÞsÞQ;

_C ¼ ðg2 þ ð1 � g2ÞsÞQ;

ð5Þ

where q is the quarantine rate (for an un-quarantined infected to be quarantined) as control

input to be synthesized, S, U, Q and C are the number of susceptible, un-quarantined infected,

quarantined infected and confirmed infected population in the region, respectively, β0 is the

infection rate (i.e., the mean number of new infected caused by an un-quarantined infected

per day), γ2 is the confirmation rate of Q (i.e., the probability that the quarantined infected are

identified to be confirmed cases through conventional methods such as laboratory diagnosis),

Fig 3. Block diagram of the COVID-19 SUQC model with quarantine control.

https://doi.org/10.1371/journal.pone.0247660.g003

Fig 2. Block diagram of the COVID-19 SEIR model with shield immunity control.

https://doi.org/10.1371/journal.pone.0247660.g002

PLOS ONE Control strategies for COVID-19 epidemic with vaccination, shield immunity and quarantine

PLOS ONE | https://doi.org/10.1371/journal.pone.0247660 March 5, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0247660.g003
https://doi.org/10.1371/journal.pone.0247660.g002
https://doi.org/10.1371/journal.pone.0247660


σ is the subsequent confirmation rate of those infected that are not confirmed by the conven-

tional methods, but confirmed with additional tests.

3.3 Control synthesis of COVID-19 epidemic with metric temporal logic

specifications

In this subsection, we present the control synthesis methods for the three COVID-19 epidemic

models in Section 3.2 with vaccination control, shield immunity control and quarantine con-

trol, respectively.

Vaccination control. For the COVID-19 SEIR model with vaccination control, we discre-

tize the model in (3) as follows.

I½kþ 1� ¼ I½k� þ Ts�E½k� � Tsðgþ mþ aÞI½k�;
E½kþ 1� ¼ E½k� þ TsbS½k�I½k�=N½k� � Tsðmþ �ÞE½k�;
S½kþ 1� ¼ S½k� þ TslN½k� � TsmS½k� � TsbS½k�I½k�=N½k�

� TsV½k�;
R½kþ 1� ¼ R½k� þ TsgI½k� � TsmR½k� þ TsV½k�;
D½kþ 1� ¼ D½k� þ TsaI½k�;

ð6Þ

where Ts is the sampling period. We also use ΔD[k] = D[k] − D[k − 1] to denote the number of

deaths from the infection at day k.

Following the notations in Section 3.1, we use xV = [I, E, S, R, D] to denote the state of (6)

and x
V
�;xinitV ;V to denote the trajectory of (6) starting from xinit

V ¼ ½I½0�; E½0�; S½0�;R½0�;D½0�� and

vaccination control input V[�].

Problem 1 (Vaccination control). Given the SEIR model with vaccination control in (6) and
an MTL specification φV, compute the control input V[�] that minimizes the vaccination control
efforts kV[�]k while satisfying hhφViiðx

V
�;xinitV ;V ; 0Þ ¼ >, i.e., the trajectory xV

�;xinitV ;V satisfies the MTL

specification φV.

The vaccination control synthesis problem can be formulated as a constrained optimization

problem as follows.

min
V½��

kV½��k

s:t: I½kþ 1� ¼ I½k� þ Ts�E½k� � Tsðgþ mþ aÞI½k�;
8k ¼ 0; � � � ;T � 1;

E½kþ 1� ¼ E½k� þ TsbS½k�I½k�=N½k� � Tsðmþ �ÞE½k�;
8k ¼ 0; � � � ;T � 1;

S½kþ 1� ¼ S½k� þ TslN½k� � TsmS½k� � TsbS½k�I½k�=N½k�
� TsV½k�; 8k ¼ 0; � � � ;T � 1;

R½kþ 1� ¼ R½k� þ TsgI½k� � TsmR½k� þ TsV½k�;
8k ¼ 0; � � � ;T � 1;

D½kþ 1� ¼ D½k� þ TsaI½k�;8k ¼ 0; � � � ;T � 1;

0 � V½k� � S½k�; 8k ¼ 0; � � � ;T;
hhφViiðx

V
�;xinitV ;V ; 0Þ ¼ >;

ð7Þ

where T 2 I is the maximal time index we consider.
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The above optimization problem is generally a mixed-integer non-linear programming

problem. We refer the readers to [38] for a detailed description of how the constraint

hhφViiðx
V
�;xinitV ;V ; 0Þ ¼ > is encoded to satisfy an MTL specification φV. The integer variables

are introduced when a big-M formulation [46] is needed to satisfy MTL specifications such as

♢[0,10]φ (φ should hold true for at least one day during the first 10 days) or φ1 _ φ2 (at least one

of the MTL formulas φ1, φ2 should hold true). As the change of total population is relatively

small compared to the multiplication of the susceptible population and the infectious popula-

tion, we approximate the term TsβS[k]I[k]/N[k] with TsβS[k]I[k]/N0. With such an approxima-

tion, the optimization problem becomes a mixed-integer bi-linear programming problem,

which can be more efficiently solved using techniques such as McCormick’s relaxation [47,

48]. Furthermore, if the MTL specification φ consists of only conjunctions (^) and the always

operator (□), the integers in the optimization problem can be eliminated [38] and the problem

becomes a bi-linear programming problem.

Shield immunity control. For the COVID-19 SEIR model with shield immunity control,

we discretize the model in (4) as follows.

I½kþ 1� ¼ I½k� þ Ts�E½k� � Tsðgþ mþ aÞI½k�;

E½kþ 1� ¼ E½k� þ TsbS½k�I½k�=ðN½k� þ w½k�R½k�Þ

� Tsðmþ �ÞE½k�;

S½kþ 1� ¼ S½k� þ TslN½k� � TsmS½k� � TsbS½k�I½k�=ðN½k�

þ w½k�R½k�Þ;

R½kþ 1� ¼ R½k� þ TsgI½k� � TsmR½k�;

D½kþ 1� ¼ D½k� þ TsaI½k�;

ð8Þ

where Ts is the sampling period.

Following the notations in Section 3.1, we use xS = [I, E, S, R, D] to denote the state of (8)

and x
S
�;xinitS ;w

to denote the trajectory of (8) starting from xinit
S ¼ ½I½0�; E½0�; S½0�;R½0�;D½0�� and

shield immunity control input χ[�].

Problem 2 (Shield immunity control). Given the SEIR model with shield immunity control
in (8) and an MTL specification φS, compute the control input χ[�] that minimizes the shield
immunity control efforts kχ[�]k while satisfyinghhφSiiðx

S
�;xinitS ;w

; 0Þ ¼ >, i.e., the trajector-

yxS
�;xinitS ;w

satisfies the MTL specification φS.
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The shield immunity control synthesis problem can be formulated as a constrained optimi-

zation problem as follows.

min
w½��

kw½��k

s:t: I½kþ 1� ¼ I½k� þ Ts�E½k� � Tsðgþ mþ aÞI½k�;

8k ¼ 0; � � � ;T � 1;

E½kþ 1� ¼ E½k� þ TsbS½k�I½k�=ðN½k� þ w½k�R½k�Þ

� Tsðmþ �ÞE½k�; 8k ¼ 0; � � � ;T � 1;

S½kþ 1� ¼ S½k� þ TslN½k� � TsmS½k� � TsbS½k�

� I½k�=ðN½k� þ w½k�R½k�Þ; 8k ¼ 0; � � � ;T � 1;

R½kþ 1� ¼ R½k� þ TsgI½k� � TsmR½k�; 8k ¼ 0; � � � ;T � 1;

D½kþ 1� ¼ D½k� þ TsaI½k�;8k ¼ 0; � � � ;T � 1;

0 � w½k� � wmax; 8k ¼ 0; � � � ;T;

hhφSiiðx
S
�;xinitS ;w

; 0Þ ¼ >;

ð9Þ

where T 2 I is the maximal time index we consider, and χmax is the maximal shield strength.

The above optimization problem is generally a mixed-integer fractional constrained pro-

gramming problem. If the MTL specification φ consists of only conjunctions (^) and the

always operator (□), the integers in the optimization problem can be eliminated [38] and the

problem becomes a fractional constrained programming problem.

Quarantine control. For the COVID-19 SUQC model with quarantine control, we discre-

tize the model in (5) as follows.

S½kþ 1� ¼ S½k� � Tsb0U½k�S½k�=N½k�;

U½kþ 1� ¼ U½k� þ Tsb0U½k�S½k�=N½k� � q½k�U½k�;

Q½kþ 1� ¼ Q½k� þ Tsq½k�U½k� � Tsðg2 þ ð1 � g2ÞsÞQ½k�;

C½kþ 1� ¼ C½k� þ Tsðg2 þ ð1 � g2ÞsÞQ½k�;

ð10Þ

where Ts is the sampling period. We also use ΔC[k] = C[k] − C[k − 1] to denote the number of

confirmed infected individuals at day k.

Following the notations in Section 3.1, we use xQ = [S, U, Q, C] to denote the state of (10)

and x
Q
�;xinitQ ;q to denote the trajectory of (10) starting from xinit

Q ¼ ½S½0�;U½0�;Q½0�;C½0�� and quar-

antine control input q[�].

Problem 3 (Quarantine control). Given the SUQC model with quarantine control in(10)and
an MTL specification φQ, compute the control input q[�] that minimizes the quarantine control
efforts kq[�]k while satisfyinghhφQiiðx

Q
�;xinitQ ;q; 0Þ ¼ >, i.e., the trajectoryxQ

�;xinitQ ;qsatisfies the MTL

specification φQ.
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The quarantine control synthesis problem can be formulated as a constrained optimization

problem as follows.

min
q½��

kq½��k

s:t: S½kþ 1� ¼ S½k� � Tsb0U½k�S½k�=N½k�; 8k ¼ 0; � � � ;T � 1;

U½kþ 1� ¼ U½k� þ Tsb0U½k�S½k�=N½k� � q½k�U½k�;

8k ¼ 0; � � � ;T � 1;

Q½kþ 1� ¼ Q½k� þ Tsq½k�U½k� � Tsðg2 þ ð1 � g2ÞsÞQ½k�;

8k ¼ 0; � � � ;T � 1;

C½kþ 1� ¼ C½k� þ Tsðg2 þ ð1 � g2ÞsÞQ½k�;

8k ¼ 0; � � � ;T � 1;

0 � q½k� � qmax; 8k ¼ 0; � � � ;T;

hhφQiiðx
Q
�;xinitQ ;q; 0Þ ¼ >;

ð11Þ

where T 2 I is the maximal time index we consider, and qmax is the maximal quarantine rate.

The above optimization problem is generally a mixed-integer non-linear programming

problem. As the change of total population is relatively small compared to the multiplication

of the susceptible population and the un-quarantined infectious population, we approximate

the term Tsβ0U[k]S[k]/N[k] with Tsb0U½k�S½k�=N̂ 0 (we use N̂ 0 to denote the initial population

in the region in the scenario with quarantine control). With such an approximation, the opti-

mization problem becomes a mixed-integer bi-linear programming problem, which can be

more efficiently solved using techniques such as McCormick’s relaxation [47, 48]. Further-

more, if the MTL specification φ consists of only conjunctions (^) and the always operator

(□), the integers in the optimization problem can be eliminated [38] and the problem becomes

a bi-linear programming problem.

4 Results

In this section, we implement the proposed control synthesis methods in the COVID-19 mod-

els estimated from data in Lombardy, Italy and Wuhan, China.

4.1 COVID-19 SEIR model with vaccination control

The parameters of the COVID-19 SEIR model are shown in Table 1. They were estimated

using the data from February 23 to March 16, 2020 in Lombardy, Italy with no isolation

Table 1. Parameters of COVID-19 SEIR model estimated from data from Lombardy, Italy from February 23 to

March 16 (2020) with no isolation measures [14].

parameter value parameter value

λ 1/30295 � 0.2/day

μ 1/30295 γ 0.2/day

α 0.006/day N0 10 million

β 0.75/day Ts 1 day

https://doi.org/10.1371/journal.pone.0247660.t001
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measures (see Section 4.1 in [14] for details). Specifically, in Table 1, the values of λ and

μ are from “μ−1� 83 years” (as 83 years = 30295 days) in Section 4 in [14] and our assump-

tion that λ = μ, the values of α, β, � and γ are from the initial values listed in Table 1 in [14],

and the value of N0 is from Lombardy’s population listed in Wikipedia (https://en.wikipedia.

org/wiki/Lombardy). The start time for the simulations in this subsection is February 23,

2020. We consider three MTL specifications as shown in Table 2. For example,

φ1
V ¼ □½0;100�ðDD � 0:001Þ ^ □½0;100�ðD � 0:05Þ ^ ♢½40;60�ðR � 6Þ, which means “the deaths

from COVID-19 should never exceed 0.001 million (i.e., one thousand) per day and 0.05

million (i.e., 50 thousand) in total within the next 100 days, and the immune population

should eventually exceed 6 million within the next 40 to 60 days”. Following Section 4.1 in

[14, we choose the initial values of the states as I[0] = 1000 (people), E[0] = 0.02 million,

S[0] = 9.979 million, R[0] = 0 and D[0] = 0, with S[0] + E[0] + I[0] + R[0] + D[0] = N0 = 10

million. Fig 4 shows the simulation results without any vaccination. It can be seen that the

three MTL specifications φ1
V, φ2

V and φ3
V are all violated in such a situation. Note that as isola-

tion measures (i.e., home isolation, social distancing and partial national lockdown) were

taken since March 16 in Lombardy, Italy, the real situation was better than those shown in

Fig 4. Now we investigate the hypothetical scenario where the isolation measures are

replaced by vaccination.

We use the solver GEKKO [11] to solve the optimization problems formulated in Section

3.3. Fig 5 and Table 2 show the simulation results for vaccination control of COVID-19 SEIR

model with MTL specifications φ1
V, φ2

V and φ3
V, respectively. The results show that the MTL

specifications φ1
V, φ2

V and φ3
V are satisfied with the synthesized vaccination control inputs

respectively. It can be seen that vaccination within the first 40 days after the outbreak can miti-

gate the spread of SARS-CoV-2 in the most efficient manner. The results also show that the

control effort for satisfying φ1
V is less than that for satisfying φ2

V, which is still less than that for

satisfying φ3
V. This is consistent with the fact that φ2

V implies φ1
V, and φ3

V implies both φ1
V and

φ2
V. For all three specifications, the computations are completed within 4 seconds on a Mac-

Book laptop with 1.40-GHz Core i5 CPU and 16-GB RAM.

Table 2. MTL specifications and simulation results for vaccination control (Section 4.1).

MTL specification control effort computation time

φ1
V ¼ □½0;100�ðDD � 0:001Þ ^ □½0;100�ðD � 0:05Þ ^ ♢½40;60�ðR � 6Þ 1.28 1.365 s

φ2
V ¼ □½0;100�ðDD � 0:0005Þ ^ □½0;100�ðD � 0:02Þ ^ ♢½40;60�ðR � 6Þ 1.927 2.276 s

φ3
V ¼ □½0;100�ðDD � 0:0001Þ ^ □½0;100�ðD � 0:01Þ ^ ♢½40;60�ðR � 6Þ 6.934 3.289 s

https://doi.org/10.1371/journal.pone.0247660.t002

Fig 4. Simulation results for COVID-19 SEIR model estimated from data from Lombardy, Italy with no isolation measures.

https://doi.org/10.1371/journal.pone.0247660.g004
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4.2 COVID-19 SEIR model with shield immunity control

We use the same parameters of the COVID-19 SEIR model as shown in Table 1 (in the same

setting as in Section 4.1 for Lombardy, Italy, with no isolation measures). Following Section

4.1 in [14], we choose the initial values of the states as I[0] = 1000 (people), E[0] = 0.02 million,

S[0] = 9.979 million, R[0] = 0 and D[0] = 0, with S[0] + E[0] + I[0] + R[0] + D[0] = N0 = 10 mil-

lion. We set χmax = 100. The start time for the simulations in this subsection is February 23,

2020. We set the three MTL specifications φ1
S, φ

2
S and φ3

S (as shown in Table 3) to be less strin-

gent than the MTL specifications with the vaccination control, as shield immunity is generally

less effective than vaccination. It can be shown that without any control strategies the three

MTL specifications φ1
S, φ

2
S and φ3

S are all violated. Now we investigate the hypothetical scenario

where the isolation measures are replaced by shield immunity control.

Fig 6 and Table 3 show the simulation results for shield immunity control of the COVID-19

SEIR model with MTL specifications φ1
S, φ

2
S and φ3

S, respectively. The results show that the

Fig 5. Simulation results for the COVID-19 SEIR model with vaccination control and MTL specifications φ1
V (first row), φ2

V (second row) and φ3
V

(third row). The red dotted lines indicate the thresholds in the atomic propositions of the MTL specifications φ1
V, φ2

V and φ3
V.

https://doi.org/10.1371/journal.pone.0247660.g005

Table 3. MTL specifications and simulation results for shield immunity control (Section 4.2).

MTL specification control effort computation time

φ1
S ¼ □½0;100�ðDD � 0:003Þ ^ □½0;100�ðD � 0:01Þ ^ ♢½40;60�ðR � 1Þ 16879.53 2.112 s

φ2
S ¼ □½0;100�ðDD � 0:002Þ ^ □½0;100�ðD � 0:07Þ ^ ♢½40;60�ðR � 1Þ 45595.10 2.881 s

φ3
S ¼ □½0;100�ðDD � 0:002Þ ^ □½0;100�ðD � 0:06Þ ^ ♢½40;60�ðR � 1Þ 67786.88 5.323 s

https://doi.org/10.1371/journal.pone.0247660.t003
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MTL specifications φ1
S, φ

2
S and φ3

S are satisfied with the synthesized shield immunity control

inputs respectively. We observe that with the three MTL specifications, the synthesized shield

immunity control inputs all increase to a peak after approximately 20 to 40 days and then grad-

ually decrease. These observations indicate that shield immunity at early days of COVID-19 is

more efficient than shield immunity at later days. The results also show that the control effort

for satisfying φ1
S is less than that for satisfying φ2

S, which is still less than that for satisfying φ3
S.

This is consistent with the fact that φ2
S implies φ1

S, and φ3
S implies both φ1

S and φ2
S.

4.3 COVID-19 SUQC model with quarantine control

The parameters of the COVID-19 SUQC model are shown in Table 4. In Table 4, the value of

the infection rate β0 is from “Methods/Parameter inference” in [7] (the authors in [7] used α to

denote the infection rate), the value of N̂ 0 is from Wuhan’s urban population listed in Wikipe-

dia (https://en.wikipedia.org/wiki/Wuhan), the value of the confirmation rate γ2 is from the

confirmation rate listed under Stage I (January 20 to January 30, 2020) of Wuhan in Table 1

Fig 6. Simulation results for the COVID-19 SEIR model with shield immunity control and MTL specifications φ1
S (first row), φ2

S (second row) and φ3
S

(third row). The red dotted lines indicate the thresholds in the atomic propositions of the MTL specifications φ1
S , φ2

S and φ3
S .

https://doi.org/10.1371/journal.pone.0247660.g006

Table 4. Parameters of the COVID-19 SUQC model estimated from data in Stage I (January 20 to January 30,

2020) of Wuhan, China [7].

parameter value parameter value

β0 0.2967 γ2 0.05

N̂ 0
8.9 million σ 0

Ts 1 day

https://doi.org/10.1371/journal.pone.0247660.t004
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in [7], and the value of σ is from “Methods/SUQC model” in [7] when no other special

approaches are used for additional tests. We choose the initial values of the states as S[0] = 8.9

million, U[0] = 0.001 million, Q[0] = 0 and C[0] = 0. We set qmax = 1. We consider three MTL

specifications as shown in Table 5. For example, φ1
Q ¼ □½0;200�ðDC � 0:001Þ ^ □½0;200�ðC � 0:1Þ

means “the confirmed infected population should never exceed 0.001 million (i.e., one thou-

sand) per day and 0.1 million (i.e., 100 thousand) in total within the next 200 days”. The start

time for the simulations in this subsection is January 20, 2020. Fig 7 shows the simulation

results for the COVID-19 SUQC model with parameters in Table 4 (estimated from data in

Stage I of Wuhan, China). It can be seen that the three MTL specifications φ1
Q, φ2

Q and φ3
Q are

all violated in such a situation (with quarantine rate being always 0.063). Now we investigate

the scenario where the quarantine rate can be controlled to satisfy the MTL specifications.

Fig 8 and Table 5 show the simulation results for quarantine control of the COVID-19

SUQC model with MTL specifications φ1
Q, φ2

Q and φ3
Q, respectively. The results show that the

MTL specifications φ1
Q, φ2

Q and φ3
Q are satisfied with the synthesized quarantine control inputs

respectively. The results also show that the control effort for satisfying φ1
Q is less than that for

satisfying φ2
Q, which is still less than that for satisfying φ3

Q. This is consistent with the fact that

φ2
Q implies φ1

Q, and φ3
Q implies both φ1

Q and φ2
Q. We observe that with φ1

Q, the synthesized quar-

antine control inputs first increase to a peak at approximately 90 days and then gradually

decrease for most of the time; with φ2
Q, the synthesized quarantine control inputs first increase

to a peak at approximately 50 days and then gradually decrease for most of the time; and with

φ3
Q, the synthesized quarantine control inputs are at a peak from the beginning and gradually

decrease for most of the time. These observations indicate that quarantine in the early days of

COVID-19 can reduce the number of confirmed infected cases more efficiently than quaran-

tine in the later days, and more stringent control specifications require stronger quarantine

measures to be implemented.

Table 5. MTL specifications and simulation results for quarantine control (Section 4.3).

MTL specification control effort computation time

φ1
Q ¼ □½0;200�ðDC � 0:001Þ ^ □½0;200�ðC � 0:01Þ 15.146 2.296 s

φ2
Q ¼ □½0;200�ðDC � 0:0005Þ ^ □½0;200�ðC � 0:05Þ 15.638 2.598 s

φ3
Q ¼ □½0;200�ðDC � 0:0005Þ ^ □½0;200�ðC � 0:03Þ 15.894 4.578 s

https://doi.org/10.1371/journal.pone.0247660.t005

Fig 7. Simulation results for the COVID-19 SUQC model estimated from data in Stage I of Wuhan, China.

https://doi.org/10.1371/journal.pone.0247660.g007
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5 Discussion

In this paper, we proposed a systematic control synthesis approach for mitigating the COVID-

19 epidemic based on three control models with vaccination, shield immunity and quarantine,

respectively. We used metric temporal logic (MTL) formulas to formally specify the required

performance of the control strategies. The proposed approach can synthesize control inputs

that lead to satisfaction of the MTL specifications. The methodology and results in this paper

contribute to several useful suggestions on limiting the spread of COVID-19.

Firstly, from the results with three control strategies (vaccination, shield immunity and

quarantine) we observe the unanimous trend that the computed optimal control values are

larger in the earlier days after the outbreak. This indicates that early intervention is essential

and the most efficient (in comparison with late intervention) in controlling the spread of

COVID-19.

Secondly, while it is obvious that more control efforts are needed to achieve more stringent

control specifications, we observe that the required control efforts are not linear with respect

to the “stringency” of the control specifications. For example, based on the model in Lom-

bardy, Italy, achieving less than 20000 total deaths and 500 deaths per day within 100 days

requires 50.55% more vaccination control effort than achieving less than 50000 total deaths

and 1000 deaths per day within 100 days. However, achieving less than 10000 total deaths and

100 deaths per day within 100 days requires 259.83% more vaccination control effort than

achieving less than 20000 total deaths and 500 deaths per day within 100 days. This “diminish-

ing return” kind of property indicates that the same amount of additional (vaccination)

Fig 8. Simulation results for the COVID-19 SUQC model with quarantine control and MTL specifications φ1
Q (first row), φ2

Q (second row) and φ3
Q

(third row). The red dotted lines indicate the thresholds in the atomic propositions of the MTL specifications φ1
Q, φ2

Q and φ3
Q.

https://doi.org/10.1371/journal.pone.0247660.g008
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control efforts will generally achieve less improvement for the control performance when the

control specifications are increasingly more stringent.

The work in this paper opens the door to the formal synthesis of control strategies based on

epidemic models. We believe that the methodology we developed in this paper can be readily

used in controlling COVID-19 (and potentially other epidemic diseases) in various places

where the control outcome needs to be specified in precise manners. In the following, we list

several future directions that may readily derive from the work in this paper.

Firstly, the validity of the results depends on the accuracy of the model parameters (e.g., the

recovery rate γ of infectious individuals). However, as the computation time is relatively short

(within 6 seconds for all the scenarios in this paper), the user (or decision maker) can always

change the model parameters to the latest estimated parameters and compute the optimal con-

trols in a short time. The work in this paper can be readily extended to online control synthesis

so that control inputs can be generated in real-time based on the latest information (e.g., using

online parameter identification and receding horizon control).

Secondly, as we investigated the three control strategies separately in this paper, we will

study the benefits and costs of joint control of different control strategies (vaccination, shield

immunity and quarantine) so that the specifications can be satisfied with coordinated efforts.

For example, to study the coordinated control of vaccination and shield immunity, we can use

an integrated SEIR model with both V and N + χR. By selecting a cost function being the

weighted sum of kV[�]k and kχ[�], we can achieve coordinated control of vaccination and

shield immunity where the weights for kV[�]k and kχ[�] represent the relative costs of vaccina-

tion and shield immunity. To further include quarantine control, we can resort to more

detailed models that differentiate between quarantined and un-quarantined population (e.g.,

as described in [49]).

Thirdly, the results in this paper focus on the control of COVID-19 in one specific region

(i.e., Lombardy, Italy and Wuhan, China). Due to different geographic and demographic char-

acteristics, the parameters in the COVID-19 models in different regions may be different, and

the specifications in different regions may also be different (more stringent specifications for

regions where the policy focuses more on mitigating the spread of COVID-19 than other fac-

tors such as the impact on the economy). The methodology in this paper can be readily applied

to synthesizing coordinated regional control strategies for multiple different yet somewhat

connected regions (e.g., as described in [49]).
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