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Abstract

Existing dynamic graph embedding-based outlier detection methods mainly focus on the

evolution of graphs and ignore the similarities among them. To overcome this limitation for

the effective detection of abnormal climatic events from meteorological time series, we pro-

posed a dynamic graph embedding model based on graph proximity, called DynGPE. Cli-

matic events are represented as a graph where each vertex indicates meteorological data

and each edge indicates a spurious relationship between two meteorological time series

that are not causally related. The graph proximity is described as the distance between two

graphs. DynGPE can cluster similar climatic events in the embedding space. Abnormal cli-

matic events are distant from most of the other events and can be detected using outlier

detection methods. We conducted experiments by applying three outlier detection methods

(i.e., isolation forest, local outlier factor, and box plot) to real meteorological data. The results

showed that DynGPE achieves better results than the baseline by 44.3% on average in

terms of the F-measure. Isolation forest provides the best performance and stability. It

achieved higher results than the local outlier factor and box plot methods, namely, by 15.4%

and 78.9% on average, respectively.

1 Introduction

Meteorological time series are part of climatic data and they have been extensively researched

in many fields, including environmental science and computer engineering [1–3]. Outlier

detection, which identifies instances that are distant from most other observations, is an

important field of computer engineering and data mining. Outlier detection in meteorological

time series is a necessary research issue because learning the patterns of abnormal climatic

events can help reduce losses due to meteorological disasters [4, 5]. The concealed information

obtained from meteorological data can be detected to analyze climatic changes.

Existing methods are mainly based on statistical indices [6] and machine learning algo-

rithms, such as similarity-based methods [7] and density-based clustering methods [8]. These

methods ignore the relationships among the time series, thus making it difficult to understand

the causes of outliers. In a previous study [9], time-aware shapelets were extracted to construct
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an evolution graph to detect time series outliers. The approach was applied on a single signal,

and outliers were detected only by comparing the signal with itself. This cannot explain the

external factors affecting outliers. To solve this problem, we propose a method to discover the

spurious relationship between two correlated time series that are not causally related, such that

a dynamic graph can be constructed for detecting outliers.

Climatic events are denoted as a graph in which vertices indicate meteorological data and

edges indicate the spurious relationship. The study by [10] identified four types of outliers in a

dynamic graph, which are abnormal vertices, abnormal edges, abnormal subgraphs, and event

detection. The outlier in the present study was a time interval in which the climatic event was

abnormal, which is defined as follows.

Definition 1 (Outlier in multiple time series) An outlier is defined as the time interval ti in
which the graph is significantly different from those in other time intervals, and it is formulated
as P(ti)< θ1 or P(ti)> θ2, where ti is the ith time interval and P(ti) is a function used to calculate
the score of ti. In addition, θ1 and θ2 are thresholds for detecting the outlier.

Fig 1 shows an example of the outlier. There are three climate graphs at time interval t 2
[0, 2], where T indicates the temperature, P indicates the pressure, S indicates the wind speed,

and the edge indicates the spurious correlation. If there is an edge between two vertices, it indi-

cates that there is a spurious correlation between two meteorological data. The edge between

the temperature and speed at t3 is different from the other graphs, which leads the neighbor

structure of the graph G3 is different so that the climatic event at t3 is abnormal. The time inter-

val t3 is detected as an outlier.

To detect outliers, we used dynamic graph embedding, which uses a non-linear function to

learn representation vectors of climatic events. Graph embedding has been applied in several

fields to capture the information of nodes and edges to map a graph to a low-dimensional

space. Existing methods, such as node clustering and link prediction, focus on issues entailing

static graphs; consequently, temporal information is ignored. Because dynamic graphs record

changes of graphs over a continuous period of time, the evolution of vertices and edges can be

observed. Existing dynamic graph embedding models mainly focus on the evolution of graphs

and ignore the similarities among them. To overcome this limitation, we propose a dynamic

embedding model, called DynGPE. It learns the embedding vectors of dynamic graphs by

exploiting graph proximity for clustering similar graphs.

The main contributions of this work are as follows.

• We propose DynGPE by improving structural deep network embedding (SDNE) [11]. The

results show that DynGPE achieved the best performance in comparison with baselines.

• We conducted experiments on different real-world meteorological datasets by applying

three outlier detection methods—isolation forest (IF) [12], local outlier factor (LOF) [13],

and box plot [14]. The results indicate that the IF method achieved the best performance and

stability based on DynGPE.

Fig 1. Example of the outlier.

https://doi.org/10.1371/journal.pone.0247119.g001
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The remainder of this paper is organized as follows. In Sect. 2, studies related to outlier

detection in time series are described. In Sect. 3, dynamic graph construction is detailed. In

Sect. 4, the dynamic graph embedding model is described. In Sect. 5, the experimental results

are presented. Finally, in Sect. 6, some concluding remarks regarding this study are provided.

2 Related work

In existing methods based on supervised detection, outliers are labeled in advance and a

machine learning model learns the features from the outliers. Then, the model fits a non-linear

function to detect outliers [15]. Su et al. [16] detected outliers by constructing a model that

learns the robust representation for regular patterns of multiple time series. Outliers were

detected based on the probability of reconstructing input data. The proposed model was

applied on three real-world datasets, and it achieved better results than baselines. However,

most time series are not labeled; therefore, many unsupervised learning methods have been

proposed to address this issue [17, 18]. Autoencoder is an unsupervised learning model that

has been widely applied to outlier detection on time series [19, 20]. Kieu et al. [21] constructed

two recurrent autoencoders for outlier detection. Their model exhibited improved perfor-

mance by avoiding overfitting. Yin et al. [22] highlighted the problem that an integration

model constructed using an autoencoder and convolutional neural networks could not exhibit

increased performance on time series data. To solve this problem, a recurrent neural network

was added to the integration model. They conducted experiments on internet of things time

series and achieved better performances than that of the baselines. These studies directly

applied the models to the time series but ignored the hidden information among the multiple

time series. DynGPE model constructs the dynamic graph by discovering the correlation

between the data to solve this problem.

Four types of outliers in dynamic graphs have been highlighted in previous studies [23–25].

Our study mainly focuses on event detection. Several methods have been proposed previously

to solve this problem. Because autoencoder performs well upon embedding, numerous studies

have applied it to dynamic graphs. For example, Grattarola et al. [26] constructed two autoen-

coders to learn the representation vector of a dynamic graph for detecting changes. The results

showed that the proposed method could identify small changes. Since the autoencoder model

reconstructs the dynamic graph for calculating the embedding vectors, the proposed model

ignores the temporal information. To solve this problem, Zhang et al. [27] proposed a tempo-

ral deep autoencoder architecture that considered the graph structure and vertex attributes to

test the community. Ma et al. [28] proposed a community-aware dynamic network embedding

method based on an autoencoder to record the dynamics of community structures. The results

showed the proposed model performed well on existing graph issues (i.e., link prediction, net-

work reconstruction). Leichtnam et al. [29] defined a security object graph and applied an

autoencoder model to detect abnormal attacks from a network. These models have been con-

sidered the spatial and temporal information on the dynamic graph, but their similarity also

needs to be considered. DynGPE model constructs the graph proximity to measure the simi-

larity between two graphs to deal with the problem.

Graph-based outlier detection on time series aims to transform time series to graphs by dis-

covering relationships. Boniol et al. [30] proposed a method for detecting outliers in domain

agnostic time series in an unsupervised manner. They constructed a graph in which vertices

are derived from overlapping trajectories and edges indicate transitions. The outliers in time

series are detected by scoring the subsequence. Farag et al. [31] detected outliers in time series

based on graphs. They used a slide window to scan time series and calculate distances among

each subsequence. The graph was constructed using these distances, where the vertex indicates
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the subsequence and the weights of the edges are distances. The outliers were detected using a

node clustering model. Gopalakrishnan et al. [32] analyzed the distributions of vertices on a

dynamic graph and proposed a method to detect outliers in the dynamic graph. The method

has been applied in airport networks to identify airplane delays. Walden et al. [33] constructed

a brain functional connectivity group graph. Abnormal brain events were detected by calculat-

ing the frequency of electroencephalograms. These models utilized vertices to indicate the

time series data and used the weights of edges to measure two vertices, such as distance. The

reason of the outliers is that the correlation among the multiple time series is abnormal, so that

DynGPE model discovers the spurious correlation to detect the outlier.

3 Dynamic graph construction

This section describes the construction of the dynamic graph for meteorological time series.

As shown in Fig 2, the proposed approach includes six steps. Firstly, the real meteorological

time series are collected from the China meteorological data service center by registering an

account (http://data.cma.cn/en). Then, the study [34] proposed a time interval division

method based on the wavelet transform by calculating the similarity between two time series.

The spurious correlation is discovered based on causality and correlation. The dynamic graph

is constructed by using the discovered spurious correlation where the vertex and edge indicate

the meteorological data and spurious correlation, respectively. DynGPE is used to embed the

dynamic graph for clustering climate events. Finally, the abnormal climate is detected by using

the outlier detection methods.

In this study, we divide the time series into several time intervals. The short-run causality

among the multiple meteorological data in a time interval needs to be obtained. Therefore, the

Granger causality test [35], as the most general method for testing the short-run causality, was

utilized. Pearson correlation coefficient [36] (PCC) can measure the linear correlation among

two time series, so that it was used to discover the spurious relationship among time series.

The short-run causality among the multiple time series can be defined as follows.

Definition 2 (Short-run causality) Short-run causality indicates the causal relationship
among the multiple time series in a short time interval, which is explained like that in this short
time interval, one of the series is the cause of another series change, which is formulated as

Cðx; yÞ ¼

(
1 if p < 0:05

0 otherwise
ð1Þ

Fig 2. Architecture of the proposed method.

https://doi.org/10.1371/journal.pone.0247119.g002
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where x and y are two time series, C(x, y) indicates the causality between them, and p is the prob-
ability that the two series are not causally related.

We used the Ganger causality test to calculate the causality between two time series. We

used one of the series as a variable to predict the other one and formulated a null hypothesis

that the two time series are not causally related. The regression functions of the test are as fol-

lows.

yt ¼
Xq

j¼1

bjyt� j þ u1 ð2Þ

yt ¼
Xq

i¼1

aixt� i þ
Xq

j¼1

bjyt� j þ u2 ð3Þ

where α and β are coefficients of time series x and y, respectively. Variables u1 and u2 denote

the noise, q is the lag length, and t is the time point. Eq 2 can be used to predict the current yt
using the past value of the series y. In Eq 3, the past value of time series x is used as a variable

to predict yt. The test proposes that if series x is helpful in the prediction of y, the regression

result of Eq 3 is better than that of Eq 2, and there is a causality between them. The t-test was

utilized to infer the differences in results between the two functions [37]. The probability of

the null hypothesis is denoted as p. If the p value is less than 0.05 [38], it indicates that the two

series are causally related.

PCC is used to represent the correlation among time series, which is calculated using

covariance and variance. The spurious relationship can be discovered using these two relation-

ships. If PCC is zero, the two time series are not correlated. A spurious relationship can be

defined as follows.

Definition 3 (Spurious relationship) Two correlated time series that are not causally related
are said to exhibit a spurious relationship; this can be formulated as follows.

Rðx; yÞ ¼

(
1 if Cðx; yÞ � jPCCj < 0

0 otherwise
ð4Þ

where R(x, y) indicates the spurious relationship between two time series x and y. If C(x, y) −
|PCC| is less than 0, it indicates that there is no causality between the two series, and the relation-
ship is spurious.

A graph is denoted as G = (V, E), where V and E denote the vertices and edges, respectively.

The weight value of an edge is denoted as w, which equals R(x, y). The adjacency matrix is

composed of the neighbor structure of each vertex, which is denoted as A.

Definition 4 (Dynamic graph) A dynamic graph is defined as a set that consists of graphs at
each time interval t 2 [0, T], which is denoted as G ¼ fGtjt 2 ½0;T�g. The dynamic adjacency
matrix is composed of adjacency matrices, which are denoted asA ¼ fAtjt 2 ½0;T�g.

The dynamic graph is constructed by utilizing the spurious relationships, where the graph

indicates a climatic event, vertices indicate meteorological data, and the edges indicate spuri-

ous relationships.

4 Dynamic graph embedding

Graph embedding involves yielding a graph G = (V, E) with |V| = N and learning a map func-

tion f: Vi! vi, where vi is an embedding vector of the vertex Vi and N is the number of verti-

ces. Our task is learning the representation of the dynamic graph G, which is to learn a map
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function f: Gt! gt, where gt is an embedding vector of the graph Gt at each time interval t 2
[0, T].

The DynGPE model is proposed by improving the SDNE model which defines two proxim-

ities. The first-order proximity preserves the global graph structure, which indicates that two

vertices with an edge have a short distance in an embedding space. The second-order proxim-

ity preserves the local graph structure, which reduces the loss between the input vector and the

reconstructed vector. To maintain similar graphs in a short distance in a feature space, we

modify the first-order proximity and provide a definition of graph proximity, which is as

follows.

Definition 5 (Graph proximity) Graph proximity is defined as the similarity between two
graphs on the neighbor structure. Consider that Ai and Aj are adjacency matrices of the graphs Gi

and Gj, respectively. The graph proximity between Gi to Gj is formulated as dðAi;AjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjAi � Ajjj
2

2

q

for measuring the similarity between Gi to Gj on the neighbor structure.

As shown in Fig 3, the dynamic graph is formulated as G ¼ hG0;G1;G2;G3i, where each

graph Gi indicates one climatic event, T indicates the temperature, P indicates the pressure, S
indicates the wind speed, Pr indicates the precipitation, and Su indicates the sunlit time. The

dynamic adjacency matrix is formulated as A ¼ hA0;A1;A2;A3i. The graph proximity

between G0 and G1 is calculated as d(A0, A1) = 0, so that the nearest graph from G0 is G1. In

this way, the nearest graph from G1 is G0, the nearest graph from G2 is G3, and the nearest

graph from G3 is G2. Therefore, the set of these nearest graphs is formulated as S = hG1, G0, G3,

Fig 3. Example of the dynamic supervised matrix.

https://doi.org/10.1371/journal.pone.0247119.g003
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G2i. The dynamic supervised graph is constructed to record the nearest graphs and is defined

as follows.

Definition 6 (Dynamic supervised graph) Let G ¼ fGtjt 2 ½0;T�g denote the dynamic
graph at time interval t 2 [0, T]. For the graph Gt, the corresponding Gi can be found from the
dynamic graph G, where the Gi is the nearest graph of the Gt. The dynamic supervised graph is a
set composed of the graph Gi, which is formulated as S ¼ fGiji 2 ½0;T�g.

The adjacency matrix and supervised matrix are denoted as At and St, respectively. The

architecture of DynGPE is shown as Fig 4, where t 2 [0, T] indicates the number of time inter-

vals. In this model, the embedding vectors of At and St are denoted as at and st, respectively.

The model was constructed using an autoencoder which consists of an encoder and a decoder.

The ith layers of the encoder and decoder are denoted as yi and byi , respectively. The outputs of

the two decoders are bAt and bSt .
The encoder maps the input vector to the embedding space using a non-linear function.

Given input At, the output of each hidden layer in the encoder is shown as follows.

y1 ¼ dðW1At þ b1Þ ð5Þ

yi ¼ dðWiyi� 1 þ biÞ ð6Þ

where i 2 [2, I] indicates the number of layers, and δ indicates the ReLU function that is one of

the activation function in the neural network for making the neural network non-linear [39].

Relu function can be formulated as f(yi) = max(0, yi). The weight and basis of the ith layer are

denoted as Wi and bi, respectively. The decoder byi can be calculated by reversing the calcula-

tion of the encoder. The output of yI is the embedding vector at of graph Gt.
For loss functions, because the size of the dynamic adjacency matrix is not large and most

elements are not zeros, we move the penalty items from the loss functions. Two loss functions

L1 ¼
1

T

PT
t¼1
jjat � stjj

2

2
and L2 ¼

1

T

PT
t¼1
jjAt �

bAt jj
2

2
are established for two proximities. L1

Fig 4. Architecture of DynGPE model.

https://doi.org/10.1371/journal.pone.0247119.g004
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can be used to develop similar graphs to achieve a short distance in an embedding space, and

L2 maintains the similarity between the input graph and reconstructed graph. For the optimiz-

ing model, we establish a joint loss function, which is formulated as follows.

L ¼
1

T

XT

t¼1

jjAt �
bAt jj

2

2
þ

1

T

XT

t¼1

jjat � stjj
2

2
þ Lreg ð7Þ

Lreg ¼
1

2

XI

i¼0

ðjjWijj
2

2
þ jjcWi jj

2

2
Þ ð8Þ

where Wi and cWi indicate the weights of the ith layer in the encoder and decoder, respectively.

Eq 8 presents the regularization term used to avoid overfitting.

5 Experimental results

In this section, we applied DynGPE using Python 3.7 with the NumPy, Pandas, and torch

libraries. For optimizing DynGPE, we utilized the Adam optimizer to update and calculate the

weights [40].

5.1 Dataset

To launch DynGPE, we extracted daily climatic data from Chinese surface stations of five cit-

ies, which are Beijing, Shanghai, Guangdong, Shandong, and Shanxi. Each time series was col-

lected from 1990 to 2020. Further, the meteorological data of each city include 18 time series

(e.g., pressure, temperature, humidity, precipitation, sunshine duration, water vapor and so

on).

5.2 Evaluation metric

To the best of our knowledge, there is no ground truth data in the datasets. Thus, to validate

DynGPE, we label some outliers in each dataset as follows. We assume that there are 10% outli-

ers in each dataset and the embedding vector of the tth graph is denoted as et. The center of

embedding vectors is formulated as c ¼ 1

T

PT
t¼0
et , where t indicates the number of time inter-

vals. Similar graphs have a short distance in an embedding space using DynGPE. If most cli-

matic events are similar, their embedding vectors are close to the center, and abnormal

climatic events are far from the center. Based on this hypothesis, we labeled 10% embedding

vectors that are at the farthest distance from the center as outliers.

5.3 Results and analysis

The first baseline model employed here is the graph convolutional neural (GCN) [41], which

utilizes a convolution kernel to extract the information regarding vertices and edges. It does

not include the temporal information of graphs. The second one is based on the architecture

of dyngraph2vec [42], which is an unsupervised model for learning the representation of

dynamic graphs. It provides four architectures, which are dyngraph2vecAE, dyngraph2-

vecRNN, and dyngraph2vecAERNN for evaluating DynGPE.

Table 1 exhibits the performance of using the IF method under 10% outliers. According to

the results, DynGPE achieves the best result for each city because GCN and dynagraph2vecAE

only capture information from a single graph; moreover, dyngraph2vecRNN only captures the

temporal information of the dynamic graph but ignores the similarities of the graph. All mod-

els performed the best for the dataset of Beijing. This indicates the most normal climatic events
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in Beijing are similar and the outliers can be easily observed. All four models performed the

worst for Shanxi. This indicates that the similarities among normal climatic events in Shanxi

are not high and most of the events are isolated. IF detected them as outliers; therefore, the cor-

responding performance was lower than that in the cases of the other cities.

Table 2 shows the performance of DynGPE with 10% outliers. According to the results, the

IF method performed the best for the four cases. The performance for Beijing was better than

that for other cities using LOF and IF. This indicates that the climatic events of Beijing at the

feature space are more centralized than those of other cities. The performance of LOF for

Guangzhou was better than that of IF, but the performance of IF was lower than that of LOF

only by 0.019. The performance of the box plot method was lower than that of the other two

methods. Overall, the results indicate that IF exhibits the highest performance on more cases

using DynGPE, and the box plot method exhibits the worst performance.

Fig 5 shows the performance with different ratios of outliers for Beijing. According to the

results, IF performed the best in terms of the F-measure for 2 cases; particularly, the best per-

formance, corresponding to an F-measure of 0.909, was obtained for 10% outliers. LOF

achieved the best F-measure on 5% outliers (the result was 0.583). Overall, the results indicate

that the box plot method achieved the worst F-measure among all methods because it is based

on the statistical method. The distribution of embedding vectors is discrete; therefore, the out-

lier detection performance is not better than that of other methods. The performance of IF is

less than that of LOF for 5% outliers. If there are 5% outliers in the dataset, the climatic events

between outliers and inliers are also relatively isolated, such that IF becomes prone to mistak-

enly detecting these points as outliers.

We analyzed the stability of DynGPE. Fig 6 shows the performance under different embed-

ding dimensions. The stability of DynGPE was evaluated using mean±std, where std indicates

the standard deviation, to measure the dispersion of results. According to the results, IF per-

formed the best and was the most stable compared with other methods; further, it achieved the

highest result for the embedding dimension of 8 with an F-measure of 0.909. Among all the

methods employed in this study, the performance of the box plot method was the worst, and

its stability was worse than that of other methods.

Table 1. Comparison experiments by using IF.

Beijing Shanghai Guangzhou Shandong Shanxi

GCN 0.615 0.526 0.512 0.419 0.571

dyngraph2vecAE 0.617 0.421 0.503 0.638 0.535

dyngra ph2vecRNN 0.535 0.408 0.479 0.553 0.438

dyngraph2vecAERNN 0.520 0.435 0.476 0.480 0.476

DynGPE 0.909 0.762 0.727 0.800 0.714

https://doi.org/10.1371/journal.pone.0247119.t001

Table 2. Performance of DynGPE.

City LOF IF Box-plot

Beijing 0.788 0.909 0.528

Shanghai 0.727 0.762 0.667

Guangzhou 0.741 0.727 0.683

Shanxi 0.706 0.800 0.533

Shandong 0.690 0.714 0.488

https://doi.org/10.1371/journal.pone.0247119.t002
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Overall, the evaluation results indicate that IF can achieve the best performance and stabil-

ity with DynGPE for outlier detection. Among the climatic data extracted from five cities, IF

achieved the best results for four cities. When there are 10% outliers in datasets, IF achieves

higher results than the LOF and box plot methods. In terms of stability, the performance of IF

is better than that of other methods. In this experiment, IF not only achieves the best F-mea-

sure on the average embedding dimension but also has the minimum standard deviation. In

contrast, the box plot method showed the worst performance in all evaluation experiments

because the box plot detects outliers based on the distribution of data points. If the data do not

follow a Gaussian distribution, the performance of the box plot method is considerably

reduced. The comparison results obtained using different models indicated that DynGPE per-

forms better than the baselines.

6 Conclusion

In this paper, we propose DynGPE for detecting abnormal climatic events using meteorologi-

cal data. It utilizes dynamic autoencoders to capture the information of graphs for reducing

their distance from similar graphs. DynGPE constructs a dynamic supervised matrix to yield

the graph proximity of the dynamic graph. Our experiments verify the performance and stabil-

ity of different methods for outlier detection based on DynGPE. IF exhibits the best perfor-

mance and stability for outlier detection and achieves higher results than the LOF and box plot

methods, namely, by 15.4% and 78.9%, respectively. The experimental results show that

DynGPE performs better than other graph embedding models and achieves results that are

higher than those obtained by the other methods by 44.3% on average. The experimental

Fig 5. Performance for the city of Beijing.

https://doi.org/10.1371/journal.pone.0247119.g005
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results showed that the climatic events of Beijing are stable because most graphs are relatively

concentrated in the embedding space. This indicates that most climate events are similar, and

outliers can be easily detected, because of which the performance for Beijing is the best.

There are two limitations in this study. The first is that DynGPE is based on an autoencoder

that captures the global information of graphs to detect an event from a dynamic graph. It

ignores temporal information and cannot detect changes in the dynamic graph. To overcome

this issue, we plan to combine a graph convolutional network and autoencoder to construct a

dynamic graph embedding model for detecting events and changes from a dynamic graph.

The second is that the paper considers the short-run causality and linear correlation but

ignores the immediate causality and rank correlation coefficient. To solve this problem, we

plan to use advanced causality measurement techniques such as the Geweke test [43] and the

Spearman’s rank correlation coefficient [44] in future work.
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