
RESEARCH ARTICLE

How similar is “similar,” or what is the best

measure of soil spectral and physiochemical

similarity?

R. ZengID
1, J. P. Zhang1☯, K. Cai2,3☯, W. C. Gao2☯, W. J. Pan4☯, C. Y. Jiang4☯, P. Y. Zhang1☯,

B. W. Wu1‡, C. H. Wang1‡, X. Y. Jin1‡, D. C. Li5*

1 School of Geography Science, Nanjing University of Information Science and Technology, Nanjing, China,

2 Upland Flue-cured Tobacco Quality & Ecology Key Laboratory of China Tobacco Guizhou Academy of

Tobacco Science, Guiyang, China, 3 College of Resources and Environment, Southwest University,

Chongqing, China, 4 China National Tobacco Corporation Guizhou Provincial Company, Guiyang, China,

5 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of

Sciences, Nanjing, China

☯ These authors contributed equally to this work.

‡ BWW, CHW and XYJ also contributed equally to this work.

* dcli@issas.ac.cn

Abstract

Spectral similarity indices were used to select similar soil samples from a spectral library

and improve the predictive accuracy of target samples. There are many similarity indices

available, and precisely how to select the optimum index has become a critical question.

Five similarity indices were evaluated: Spectral angle mapper (SAM), Euclidean distance

(ED), Mahalanobis distance (MD), SAM_pca and ED_pca in the space of principal compo-

nents applied to a global soil spectral library. The accordance between spectral and compo-

sitional similarity was used to select the optimum index. Then the optimum index was

evaluated if it can maintain the greatest predictive accuracy when selecting similar samples

from a spectral library for the prediction of a target sample using a partial least squares

regression (PLSR) model. The evaluated physiochemical properties were: soil organic car-

bon, pH, cation exchange capacity (CEC), clay, silt, and sand content. SAM and SAM_pca

selected samples were closer in composition compared to the target samples. Based on

similar samples selected using these two indices, PLSR models achieved the highest pre-

dictive accuracy for all soil properties, save for CEC. This validates the hypothesis that the

accordance information between spectral and compositional similarity can help select the

appropriate similarity index when selecting similar samples from a spectral library for

prediction.

1. Introduction

Visible and near-infrared (VNIR) spectroscopy has demonstrated its ability to predict many

soil physiochemical properties, such as soil organic matter (SOM), particle size, and iron con-

tent [1–3]. In addition to its wide use for soil properties, comparison of spectra from soil

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247028 March 25, 2021 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zeng R, Zhang JP, Cai K, Gao WC, Pan

WJ, Jiang CY, et al. (2021) How similar is “similar,”

or what is the best measure of soil spectral and

physiochemical similarity? PLoS ONE 16(3):

e0247028. https://doi.org/10.1371/journal.

pone.0247028

Editor: Priyabrata Santra, ICAR-Central Arid Zone

Research Institute, INDIA

Received: May 19, 2020

Accepted: January 29, 2021

Published: March 25, 2021

Copyright: © 2021 Zeng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All files are available

from the following addresses: (1)https://data.isric.

org/geonetwork/srv/eng/catalog.search#/metadata/

1081ac75-78f7-4db3-b8cc-23b78a3aa769 (2)

http://africasoils.net/services/data/soil-databases/

soil-spectral-libraries/.

Funding: This research was funded by China

Tobacco Corporation Guizhou Provincial Company

Science and Technology Project (201910, awarded

to DCL and KC), Key deployment projects of

Chinese Academy of Sciences (KGFZD-135-19-10,

https://orcid.org/0000-0003-0988-7026
https://doi.org/10.1371/journal.pone.0247028
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247028&domain=pdf&date_stamp=2021-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247028&domain=pdf&date_stamp=2021-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247028&domain=pdf&date_stamp=2021-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247028&domain=pdf&date_stamp=2021-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247028&domain=pdf&date_stamp=2021-03-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247028&domain=pdf&date_stamp=2021-03-25
https://doi.org/10.1371/journal.pone.0247028
https://doi.org/10.1371/journal.pone.0247028
http://creativecommons.org/licenses/by/4.0/
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/1081ac75-78f7-4db3-b8cc-23b78a3aa769
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/1081ac75-78f7-4db3-b8cc-23b78a3aa769
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/1081ac75-78f7-4db3-b8cc-23b78a3aa769
http://africasoils.net/services/data/soil-databases/soil-spectral-libraries/
http://africasoils.net/services/data/soil-databases/soil-spectral-libraries/


samples is used in several soil science-related applications [4], such as forensic soil science,

archeology, and soil pollution assessments. Similarity indices have also been used to select

samples from spectral libraries [5, 6], and build local models for improving the physiochemical

prediction of the target site [7–9]. The hypothesis of this strategy is that the selected similar

spectra can better represent the spectral features of the target samples, thus leading to better

model performance [10, 11].

There are several spectral similarity indices, each with its own quantification, and different

indices present different results of sample similarity [10]. For example, the spectral angle map-

per (SAM; [12]) measures the angle between two spectral vectors to quantify similarity, while

Euclidean distance (ED) measures distance in two or three dimensional Euclidean space. How

to select similar spectra is a critical question, as it determines which candidate samples will be

included for subsequent model building. Calibration datasets based on different indices will be

unique, and thus lead to different model performances. In addition to the question of which

spectral similarity index is most suitable for model calibration, the extent to which the index

represents other measures of similarity between the soils was also explored; i.e., do similar

spectra correspond to similar physiochemical properties of these soils? We may hope so, since

the calibrated spectral library will be used to infer the physiochemical properties of the target

samples.

Most previous research has examined one familiar or widely applied similarity index [8],

with no attempt to compare between indices. Ramirez-Lopez et al. [13] was a notable excep-

tion, and developed an indicator to select the optimum similarity index. They proposed that

the best distance metric would more accurately reflect soil compositional similarity, and imply

(but do not confirm) that this would lead to the best predictive performance of the calibrated

model. This was tested by comparing the spectral and compositional similarities of two soil

properties: clay and pH. Clay has a strong spectral response in the VNIR around the water

absorption features [14], while pH does not. Their research, however, did not cover soil prop-

erties with remarkably strong spectral responses, such as SOM [2].

We believe it is necessary to evaluate this method with more physiochemical properties,

considering both properties with direct and indirect spectral responses. Direct spectral

responses indicate direct interaction between the soil constituents and the electromagnetic

radiation, while indirect responses are primarily based on a correlation with a combination of

other soil properties. Moreover, a further step was taken beyond the research of Ramirez-

Lopez et al. [13] by evaluating whether the calibration datasets selected by the better similarity

index achieved higher predictive accuracy for a target sample.

Therefore, the objectives of this research were: (1) to evaluate five similarity indices using

the accordance between spectral and compositional similarity (SOM, pH, CEC, clay, silt and

sand) to select an optimum similarity index; and, (2) to determine if the optimum index main-

tains the greatest predictive accuracy when selecting similar samples from a spectral library for

the prediction of a target sample. Our research hypothesis was that the samples selected based

on the optimal similarity index would achieve higher predictive accuracy for the target

samples.

2. Materials and methods

2.1 Datasets

This study was carried out using a global soil spectral library, including 785 profiles (3831

generic horizons) selected from the International Soil Reference and Information Center

(ISRIC). This library contains VNIR spectra (350–2500 nm, sampling interval 1 nm), geo-

graphic location, physical and chemical properties, and soil classification information [15].
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These profiles were collected from 58 countries in Africa, Asia, Europe, North America, and

South America. Spectral measurements were recorded with a FieldSpec FR spectrometer (Ana-

lytical Spectral Devices, Boulder, CO). The data providers reduced the spectra to 216 bands by

averaging every 10 bands. Physiochemical properties measured by conventional laboratory

methods included soil organic carbon (SOC), sand, silt, clay, pH, and cation exchange capacity

(CEC).

We performed several quality control checks, and removed all samples with the sum of par-

ticle-size separates > 106% or < 94%, leaving 3,813 samples for further analysis [16]. From

these, 500 samples with diverse spectral variations were selected as the test dataset using the

Kennard-Stone (KS) algorithm [17], and the remaining 3,313 were used as the training set.

Selection was based on the Euclidean distance of spectra as represented by principal compo-

nents (PC). Before the implementation of the KS algorithm and subsequent distance calcula-

tion, reflectance spectra were transformed to absorbance, and baseline effects were corrected

by a first-derivative transformation with Savitzky–Golay smoothing [18].

2.2 Flowchart

Fig 1 presents the overall procedures of this study, which are explained in further detail below.

2.3 Similarity indices

We tested several of the most promising similarity indices presented by Ramirez-Lopez et al.

[13] on the pre-processed full spectra, SAM, ED, and MD (see below for a detailed descrip-

tion). In order to remove the effects of collinearity in the predictors (i.e., the spectral bands),

we also evaluated SAM (SAM_pca) and ED (ED_pca) in the space of PC. PC analysis was per-

formed in R (v. 3.5.2) using the prcomp function of the stats package. We tested different num-

bers of PCs (1–20), and the similarity distance remained unchanged > 15 PCs, so only the

original vectors transformed to 15 PC scores were retained for subsequent analysis.

2.3.1 Spectral Angle Mapper (SAM). SAM is a commonly used similarity index first

introduced by Kruse et al. [12], and measures the spectral angle between different samples.

SAM considers both the differences in spectral shape and amplitude (Eq 1):

SAM ¼ cos� 1

Pn
i¼1

UiRi

ð
Pn

i¼1
ðUiÞ

2
Þ

1=2
ð
Pn

i¼1
ðRiÞ

2
Þ

1=2
; ðEq 1Þ

where Ui and Ri represent the processed spectra for wavelength i (or their PC transformation)

for the samples in the test and training datasets, respectively; and n is the number of spectral

bands.

2.3.2 Euclidean Distance (ED). ED measures the distance of the two spectral vectors in

Euclidean space (Eq 2):

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðUi � RiÞ

2

q

; ðEq 2Þ

where U and R represent the processed spectral vectors (or their PC transformation) for the

test and training datasets, respectively; and n is the number of spectral bands. ED was calcu-

lated using the dist function in the stats package of R.

2.3.3 Mahalanobis Distance (MD). MD is the distance between two vectors, considering

the covariance among vector elements (Eq 3):

MD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUi � RjÞ
TS� 1ðUi � RjÞ

q

; ðEq 3Þ
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where Ui and Rj are the processed spectral vectors (or their PC transformation) for sample i in

the test dataset and sample j in the training dataset, respectively; and S is the covariance matrix

between Ui and Rj.

2.4 Accordance between spectral and individual compositional similarity

The most similar spectra for each of the test set were selected based on the lowest similarity dis-

tance for the five indices matched from the training dataset. The six physiochemical properties

Fig 1. Flowchart of the methodology.

https://doi.org/10.1371/journal.pone.0247028.g001
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(pH, SOC, CEC, sand, silt, and clay) of the target samples were then compared to their corre-

sponding matched sample. The root mean square error (RMSE) and the coefficient of determi-

nation (R2) evaluated from the 1:1 line (actual: predicted) were used to evaluate the

accordance between spectral and individual compositional similarity (Eqs 4 and 5):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1
ðyi � ŷi

r

Þ
2
; and ðEq 4Þ

R2 ¼ 1 �

Pm
i¼1
ðyi � ŷiÞ

2

Pm
i¼1
ðŷi � �yiÞ

2
; ðEq 5Þ

where m is the number of samples in the test dataset, yi is the physiochemical property of sam-

ple i in the test dataset, ŷi is the physiochemical property of the most similar sample in the

training dataset, and �yi is the average property value of the matched samples in the training

dataset. Higher R2 and lower RMSE indicate a greater accordance between the spectra and

compositional similarity, and these criteria were used to select the optimum similarity index.

2.5 Accordance between spectral and integral compositional similarity

Soil spectra are an integrated result of the physiochemical properties of the sample. Apart from

comparing spectra with individual compositional similarity, the relationship between spectral

and integral compositional similarity was also investigated. To represent the integral composi-

tion, we used six standardized PCs converted from the six physiochemical properties. Since

these properties have different units and are correlated, they were scaled first by normal-score

transformation, and then converted into six PC scores using the prcomp function of the stats

package in R. Then, the PC distance between the target and the matched sample in Euclidean

space was calculated to represent the integral compositional similarity (Eq 6):

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6

i¼1
ðUpcðiÞ � RpcðiÞÞ

2

q

; ðEq 6Þ

where Di is the integral compositional distance between sample U in the test dataset and the

most similar sample R in the training dataset, as represented by PC; and Upc(i) and Rpc(i) are the

PC scores for the ith samples U and R, respectively, as converted from their corresponding six

physiochemical properties.

2.6 Partial Least Squares Regression (PLSR) model comparison

The reported optimum similarity indices selected by the accordance between spectral and

compositional similarity were evaluated in terms of their predictive power. For each sample in

the test dataset, all six properties were predicted by PLSR models based on similar samples

matched in the training dataset using the five similarity indices.

The number of similar samples selected from the training dataset has a great effect on the

model performance [19], which although important, was not the focus of the research here.

Different sizes (n = 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400 and 500) were tested for

prediction of SOC. Model performance achieved the highest predictive accuracy and stabilized

around ~ 250; thus, this size was selected for all subsequent analyses of other physiochemical

properties (S1 Fig). PLSR model performance was evaluated by the ratio of percent deviation

(RPD; Eq 7):

RPD ¼
SD

RMSEP
; ðEq 7Þ

PLOS ONE Explore the relationship between soil spectral and physiochemical similarity

PLOS ONE | https://doi.org/10.1371/journal.pone.0247028 March 25, 2021 5 / 11

https://doi.org/10.1371/journal.pone.0247028


where SD is the standard deviation of the observed property values for the test dataset, and

RMSEP is the RMSE of the prediction (see Eq 4). For each sample in the test dataset, the most

similar 250 samples in spectral space (as evaluated by different similarity indices) were selected

from the training dataset to build the PLSR models for prediction of the soil properties. We fol-

lowed the criteria proposed by Chang and Laird [20] to evaluate the performance of the PLSR

models: (1) RPD < 1.4, the model is not able to predict the target property; (2) 1.4� RPD <

2.0, moderate model predictive performance; and (3) 2.0� RPD < 2.5, the model can predict

the target property well.

3. Results and discussion

3.1 Training and test dataset summary

Table 1 shows the summary statistics of physiochemical properties for the training and test

datasets. Since a global soil spectral library was used, the soil properties covered a wide range

of values (Table 1). Extremely acidic (pH = 3.00), alkaline (pH = 10.5), sandy with no SOC,

and organic soils with high SOC (15.75%) were all included. The particle size class ranged

from extremely sandy to extremely clayey. The range of the test set was somewhat narrower as

an artifact of the smaller sample size.

Fig 2 presents an illustrative example to depict how the five similarity indices differ in their

selection of the most similar spectra. ED, MD, and ED_pca selected the same most similar spec-

tra, primarily because of the similar distance calculations of ED and MD. Their matched spectra

nearly overlapped with the target samples because the calculations of ED and MD focus on the

relative difference of the reflectance values. The reflectance of the most similar spectra selected

by SAM was much lower than that of the target sample since SAM primarily considers similar-

ity in spectral shape. SAM_pca also yielded different results from the other methods.

3.2 Comparison between spectral and individual compositional similarity

Table 2 presents a comparison between the spectra and the six individual compositional simi-

larities. The similarity index was selected according to lower RMSE and higher R2 values. As

these two measurements always agreed, only R2 will be presented in the following discussion

of the individual soil properties. We used the following criteria [20] to indicate the accordance

Table 1. Descriptive statistics of soil physiochemical properties in the training and test datasets.

Dataset Property Min Q1 Q2 Q3 Max Mean SD CV%

Test dataset pH 3.20 4.80 5.40 6.90 10.50 5.93 1.48 25

SOC (%) 0.00 0.15 0.37 0.93 15.75 0.95 1.71 181

CEC (cmol�kg-1) 0.00 3.50 8.60 19.83 121.70 14.83 16.70 113

Sand (%) 0.00 18.38 43.35 71.28 99.20 45.63 30.31 66

Silt (%) 0.60 11.18 21.00 34.93 84.80 24.81 17.55 71

Clay (%) 0.00 9.13 25.55 47.03 96.40 29.57 23.14 78

Training dataset pH 3.00 5.10 6.00 7.40 10.50 6.26 1.42 23

SOC (%) 0.00 0.23 0.51 1.20 45.80 1.10 1.91 174

CEC (cmol�kg-1) 0.00 5.60 12.10 22.70 189.60 17.08 16.57 97

Sand (%) 0.00 11.00 31.00 59.20 99.50 37.03 28.32 76

Silt (%) 0.20 12.90 25.30 43.10 90.50 29.57 20.04 68

Clay (%) 0.00 16.10 30.90 47.50 96.80 33.39 21.80 65

Q1, Q2, and Q3 are the first, second, and third quartiles, respectively; SD is the standard deviation; and CV% is the percent coefficient of variation.

https://doi.org/10.1371/journal.pone.0247028.t001
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between spectra and individual compositional similarity: (1) R2 < 0.5, poor; (2) 0.5� R2 <

0.8, moderate; and, (3) R2� 0.8, good accordance.

For pH, the performance sequence was as follows: SAM> SAM_pca> MD> ED_pca>

ED (R2, 0.58–0.64; RMSE, 0.89–0.96); thus, SAM achieved the best accordance for pH. For

SOC, the performance sequence was: ED> SAM> ED_pca> MD> SAM_pca (R2, 0.47–0.56;

RMSE, 1.13–1.25%). Clearly different from the results for pH, ED and SAM yielded the best

performance, both outperforming the similarity based on the reduced dimension of PC space

(ED_pca and SAM_pca). It is important to note, important information may be lost if all PCs

are not retained, even though the 15 PCs used explained almost all of the total observed variance

of the spectra. The performance for CEC was: SAM_pca > ED> SAM> ED_pca> MD (R2,

0.58–0.67; RMSE, 9.60–10.83 cmol�kg-1). Thus, the samples selected by SAM_pca were the most

similar (R2 = 0.67), while ED, SAM, ED_pca, and MD performed similarly (R2, 0.58–0.60).

For particle size distribution, percent clay content performance was generally superior to

that of sand and silt. The performance sequence for clay was: SAM > SAM_pca> MD>

ED> ED_pca (R2, 0.49–0.61; RMSE, 14.43–16.51%). The performance sequence for percent

Fig 2. An illustrative example of the most similar spectra selected by the five similarity indices.

https://doi.org/10.1371/journal.pone.0247028.g002

Table 2. Accordance of the six physiochemical properties between the samples in the test dataset and their most similar samples matched in the training dataset, by

different similarity indices.

Similarity Index Similarity Indicator pH SOC (%) CEC (cmol�kg-1) Clay (%) Silt (%) Sand (%)

SAM RMSE 0.89 1.15 10.53 14.43 13.95 20.33

R2 0.64 0.55 0.60 0.61 0.37 0.55

ED RMSE 0.96 1.13 10.52 15.54 15.25 22.92

R2 0.58 0.56 0.60 0.55 0.25 0.43

MD RMSE 0.93 1.20 10.83 15.48 15.28 22.90

R2 0.61 0.51 0.58 0.55 0.24 0.43

ED_pca RMSE 0.95 1.17 10.75 16.51 16.33 24.74

R2 0.59 0.53 0.59 0.49 0.13 0.33

SAM_pca RMSE 0.91 1.25 9.60 14.85 15.61 22.22

R2 0.62 0.47 0.67 0.59 0.21 0.46

https://doi.org/10.1371/journal.pone.0247028.t002
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sand was: SAM > SAM_pca > MD> ED> ED_pca (R2, 0.33–0.55; RMSE, 20.33–24.74%),

notably identical to clay. The accordance for percent silt was the lowest, and unique from sand

and clay: SAM > ED> MD> SAM_pca > ED_pca (R2, 0.13–0.37; RMSE, 13.95–16.33%).

It is apparent that there is no single sequence of best indices per-property. The highest

accordance (R2) achieved for CEC, pH, clay, SOC, sand, and silt were 0.67, 0.64, 0.61, 0.56,

0.55, and 0.37, respectively. No properties reached the level of good accordance (R2� 0.8),

most fell within the range of moderate accordance (0.50� R2 < 0.80), and silt notably fell in

the range of poor accordance (R2 < 0.5).

We hypothesized that the properties with strong, direct spectral responses, such as SOC,

would have good accordance, while properties with low or indirect spectral responses, such as

pH, would be poor; however, the accordance for SOC was only moderate. The reason may be

that the spectral response of SOC is masked or disturbed by the presence of other soil proper-

ties, such as iron content [21]. The moderate performance of pH indicated that properties with

no direct spectral response still had the potential to be well predicted through spectral pedo-

transfer functions [22].

Predictably, when comparing similarity indices, different results were found. For example,

the accordance for sand ranged from a moderate R2 = 0.55 (SAM), to a relatively low R2 = 0.33

(ED_pca). Thus, the selection of a proper similarity index is essential for determining suitable

similar samples from spectral libraries of different scales. SAM provided the best or second-

best performance for all six properties. SAM mainly considers the overall spectral shape, focus-

ing less on the relative difference in reflectance. The performance of SAM_pca was better than

SAM in some cases, but it performed poorly for sand (R2 = 0.46). ED and ED_pca values were

very similar, with ED performing slightly better. Surprisingly, the differences between ED and

MD were small as we expected MD to be superior since it accounts for covariance among

bands, and the spectra were collected at high resolution and highly correlated.

3.3 Comparison between spectral and integrative compositional similarity

Pearson correlations between the spectral similarity evaluated by the five indices, and their

corresponding integrative compositional similarity (represented by Euclidean distance of PCs

converted from the six physiochemical properties) are presented in Table 3.

The correlation between integrative compositional and spectral similarity was significant

(p< 0.01) for all five similarity indices, with ED being the highest (in contrast to its moderate

performance in individual physiochemical property evaluation), and MD the lowest. The high

correlation achieved by SAM was consistent with its good performance as evaluated by indi-

vidual compositional similarity. The different trends in similarity index performance between

compositional and individual compositional similarity indicates that the interactions between

physiochemical properties and spectral responses are substantial; thus, an integrated measure

is not simply the sum of the simple measures.

3.4 PLSR model prediction accuracy

As presented in Table 4, the high accordance between spectral similarity and SOC similarity

was achieved by ED and SAM. For PLSR model prediction, similar samples selected by SAM

yielded the best performance, followed by MD and ED. For pH prediction, SAM and ED

Table 3. The Pearson correlation coefficient between spectral and integrative compositional similarity.

Methods SAM ED MD ED_pca SAM_pca

Correlation Coefficient 0.44 0.48 0.33 0.43 0.40

https://doi.org/10.1371/journal.pone.0247028.t003
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achieved the highest predictive accuracy (RPD = 1.88), while the performances of SAM_pca

and MD were only slightly less (RPD, 1.86–1.87). For CEC, model performances were incon-

sistent with other results, as the samples selected by SAM_pca were most similar in CEC con-

tent; however, the PLSR models based on similar samples chosen by SAM_pca performed

relatively poorly (RPD = 1.49). Consistent with the highest accordance achieved by SAM and

SAM_pca, the best PLSR models for clay were based on similar samples selected by ED_pca,

SAM, and SAM_pca (RPD, 1.87–1.88). Interestingly, although the accordance for ED_pca was

low, their PLSR models yielded strong performances. Consistent with the lowest accordance

between spectral and physiochemical similarity, prediction accuracy for silt was the lowest

compared to other properties (RPD, 1.18–1.26). The best models for silt were based on SAM

and SAM_pca, which is also consistent with the above similarity analysis. For prediction of

sand composition, the models with the highest accuracy were also based on SAM_pca and

SAM (RPD, 1.49–1.53).

Aligning with the results between spectra and individual compositional similarity, the

PLSR models built based on SAM or SAM_pca provided the best performance for all of the

physiochemical properties, save for CEC. Compared to the other similarity indices, SAM and

SAM_pca could select samples that were closer in composition similarity. There are two

important variables influencing the prediction accuracy of the PLSR model in this study: sam-

ple size and the selected similarity index. When the sample size was fixed (250 in the present

study), selecting more compositionally similar samples can achieve greater accuracy when

using PLSR models for prediction. This aligns with our research hypothesis that the samples

selected based on the optimal similarity index will achieve higher predictive accuracy for target

samples. Considering the possible loss of information during PCA, the use of SAM is recom-

mended over SAM_pca. The model based on ED was only slightly better than that of MD, in

agreement with their low differences for similarity comparison.

The RPD values of the PLSR models fell within two ranges: (1) for silt prediction, RPD

was< 1.4; and (2) for all other PLSR models and indices, RPD was between 1.4 and 2.0. No

models achieved an RPD> 2.0, possibly because of the large variations and heterogeneity of

the global soil spectral library. We evaluated the statistical difference (i.e., RPD) of the five sim-

ilarity indices using a pairwise t-test. SAM was statistically superior to MD (p< 0.05), while

SAM was also superior to the other three indices (ED, ED_pca, and SAM_pca), but their dif-

ferences were not significant. Thus, MD is not recommended considering its relatively poor

performance. Although the difference between SAM and SAM_pca was not statistically signifi-

cant, the performance of SAM_pca was unstable (relatively poor predictive performances for

SOC and CEC); thus further supporting the use of SAM over SAM_pca. As shown in Table 4,

different similarity indices had a significant influence on the performance of the PLSR model

for the physiochemical properties analyzed. For example, the RPD of SOC varied over a rela-

tively wide range, from 1.45 to 1.67. Thus, the selection of a reliable similarity index is essential.

The accordance information between spectral and compositional similarity can help select

Table 4. Predictive accuracy (RPD) for physiochemical properties using PLSR models based on similar samples selected with different similarity indices.

Properties ED MD SAM ED_pca SAM_pca

pH 1.88 1.86 1.88 1.83 1.87

SOC 1.51 1.52 1.67 1.45 1.49

CEC 1.58 1.52 1.53 1.55 1.49

clay 1.79 1.70 1.87 1.88 1.87

silt 1.24 1.20 1.26 1.18 1.26

sand 1.42 1.44 1.49 1.47 1.53

https://doi.org/10.1371/journal.pone.0247028.t004
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appropriate indices when one needs to select similar samples from a spectral library for the

prediction of a target sample. In addition, as revealed by the results of the similarity analysis

and PLSR models, the properties that have high accordance with individual composition and

spectral similarity, for example, pH and clay in this study, can be more accurately predicted

using PLSR models. In contrast, the accordance for silt and sand was low; therefore, their

PLSR models performed poorly. Thus, the relationship between individual composition and

spectral similarity can be used as an indicator of the potential of VNIR spectroscopy for the

prediction of different properties.

4. Conclusions

Compared to other similarity indices, SAM and SAM_pca selected samples were more compo-

sitionally similar to the target samples. Based on the similar samples selected by these indices,

PLSR models achieved the highest predictive accuracy for all six of the soil physiochemical

properties analyzed, except CEC. SAM is recommended over SAM_pca considering the possi-

ble loss of information during PCA analysis. The findings support the hypothesis that the

accordance information between spectral and compositional similarity can help select appro-

priate indices when one needs to select similar samples from a spectral library for predicting

target samples.
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