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Abstract

SARS-CoV-2 antibodies develop within two weeks of infection, but wane relatively rapidly

post-infection, raising concerns about whether antibody responses will provide protection

upon re-exposure. Here we revisit T-B cooperation as a prerequisite for effective and dura-

ble neutralizing antibody responses centered on a mutationally constrained RBM B cell epi-

tope. T-B cooperation requires co-processing of B and T cell epitopes by the same B cell

and is subject to MHC-II restriction. We evaluated MHC-II constraints relevant to the neutral-

izing antibody response to a mutationally-constrained B cell epitope in the receptor binding

motif (RBM) of the spike protein. Examining common MHC-II alleles, we found that peptides

surrounding this key B cell epitope are predicted to bind poorly, suggesting a lack MHC-II

support in T-B cooperation, impacting generation of high-potency neutralizing antibodies in

the general population. Additionally, we found that multiple microbial peptides had potential

for RBM cross-reactivity, supporting previous exposures as a possible source of T cell

memory.

Introduction

Upon infection with SARS-CoV-2 the individual undergoes seroconversion. In mildly symp-

tomatic patients, seroconversion occurs between day 7 and 14, includes IgM and IgG, and out-

lasts virus detection with generally higher IgG levels in symptomatic than asymptomatic

groups in the early convalescent phase [1]. Alarmingly, the IgG levels in both asymptomatic

and symptomatic patients decline during the early convalescent phase, with a median decrease

of ~75% within 2–3 months after infection [2]. This suggests that the systemic antibody

response which follows natural infection with SARS-CoV-2 is short-lived, with the possibility

of no residual immunity after 6–12 months [3] affecting primarily neutralizing antibodies in
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plasma [4]. Early activated B cells produce antibodies in quasi-germline configuration and are

likely ‘innate-like B cells’ [5–8] that have not undergone somatic hypermutation and matura-

tion. Consistent with the above argument, a lack of germinal center formation but robust acti-

vation of non-germinal type B cells has been reported in cases of severe COVID-19 infection,

impairing production of long-lived memory or high affinity B cells [9].

The generation of an antibody response requires cooperation between a B cell producing

specific antibody molecules and a CD4 T cell (helper cell) activated by an epitope on the same

antigen as that recognized by the B cell (T-B cooperation) [10]. This reaction occurs in the ger-

minal center [11, 12]. Excluded from this rule are responses against carbohydrates and anti-

gens with repeating motifs that alone cross-link the B cell antigen receptor leading to B cell

activation [13]. Discovered over 50 years ago [14–16], it also became apparent that T-B cooper-

ation is restricted by Major Histocompatibility Complex class II (MHC-II) molecules [17–19].

T-B cooperation plays a key role in the facilitation and strength of the antibody response [15,

20] and the size of the antibody response is proportional to the number of Th cells activated by

the B cell during T-B cooperation [18, 19, 21]. The importance of T cell help during the activa-

tion of antigen specific B cells to protein antigens driving B cell selection is emphasized by

recent experiments where the injection of a conjugate of antigen (OVA) linked with an anti-

DEC205 antibody induced a greater proliferation of DEC205+ relative to DEC205- B cells con-

sistent with a T helper effect on B cell activation [22].

T-B cooperation requires that the epitopes recognized by the B and T cell be on the same

portion of the antigen [16, 23, 24] leading to a model requiring the contextual internalization

and co-processing of T and B cell epitopes [10] which is consistent with the principle of linked

(aka associative) recognition of antigen [25]. Studies in vitro using human T and B lympho-

cytes showed that an antigen specific B cell can present antigen to CD4 T cells even if antigen

is present at very low concentration (10−11–10−12 M) [26]. Presentation of antigen by the B cell

also facilitates the cooperation between CD4 T cells of different specificities resulting in

enhanced generation of memory CD4 T cells [27]. However, T-B cooperation is not the only

form of cooperative interaction among lymphocytes as cooperation exists between CD4 T and

CD8 T cells [28] and between two CD4 T cells responding to distinct epitopes on the same

antigen [29].

A model based on coprocessing of T and B epitopes also led to the suggestion that preferen-

tial T-B pairing could be based on topological proximity [30–34] so that during BCR-mediated

internalization the T cell epitope is protected by the paratope of the BCR. Indeed, a more

recent study showed that not only is CD4 T cell help a limiting factor in the development of

antibodies to smallpox (vaccinia virus), but that there also exists a deterministic epitope link-

age of specificities in T-B cooperation against this viral pathogen [35]. Collectively, it appears

that T-B pairing and MHC-II restriction are key events in the selection of the antibody

response to pathogens and that operationally T-B cooperation and MHC-II restriction are key

events in the generation of an adaptive antibody response, suggesting that lack of or defective

T-B preferential pairing could result in an antibody response that is suboptimal, short-lived, or

both.

The relevance of T-B cooperation in protective antiviral responses has been documented in

numerous systems. In the influenza A virus (PR8) system it was shown that while Th1 CD4 T

cell responses on their own are ineffective at promoting recovery from infection, antibodies

generated through T-B cooperation were indispensable in the protective response against the

virus [36]. In a different influenza A strain, it was shown that T-B cooperation and CD4 T cells

represent a limiting factor in the kinetics and early magnitude of the primary B cell response

to virus challenge and provide help in a preferential way (i.e. intra-molecular but nor inter-

molecular) [37]. Additionally, CD40-CD40L (costimulatory molecules found on B cells and
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CD4 T cells, respectively) interaction is required for the generation of antibody responses, iso-

type switching and memory responses in non-viral model systems [38]. In LCMV (lympho-

cytic choriomeningitis virus) and VSV (vesicular stomatitis virus) abrogation of CD40-CD40L

interaction prevented T-B cooperation and thus inhibited antiviral protection [39]. Interest-

ingly, this study also showed that the activation of CD4 T cells (e.g., inflammatory CD4 T cells)

not associated with the activation of B cells was not compromised [39]. These data demon-

strate the relevance of T-B cooperation in the antibody response in protection against viral

infection.

In SARS-CoV-2, neutralizing antibodies (NAbs) are a key defense mechanism against

infection and transmission. NAbs generated by single memory B cell VH/VL cloning from

convalescent COVID-19 patients have been extremely useful in defining the fine epitope speci-

ficity of the antibody response in COVID-19 individuals. At present, SARS-CoV-2 NAbs can

be distinguished into three large categories. 1) Repurposed antibodies, that is, NAbs discovered

and characterized in the context of SARS-CoV and subsequently found to neutralize SARS--

CoV-2 via cross-reactivity. These antibodies map away from the receptor binding domain

(RBD) of the spike protein [40–42]. 2) Non-RBD neutralizing antibodies discovered in SARS--

CoV-2 patients whose paratope is specific for sites outside the RBD [43]. 3) RBD antibodies,

including NAbs, derived from SARS-CoV-2 patients that map to a restricted site in the RBD

[7, 44–49]. Cryo-EM of this third antibody category shows that they bind to residues in or

around the four amino acids Phe-Asp-Cys-Tyr (FNCY) in the receptor binding motif (RBM)

(residues 437–508) which is inside the larger RBD (residues 319–541) at the virus:ACE2 inter-

face [45]. Although the RBD has been shown to be an immunodominant target of serum anti-

bodies in COVID-19 patients [50], high potency NAbs are directed against a conserved

portion of the RBM on or around the FNCY patch, a sequence only found in the RBD of

SARS-CoV-2 and not in other coronaviruses. NAbs that make contact with the FNCY patch

outperform other NAbs that do not in competition binding assays, highlighting the impor-

tance of the region in neutralizing ACE2 binding [43]. Indeed while the RBD is mutationally

tolerant, the RBM is constrained to the wild-type amino acids [51], implying that the B cell epi-

tope included in this region of the virus:ACE2 interface is resistant to antigenic drift. Thus, we

may refer to this site as a key RBM B cell epitope in the generation of potent NAbs.

Antibody responses against SARS-CoV-2 depend on CD4 T cell help. Spike-specific CD4 T

cell responses have been found to correlate with the magnitude of the anti-RBD IgG response

whereas non-spike CD4 T cell responses do not [52]. However, in unexposed patients, spike-

specific CD4 T cells reactive with MHC-II peptides proximal to the central B cell epitope rep-

resent a minority (~10%) of the total CD4 T cell responses, which are dominated by responses

against either the distal portion of the spike protein or other structural antigens [53]. Surpris-

ingly, these CD4 T cell responses are largely cross-reactive and originate from previous coro-

navirus infections [54].

As mounting evidence suggests that the NAb response in COVID-19 patients is relatively

short-lived, we decided to test the hypothesis that associative recognition of a key RBM B cell

epitope (in and around the FNCY patch) and proximal MHC-II-restricted epitopes may be

defective with detrimental effects on preferential T-B pairing. Specifically, we hypothesize that

the inability to present SARS-CoV-2 peptide sequences near putative B cell epitopes may

impair memory cell generation and consequently reduce the strength and longevity of overall

and neutralizing antibody responses. To quantify the potential effects of T-B cooperation in
vivo, we analyzed all 15mer putative MHC-II epitopes (+/- 50 amino acid residues) relative to

the key RBM B cell epitope for coverage by all known 5,620 human MHC-II alleles and pre-

dicted binding affinity. The analysis shows that there exists in general less availability of effec-

tive T cell epitopes in close proximity to the key RBM B cell epitope in the human population.
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Results

Topology of a key RBM B cell epitope

Within the 222 amino acid long RBD of the spike protein (residues 319–541), the RBM (res-

idues 437–508) is the portion of the spike protein that establishes contact with the ACE2

receptor (Fig 1A). The contact residues span a relatively large surface involving approxi-

mately 17 residues [45], among them residues F486, N487, Y489 form a loop, which we

term the FNCY patch, which is surface exposed and protrudes up towards the ACE2 recep-

tor from the bulge of the RBD (Fig 1B and 1C). F486 forms hydrophobic interactions with

three ACE2 residues (L79, M82, W83). N487 forms hydrogen bonds with Q24 and W83,

and Y489 is linked with K31 via a hydrophobic interaction. This makes the amino acid resi-

dues in or around the FNCY patch a logical B cell epitope target for antibodies blocking the

virus:receptor interaction. In addition, these core residues are mutationally constrained by

the ACE2 contact surface [51]. Not surprisingly, a set of recently reported potently

Fig 1. Visualization of the FNCY core of the RBM B cell epitope on the SARS-CoV-2 spike protein RBD. (A) 3D structure of the SARS-CoV-2 spike protein

RBD (white) binding the ACE2 receptor (green) (PDB: 6M0J) with contact residues highlighted in blue and the FNCY patch highlighted in red. (B-C) Spike

protein RBD with ACE2 contact residues and FNCY patch residues labeled in two orientations (front and back). (D) Heatmap of neutralizing antibody contact

residues (purple) on the spike protein RBM region (positions 437–508). Black dots indicate ACE2 contact residues and the FNCY patch is highlighted in red.

Source data available in S1 Table.

https://doi.org/10.1371/journal.pone.0246731.g001
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neutralizing antibodies generated by single B cell VH/VL cloning from convalescent

COVID-19 patients all bear paratopes that include the FNCY patch in their recognition site

[43, 47–49, 55] (Fig 1D). While other residues (Q493, N501, and Y505) are also shared

between ACE2 and the paratope of these antibodies, they are not as protruding and are on a

β-sheet unlike the FNCY patch which is organized in a short loop as a result of the C480:

C488 disulfide bond. Thus, blockade of the RBM:ACE2 interaction (neutralization) depends

at least in part on a B cell epitope in the RBM that is structurally and functionally critical to

the interaction, virus internalization, and cell infectivity.

Prediction of MHC-II affinity for 15mer peptides proximal to the RBM B

cell epitope

In the T-B cooperation model, B cell activation and production of NAbs is dependent on CD4

T cell responses to MHC-II restricted peptides. To test the hypothesis that the generation of

NAbs against a mutationally constrained B cell epitope in the RBM reflects the efficiency of

processing and presentation of MHC-II peptides proximal to the FNCY patch, we evaluated

the landscape of MHC-II peptide restriction across the entire SARS-CoV-2 spike protein with

respect to common MHC-II alleles in the human population. To assess the potential for effec-

tive restriction by MHC-II molecules in a reasonable proportion of the population, we devised

a position-based score that assigns each amino acid residue the median affinity of the best

overlapping peptide, where median affinity is calculated across the 1911 most common

MHC-II alleles (Fig 2A), which was highly correlated with scores across all 5620 MHC-II

alleles (Fig 2B; Pearson rho = 0.99, p<2.2e-308). While a number of sites along the spike pro-

tein are predicted to generate high affinity peptides for most common MHC-II alleles, the

region around the FNCY patch was depleted for generally effective binders (Fig 2C, Fisher’s

exact OR = 0.21, p = 0.015, Methods, S1 Fig). Interestingly, the RBM region containing the

FNCY patch was free of glycans that could potentially mask the epitope (Fig 2D). We further

evaluated the distributions of binding affinities for the 20 best-ranked peptides across all sites

in the spike protein (Fig 2E), and in comparison, the distributions for the best 20 peptides

overlapping positions within +/- 50 residues of the FNCY patch (Fig 2F). In the best case, less

than half of the considered MHC-II alleles bound a shared peptide close to the FNCY patch,

whereas at other sites there were multiple peptides that could be bound by nearly all of the

MHC-II alleles (Fig 2E). This suggested overall less availability of effective T cell epitopes in

close proximity to the FNCY B cell epitope, which could limit the availability of T cell help dur-

ing an epitope-specific T-B cooperative interaction in the germinal center.

To further assess whether population variation in MHC-II MHC alleles might contribute to

heterogeneity in potential to generate neutralizing antibodies, we also evaluated the potential

of MHC-II supertypes to restrict peptides from neighboring the FNCY patch. Greenbaum

et al. previously defined 7 supertypes that group MHC-II alleles based on shared binding rep-

ertoire. These 7 supertypes account for between 46%-77% of haplotypes and cover over 98% of

individuals when all four loci are considered together [58]. We revisited our analysis of peptide

restriction proximal to the FNCY patch treating each supertype separately. There was consid-

erable variability in potential to effectively present FNCY patch proximal sequences across

supertypes (Fig 3A and 3B, Χ2 = 175, p = 3.75e-35, S2 Fig). Only 3 supertypes (DP2, main DP

and DR4) commonly presented peptides overlapping the FNCY patch (Fig 3B). We were able

to obtain population allele frequencies for four populations from the Be The Match registry

[59] and Du et al. [60]. These data show that DR4 is relatively infrequent across the popula-

tions evaluated, whereas main DR, main DP, and DP2 are more common (Fig 3C), and thus

could be more important for MHC-II restriction supportive of neutralizing antibodies. While
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there were some large population-specific differences in main DP and DP2 supertype frequen-

cies, these frequency estimates are based on a limited population sample and may provide only

a rough approximation. In general, DP and DR haplotypes were able to restrict more FNCY

patch proximal sequences (Fig 3D).

Cross-reactivity to a non-coronavirus MHC-II binding peptide as a

potential driver of T cell responses helping antibody response to the RBM

B cell epitope

Interestingly, Mateus et al. reported pre-existing CD4 T cell responses to peptides derived

from the spike protein using T cells from unexposed individuals, suggesting previous

Fig 2. Landscape of MHC-II binding affinity across spike protein 2D sequence. (A) Overview of the position affinity

score. (B) Scatterplot showing position affinity scores estimated using only common (>10% frequency, from [56]) MHC-II

alleles (x-axis) versus across all MHC-II alleles (y-axis). (C) Lineplot showing the position affinity scores across common

MHC-II alleles (Methods). Annotated domains from UniProt are highlighted. (D) Heatmap showing amino acid positions

that are glycosylated [57]. (E) Barplots (top) and boxplots (bottom) describing the fraction of binding MHC-II alleles and

corresponding affinity percentile rank distributions respectively for the top 20 peptides with the highest fraction of common

binding alleles. The binding threshold of 10 is shown as a dotted line, with values less than 10 indicating binding. Colors

correspond to the regions listed in C. (F) Barplots (top) and boxplots (bottom) describing the fraction of binding MHC-II

alleles and corresponding affinity percentile rank distributions respectively for the top 20 peptides within +/-50 amino acids

of the FNCY B cell epitope. Colors correspond to the regions listed in C.

https://doi.org/10.1371/journal.pone.0246731.g002
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exposures to other human coronaviruses could potentially generate protective immunity

toward SARS-CoV-2. Indeed, regions of higher coronavirus homology were associated with

more T cell responses in their data [54]. This represents the most comprehensive interrogation

of the spike protein with response to CD4 T cell responses to date. They screened all 15mers of

the spike protein in pooled format and further evaluated 66 predicted MHC-II peptides that

generated CD4 T cell responses. Visualizing the landscape of the CD4 T cell responses

described in their work by percent positive response (Fig 4A) or spot forming cells (Fig 4B),

we noted relatively few responses proximal to the FNCY patch in the RBM. Accordingly, few

other coronaviruses had limited homology to the FNCY region, and none fully included the

FNCY patch (Fig 5A).

A notable exception in Mateus’ results is peptide 486FNCYFPLQSYGFQPT500, which was

reported to induce a CD4 T cell response in an unexposed individual. In this case, the peptide

Fig 3. Population variation affecting availability of FNCY proximal T cell epitopes. (A) Barplot showing the aggregated supertype position affinity scores

for each position +/- 50 amino acids from the FNCY patch (grey zone). (B) Scatterplot showing the specific supertype position scores for each position +/- 50

amino acids from the FNCY patch (grey zone). The binding threshold of 10 is shown as a dashed blue line, with points below the threshold indicating binding.

(C) Barplot showing United States population frequencies, summed across the available alleles in each supertype. (D) Fraction of positions falling below the

binding threshold within the region of interest for each supertype.

https://doi.org/10.1371/journal.pone.0246731.g003

Fig 4. Immunological history of relevance to SARS-CoV-2. (A) Barplot showing the percentage of positive responses toward SARS-CoV-2 peptides from

unexposed individuals. (B) Barplot showing the number of spot-forming cells (SFC) for tested SARS-CoV-2 peptides against PBMCs from unexposed

individuals. Data from S1 Table from [54].

https://doi.org/10.1371/journal.pone.0246731.g004
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was restricted by HLA-DRB1�0101 or HLA-DQA1�0101/DQB1�0501. We found that the pep-

tide sequence had greater in silico predicted affinity to HLA-DRB1�0101. To explain the

conundrum, we blasted this peptide against the “refseq_protein” database excluding SARS--

CoV-2 (Methods). Surprisingly, the sequences with the best homology for this query were not

from coronaviruses but rather from common pathogens, first among them parasites of the

Cryptosporidium genus of apicomplexan parasitic alveolates. These sequences included con-

served anchor positions for the HLA-DRB�0101 allele making it plausible that a prior exposure

could account for the formation of a memory CD4 T cell response (Fig 5B and 5C). To further

assess the potential for other prior exposures in generating immune memory for sequences

proximal to the FNCY patch we blasted all 15mers within +/-30 amino acids of the FNCY

patch and filtered the resulting sequences based on restriction by consensus MHC-II super-

types [58] (S2 Table). We found peptides associated with multiple microbial organisms that

may meet the criteria to potentially generate CD4 T cell memory relevant to the RBM of

SARS-CoV-2 (Fig 5D).

Discussion

SARS-CoV-2 uses the RBD of the spike protein to bind to the ACE2 receptor on target cells.

The actual contact with ACE2 is mediated by a discrete number of amino acids that have been

visualized by cryo-EM (Lan et al., 2020; Shang et al., 2020). Although several SARS-related

coronaviruses share 75% homology and interact with ACE2 on target cells (Ge et al., 2013; Ren

et al., 2008; Yang et al., 2015) the RBM in SARS-CoV-2 is unique to this virus. In vitro binding

Fig 5. Learned immunity to other targets that could support T cell responses to SARS-CoV-2. (A) Multiple sequence alignment between SARS-CoV-2,

SARS1, MERS, and other human coronaviruses, focusing on the region surrounding the FNCY B cell epitope. (B) SeqLogo plot obtained by clustering IEDB

peptides reported to bind to DRB1�01:01. (C) Top results after blasting the FNCYFPLQSYGFQPT peptide against all reference proteins. (D) Barplot describing

best peptide affinities across MHC-II alleles of the top 35 unique organisms with one or more peptides matching a peptide with high similarity to 15mers

+/-30aa from the FNCY binding epitope based on BLAST analysis. The closer to 0, the greater the binding potential.

https://doi.org/10.1371/journal.pone.0246731.g005
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measurements show that SARS-CoV-2 RBD binds to ACE2 with an affinity in the low nano-

molar range (Walls et al., 2020). Mutations in this motif could be detrimental to the virus’s

ability to infect ACE2 positive human cells. Since the RBD is an immunodominant site in the

antibody response in humans [50] it is not surprising that the paratope of some antibodies iso-

lated from convalescent individuals via single B cell VH/VL cloning, and selected on the basis

of high neutralization potency, all seem to bind a surface encompassing the FNCY patch in the

RBM [7, 8, 44, 46–49]. Arguably, this motif corresponds to a relevant B cell epitope in the

spike protein of SARS-CoV-2 and is a logical target of potent neutralizing antibodies.

Although antibodies directed to this site have been isolated by different groups, little is

known about their contribution to the pool of antibodies in serum of SARS-CoV-2 infected

individuals, but evidence suggests they are likely to be rare. In one study they were found to

represent a subdominant fraction of the anti-RBD response [49] while the estimated frequency

of antigen-specific B cells ranges from 0.07 to 0.005% of all the total B cells in COVID-19 con-

valescent individuals [61]. In a second study, the identification of two ultra-potent NAbs hav-

ing a paratope involving the FNCY patch required screening of 800 clones from twelve

individuals [8]. This suggests that a potent NAb response to a mutationally constrained RBM

epitope is a rare component of the total anti-virus response consistent, with the observation

that there is no correlation between RBM site-specific neutralizing antibodies and serum half-

maximal neutralization titer (NT50) [61]. Here we show that the core RBM B cell epitope is

apparently uncoupled from preferential T-B pairing, a prerequisite for a coordinated activa-

tion of B cells against the pathogen. We analyzed MHC-II binding of 15mer peptides in the

spike protein upstream (-50 aa) or downstream (+50 aa) of the central RBM B cell epitope and

found both low coverage by 1911 common MHC-II alleles and a depletion of binding 15mers

proximal to the FNCY patch versus other exposed areas on the spike protein. This could be

due to the fact that a sizeable proportion (40%) of CD4 T cells responding to the spike protein

are memory responses found in SARS-CoV-2 unexposed individuals [52, 62] or other struc-

tural protein of SARS-CoV-2 such as the N protein [53]. Thus, it is possible that these con-

served responses are used as a decoy mechanism to polarize the response away from the RBM.

However, this does not rule out the contribution of a bias in frequency of specific B cells in the

available repertoire.

Corroboration to our hypothesis also comes from Mateus et al. [54] who tested sixty-six

15mer peptides of the spike protein in SARS-CoV-2 unexposed individuals and found that

CD4 T cell responses against this narrow RBM site account for only 2/110 (1.8%) of the total

CD4 T cell response to 15mer peptides of the spike protein. Surprisingly, a CD4 T cell response

against peptide FNCYFPLQSYGFQPT was by CD4 T cells of an unexposed individual. Since

this peptide has low homology with previous human coronaviruses, we reasoned that this

could either represent a case of TCR cross-reactivity since a single TCR can engage large num-

bers of unique MHC/peptide combinations without requiring degeneracy in their recognition

[63, 64]. Remarkably, however, a BLAST analysis revealed a 10 amino acid sequence match

with proteins from pathogens including those from the Cryptosporidium genus, with identity

in binding motif and anchor residues (agretope) for the restricting MHC-II allele strongly sug-

gesting peptide cross-reactivity. Cryptosporidium hominis is a parasite that causes watery diar-

rhea that can last up to 3 weeks in immunocompetent patients [65]. Additional possibilities for

cross-reactivity to the RBM, albeit of a lesser stringency, involve antigens from Micromonos-
pora, Pseudomonas, Blastococcus, Lactobacillus, and Bacteroides (Fig 5D). Thus, it appears as if

memory CD4 T cells reactive with peptides in the RBM may reflect the immunological history

of the individual that, as evidenced by this case, can be unrelated to infection by other corona-

viruses. Interestingly, the great majority (64–88%) of COVID-19 positive individuals in home-

less shelters in Los Angeles and Boston were found to be asymptomatic [66]. This suggests that
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the status of the immune system, which itself reflects past antigenic exposure, may be a deter-

mining factor in the generation of a protective immune response after SARS-CoV-2 infection.

The findings reported herein have considerable implications for natural immunity to

SARS-CoV-2. The fact that there seems to be an overall suboptimal T-B preferential pairing

suggests that B cells that respond to the RBM B cell epitope may receive inadequate T cell help.

This is consistent with the observation that in general potent neutralizing antibodies to the

RBM undergo very limited somatic mutation [8, 46] and are by and large in quasi-germline

configuration [67]. Since T cell help is also necessary to initiate somatic hypermutation in B

cell through CD40 or CD38 signaling in the germinal center [68], it follows that one important

implication of our study is that defective T-B pairing may negatively influence the normal pro-

cess of germinal center maturation of the B cell response in response to SARS-CoV-2 infection

in a critical way.

Which antigens can generate T cell responses depends on the binding specificities of

MHC-II molecules, which are highly polymorphic in the human population. We noted a gen-

eral trend for MHC-II alleles to less effectively present peptides from the RBM region, but also

observed some variability across MHC-II supertypes. The main DP and DP2 haplotypes were

both common and had the highest potential to present peptides, suggesting that most individ-

uals should carry at least one allele capable of presenting peptides in this region. Which of the

two DP haplotypes was more common varied by ancestral population, thus it is possible that

differences in the haplotypes could translate to differences in T-B cooperativity levels within

groups, though binding affinities for epitopes near the FNCY patch were similar for both. DQ

and DR supertypes were less able to present peptides near FNCY, with the exception of DR4,

which is among the less common supertypes. Importantly, our analysis was limited to pre-

dicted affinity of peptides to MHC-II, and other characteristics such as expression levels, sta-

bility or differences in interactions with molecular chaperones likely also contribute to

whether FNCY proximal peptides are available to support T-B cooperation [69].

The present study assesses the probability of SARS-CoV-2 peptides of the Spike protein to

bind and be presented by MHC-II molecules. Our study is limited by the following: results are

an estimate based on an algorithm that encompasses many biophysical variables for MHC-II

presentation but certainly not all. In addition, while we believe the epitope containing the

FNCY patch is promising for inducing a protective neutralizing response, it is not the sole

determinant of a protective antibody response to SARS-CoV-2; as neutralizing antibodies

against other portions of the spike and other non-structural proteins have been reported [41,

42, 70–73].

In light of our findings, it can be predicted that, in general, a specific RBM antibody

response may be short-lived and that residual immunity from a primary infection may not be

sufficient to prevent reinfection after 6–9 months. Sporadic cases of re-infection have been

reported by the media in Hong Kong and Nevada [74]. A third case has been reported in a

care-home resident who after the second infection produced only low levels of antibodies [75].

Finally, silent re-infections in young workers in a COVID-19 ward who tested positive for the

new coronavirus and became reinfected several months later with no symptoms in either

instance have been reported [76]. It is tempting to speculate that waning antibody levels or a

poorly developed specific NAb antibody response to SARS-CoV-2 can potentially put people

at risk of reinfection. Other factors to consider are a bias in the available B cell repertoire in the

population and the extent to which a defective T-B cooperation influences the longevity of ter-

minally differentiated plasma cells in the bone marrow [77].

In summary, we provide evidence that MHC-II constrains the CD4 T cell response for epi-

topes that are best positioned to facilitate T-B pairing in generating and sustaining a potent

neutralizing antibody response against a mutationally constrained RBM B cell epitope.
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Furthermore, we show that the immunological history of the individual, not necessarily related

to infection by other coronaviruses, may confer immunologic advantage. Finally, these find-

ings may have implications for the quality and persistence of a protective, neutralizing anti-

body response to RBM induced by current SARS-CoV-2 vaccines.

Materials and methods

Data and code are available at https://github.com/cartercompbio/SARS_CoV_2_T-B_co-op.

Affinity analysis

NetMHCIIpan version 4.0 was used to predict peptide-MHC-II affinity [78] for generated

15mers along the SARS-CoV-2 spike protein.

Spike protein analyses

SARS-CoV-2 spike protein sequence and protein regions were obtained from https://www.

uniprot.org/uniprot/P0DTC2. Glycan data were obtained from [57] and true-positive sites

were aggregated across 3 replicates. To assess depletion of effective binders near the FNCY

patch, we performed a Fisher’s exact test for binding (median affinity across common alleles

<10) versus proximity (+/- 50 amino acids) to FNCY for positions free of glycans. We

excluded positions within 10 amino acids of a glycan using the data obtained from Watanabe

et al. and added a pseudocount of 1.

The SARS1, MERS1, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 spike

protein sequences were also downloaded from UniProt (P59594, K9N5Q8, P15423, Q6Q1S2,

P36334, Q0ZME7, respectively). Multiple sequence alignment was performed on the

EMBL-EBI Clustal Omega web server using default parameters [79].

Structure analysis

The 6M0J 3D X-ray structure for the protein complex containing the SARS-CoV-2 spike pro-

tein RBD (P0DTC2) interaction with ACE2 (Q9BYF1) from [45]. The structure figures were

prepared using VMD [80].

Supertype analysis

Supertypes were obtained from [58]. All alpha/beta combinations spanning any of these types

were included, resulting in 279 alleles. US supertype frequencies for alleles in DRB1 and DQB1

were obtained from the Be the Match registry [59], US frequencies for alleles in DPB1 were

obtained from [60] as DPB1 was not available from the Be the Match registry. Available allele

frequencies within each supertype were summed for Fig 3C.

Motif analysis

All 13-20mer peptides adhering to the following parameters were downloaded from the IEDB

[81]: MHC-II assay, positive only, DRB1�01:01 allele, linear peptides; and any peptides with

post-translational modifications or noncanonical amino acids were removed. The remaining

10,117 peptides were input into Gibbs cluster v2.0 [82] using the default MHC-II ligand

parameters.
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BLAST analysis

15mers were generated along a sliding window +/-30 amino acids from the FNCY patch start

and end (455–518, 0-index) and input into NCBI BLAST [83] using the ‘refseq_protein’ data-

base and excluding SARS-CoV-2 (taxid:2697049). Identified peptides (S2 Table) were then eval-

uated for binding affinity and any peptide binding to at least one allele was retained for Fig 5D.

Supporting information

S1 Table. SARS-CoV-2 neutralizing antibody residues and references used to generate Fig

1D.

(XLSX)

S2 Table. BLAST-identified peptides with affinity, and binding fraction.

(XLSX)

S1 Fig. Distribution of position scores along the spike protein using the 25th percentile

affinity instead of the median affinity.

(PDF)

S2 Fig. Overview of subject peptides that bind at least one retrieved from BLAST search.

(A) Pileup of corresponding query peptides’ start positions of BLAST-identified peptides that

bind to at least one common MHC-II allele. The below barplot shows Fig 3A for reference: the

aggregated position scores across supertypes for positions proximal to FNCY. (B) Scatterplot

showing the median supertype affinities of BLAST-identified peptides that may bind (median

affinity <20) along the corresponding start positions of queried peptides along the spike pro-

tein. The FNCY motif region is highlighted in grey. (C) Clustermap showing the median

supertype affinities of BLAST-identified peptides that may bind (median affinity <20) to at

least one supertype. Median affinities greater than 20 have been adjusted to 20 for better visual-

ization of binding peptides.

(PDF)

S1 Graphical abstract.

(TIF)
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