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Abstract

Despite the need for safe and effective postoperative analgesia in neonates, research

regarding pain management in neonatal rodents is relatively limited. Here, we investigate

whether sustained release buprenorphine (Bup SR) effectively attenuates thermal hyper-

sensitivity in a neonatal rat model of incisional pain. Male and female postnatal day 3 Spra-

gue Dawley rat pups (n = 34) were randomly assigned to one of four treatment groups: 1)

saline (control), 0.1 mL, once subcutaneously (SC); 2) buprenorphine HCl (Bup HCl), 0.05

mg/kg, once SC; 3) low dose Bup SR (low-SR), 0.5 mg/kg, once SC; 4) high dose Bup SR

(high-SR), 1 mg/kg, once SC. Pups were anesthetized with sevoflurane and a 0.5-cm long

skin incision was made over the left lateral thigh. The underlying muscle was dissected and

closed using surgical glue. Thermal hypersensitivity testing was performed at 24 h prior to

surgery and subsequently at 1, 4, 8, 24, and 48 h post-surgery using an infrared diode laser.

Thermal hypersensitivity was attenuated at 1 h post-surgery in the Bup HCl group, while it

was attenuated through the entire postoperative period in both low-SR and high-SR groups.

This data suggests that a single dose of low-SR (0.5 mg/kg) or high-SR (1 mg/kg) effectively

attenuates thermal hypersensitivity for at least 8 h in neonatal rat pups.

Introduction

Evaluation and management of pain in neonates is an area of increasing focus within both

human and veterinary medicine. Prior to 1980, it was common for human neonatal patients to

undergo invasive surgical procedures without adjunctive pain medication [1]. The prevailing

belief during this time was that the neonatal nervous system was not developed enough to feel

pain [2]. Current research, however, indicates that neonates not only do experience pain, but

that controlling pain early in life is critical to preventing lasting changes to developing somato-

sensory systems [3–5]. In human medicine, a number of analgesic agents have been evaluated

in neonates and infants, including topical anesthesia, acetaminophen, and opioids [6]. Despite
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being widely used, both local analgesia with a topical EMLA cream and systemically adminis-

tered acetaminophen failed to provide adequate pain control after common neonatal intensive

care unit procedures [7,8]. Opioids are also commonly used in human neonates and have been

shown to provide adequate procedural analgesia in this population [6].

In laboratory animal medicine, neonatal rodents are commonly used in a number of sur-

vival surgeries ranging from stereotactic [9] and neurological research [10] to cardiothoracic

procedures [11,12]. Analgesia in neonates is complex and must take into account physiologic

differences between neonates and adults. Rapid developmental changes in renal and hepatic

function during the neonatal period affect the pharmacokinetics and pharmacodynamics of

analgesic agents, often resulting in an initial reduction in dosing and clearance [13]. Neonates

are also more sensitive to the adverse effects of many drugs, necessitating careful attention to

technique and close monitoring after administration [14].

For the past several years, a sustained release formulation of buprenorphine (Bup SR) has

been commercially available on the veterinary market [15]. It is an opioid analgesic that is

often considered the ‘gold standard’ for postoperative pain management in adult laboratory

animals [16]. Bup SR, like regular buprenorphine (Bup HCl), is a partial μ-opioid receptor ago-

nist that has antagonistic effects at κ-opioid receptors [17] and is therefore preferred over

other full μ-opioid receptor agonists, such as morphine, due to its wide margin of safety and

longer duration of action [18]. Reducing the stress associated with handling and repeat injec-

tions is beneficial in all laboratory animals but could be especially useful when providing anal-

gesia to neonates as disruptions to the nest and subsequent stress to the dam can predispose to

cannibalization and maternal neglect [19]. A single dose of Bup SR is reported to provide post-

operative analgesia for 48–72 h in adult rats [16,20]. It therefore represents a considerable

refinement and improvement in animal welfare in veterinary postoperative care and has been

validated in a number of adult rodent models [15,16,20,21]. Plasma concentration in rats

administered Bup SR at both 0.9 mg/kg and 1.2 mg/kg remained within a range considered to

provide analgesia 72 h after a single injection [21]. Although Bup SR has been widely used to

provide longer postoperative analgesia in adult rats, its effects in rat pups is poorly understood.

To our knowledge, there are no published studies assessing Bup SR in neonatal animals of

any species. Therefore, the aim of the current study was to examine postoperative analgesia

using an incisional pain model of three-day-old rat pups given two different doses of Bup SR.

We hypothesized that Bup SR given at both the low and high dose would safely and effectively

attenuate thermal hypersensitivity for a longer duration than Bup HCl.

Materials and methods

Animals

One-day-old Sprague Dawley rat pups [(Crl: CD (SD) IGS), (n = 34), Charles River Laborato-

ries, Hollister, CA] equal male and female, housed in litters of ten to twelve, arrived with their

dam at the facility on day 0. Rats were free of rat coronavirus, rat Theiler virus, Kilham rat

virus, rat parvovirus, Toolan H1 virus, rat minute virus, lymphocytic choriomeningitis virus,

murine adenovirus types 1 and 2, reovirus type 3, Sendai virus, pneumonia virus of mice,

Mycoplasma pulmonis, mites, lice and pinworms. Animals were housed in static microisolator

cages on a 12:12 h dark:light cycle. Rat dams were fed a commercial diet (Teklad Global 18%

Protein Rodent Diet 2018, Harlan Laboratories, Madison, WI) and were provided water fil-

tered by reverse osmosis ad libitum. All experiments were approved by the Stanford Adminis-

tration Panel for Laboratory Animal Care. All rats were treated in accordance with the Guide
for the Care and Use of Laboratory Animals in a facility accredited by the Association for the

Assessment and Accreditation of Laboratory Animal Care, International [22]. At the study’s
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conclusion, rat pups and dams were euthanized by carbon dioxide asphyxiation followed by

decapitation as a secondary method of euthanasia.

Experimental groups

Three-day-old pups of either sex were randomly assigned to one of four experimental treat-

ment groups and the end observers were blinded to treatment group allocation. Treatment

groups consisted of: 1) saline (Saline; 0.9% NaCl, Hospira, Lake Forest, IL) - 0.1 ml subcutane-

ous (SC) once (n = 9); 2) buprenorphine HCl (Bup HCl; Par Pharmaceutical, Chestnut Ridge,

NY) - 0.05 mg/kg SC once (n = 8); 3) low dose sustained release buprenorphine (low-SR; Zoo-

pharm, Fort Collins, CO)– 0.5 mg/kg SC once (n = 8); 4) high dose sustained release buprenor-

phine (high-SR) - 1 mg/kg SC once (n = 9). All injection sites were pinched for 5 seconds post-

injection to prevent leakage.

Anesthesia and surgical incision

Anesthesia was induced with an induction chamber (2L of 100% O2 with sevoflurane at 5%)

and maintained with a nose cone mask (0.5L of 100% O2 with sevoflurane at 1–3%). The pups

were placed in right lateral recumbency on a warm water circulating blanket set to 38˚C (Stry-

ker T/Pump, Portage, Michigan) for the entirety of anesthesia. After transfer to the nose cone,

the experimental treatment was administered interscapularly. The thigh was surgically pre-

pared with three alternating betadine (10% povidone-iodine, Purdue Products L.P., Stamford,

CT) and 70% Isopropyl Alcohol USP (Henry Schein, Melville, NY) preparations. A 0.5-cm

incision was made on the left lateral thigh. The underlying muscle was dissected, and the inci-

sion was closed with surgical tissue glue (VetBond, 3M, St Paul, MN). Pups were recovered in

a recovery cage on a warm water circulating blanket and placed back to the dam once fully

recovered.

Thermal hypersensitivity

Baseline thermal sensitivity: At two-days of age (-24 h), laser stimulation was performed to

determine baseline thermal latency. Skin temperature was measured prior to laser stimulation

on the left and right lateral thigh using an infrared thermometer (Kintrex Infrared Thermo-

memter IRT0421, Kintrex, Vienna, VA). During stimulation and testing, pups were main-

tained on a warm-water circulating blanket. An infrared diode laser stimulator (LASMED,

Mountain View, CA) was used at 490 mA with a cut off value of 19-seconds. The laser was

focused perpendicular to the lateral thigh with 4 mm in diameter and 3.5 inches from the sur-

face of the skin. Purposeful movement away from the laser was measured as thermal latency in

seconds. Two measurements, taken 3 to 5 minutes apart, were averaged on the left thigh.

Thermal latency testing was performed at 1, 4, 8, 24, and 48 h post-surgery on the ipsilateral

(left) thigh. Skin temperature was measured prior to each testing. Thermal hypersensitivity

was defined as a significant decrease in withdrawal latency following focal thermal stimuli.

Pups were weighed daily, and incisions and injection sites were monitored daily for the

duration of the study.

Statistical analysis

Weight, sex, and thermal latency were analyzed with repeated measure with Bonferroni for

multiple comparisons (SPSS, IBM, Somers, NY). Data are expressed as mean ± SEM. A p-

value of less than 0.05 was considered as significant.
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Results

Body weight and sex

The weight of the rats in all treatment groups gradually increased from -24 h to 48 h of the

experiment (Fig 1). Weight gain was statistically significant in all treatment groups from -24 h

[Saline 8.7 ± 0.3 g, F(1,8) = 341.33, p< 0.001; Bup 8.5 ± 0.3 g, F(1,8) = 462.91, p< 0.001; Low-

SR 8.8 ± 0.2 g, F(1,8) = 276.61, p< 0.001; High-SR 8.7 ± 0.2 g, F(1,8) = 136.90, p< 0.001] to 48

h (Saline 14.0 ± 0.6 g; Bup 13.4 ± 0.4 g; Low-SR 13.1 ± 0.3 g; High-SR 12.8 ± 0.6 g). Body

weight did not differ between groups at -24 h, nor was weight gain different between groups

over the course of the experiment. There were no sex differences for skin temperature [ipsilat-

eral (F(1,26) = 0.019, p = 0.891) and contralateral (F(1,26) = 0.134, p = 0.718)] and thermal

hypersensitivity test [ipsilateral (F(1,26) = 0.019, p = 0.892)].

Fig 1. Body weights of rat pups throughout the study; mean ± SEM. �, 48 h weights were significantly (P< 0.05) higher than -24 h (baseline) weights for all treatment

groups.

https://doi.org/10.1371/journal.pone.0246213.g001
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Skin temperature

In the high-SR groups, the skin temperature was significantly lower in both the ipsilateral

(31.6 ± 0.6˚C; F(1,8) = 18.93, p = 0.002); Fig 2) and contralateral ((31.8 ± 0.6˚C; F(1,8) = 17.91,

p = 0.003); Fig 3) thighs at the 1 h time point as compared to -24 h (33.9 ± 0.5˚C and

Fig 2. Skin temperature of the ipsilateral thigh measured in degrees Celsius (˚C) shown as (A) mean ± SEM and (B) individual data

points. �Values significantly (P< 0.05) different from the –24 h (baseline) value for the same treatment group. The arrow represents the

time of surgical incision.

https://doi.org/10.1371/journal.pone.0246213.g002
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34.0 ± 0.4˚C, respectively; baseline). There were no significantly different skin temperatures in

any other groups at any time points.

Thermal hypersensitivity

Thermal hypersensitivity did not differ between males and females at any time point. In the

ipsilateral hindleg, thermal latency did not differ between groups before treatment (Fig 4). Rat

pups that received saline had significantly reduced thermal latency at 1 [6.1 ± 0.8 s; F(1,8) =

42.98, p< 0.001], 4 [5.8 ± 1.1 s; F(1,8) = 61.77, p< 0.001], and 8 [7.2 ± 1.1 s; F(1,8) = 55.92,

p< 0.001] h as compared with -24 h (15.3 ± 1.0 s; baseline). In the Bup HCl group, when com-

pared with -24 h (14.5 ± 1.1 s; baseline), thermal latency was not different at 1 (14.9 ± 1.5 s), 24

(11.2 ± 1.6 s), and 48 (11.4 ± 1.0 s) h, while it was significantly reduced at 4 (7.3 ± 0.7 s), and 8

(10.1 ± 0.8 s) h. The thermal latency of rat pups in the low-SR and high-SR groups did not dif-

fer between any time points.

Discussion

This is the first study demonstrating that a single dose of Bup SR (0.5 and 1 mg/kg) effectively

attenuates thermal hypersensitivity for at least 8 h in a neonatal rat model of incisional pain.

Fig 3. Skin temperature of the contralateral thigh measured in degrees Celsius (˚C) shown as (A) mean ± SEM and (B)

individual data points. �Values significantly (P< 0.05) different from the –24 h (baseline) value for the same treatment

group. The arrow represents the time of surgical incision.

https://doi.org/10.1371/journal.pone.0246213.g003
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Thermal latency in this study was defined as time until purposeful movement away from the

laser, and decreased latency correlated with thermal hyperalgesia. Withdrawal and behavioral

response to noxious stimuli is seen in rat pups as early as postnatal day 1, and injection of irri-

tating chemicals in rat pups at postnatal day 3 results in allodynia and hyperalgesia [23,24].

The behavioral responses of young pups to noxious stimulus include whole body wriggling as

well as more localized withdrawal responses [14]. Thermal latency of neonates that received

Bup HCl was significantly shorter at 4 and 8 h as compared to baseline, supporting our

hypothesis that both low-SR and high-SR safely and effectively attenuate thermal hypersensi-

tivity for a longer duration than Bup HCl in a neonatal rat model of incisional pain. Given that

both doses of Bup SR had similar efficacy, we recommend the use of Bup SR at 0.5 mg/kg in

neonatal rats for the management of postoperative incisional pain.

We chose to use a modified incisional model of acute pain because our lab has extensive

experience with this model and has found it to reliably replicate minor postoperational pain.

Previous studies utilizing this model showed that thermal hypersensitivity lasted at least 4 days

when the hindpaw was incised [16,25–27]. In contrast to the original model [25], we incised

over the lateral thigh rather than the plantar surface of the hindpaw due to the smaller size of

neonates and the increased ease of performing thermal hypersensitivity testing over this

Fig 4. Thermal hypersensitivity (measured as thermal latency [s] to withdrawal) of the ipsilateral thigh shown as (A)

mean ± SEM and (B) individual data points. �Values significantly (P< 0.05) different from the -24 h (baseline) value

for the same treatment group. The arrow represents the time of surgical incision.

https://doi.org/10.1371/journal.pone.0246213.g004
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location. An in-press study by our group found that a skin incision alone over the lateral thigh

elicited thermal hypersensitivity for at least 4 h. In this study, we dissected the underlying mus-

cle in addition to incising the skin to prolong this interval. With this added step thermal hyper-

sensitivity lasted 8 h but was similar to baseline for all groups by 24 h, meaning we could not

assess the effectiveness of each treatment beyond 8 h. We also have to take into consideration

that only thermal hypersensitivity was tested. During a pilot study, mechanical hypersensitivity

(von Frey monofilament) was deemed to be impractical due to the animal’s size and anatomy

and was therefore not performed.

Bup HCl is widely considered a cornerstone of effective postoperative analgesia and has

been used extensively in both laboratory and companion animals for decades. Though Bup

HCl does have a longer duration of action than other opioids such as morphine, it still requires

administration every 6–12 h to maintain effective plasma concentrations in adult animals [17].

In human pediatric patients aged 6 months to 6 years, Bup HCl given at a dose of 1.5 mcg/kg

conferred analgesia for an average of 4.9 h [28]. This duration is likely longer in newborns

given the reduced clearance secondary to the immaturity of the glucuronidation system,

though the exact duration of action in this population is unknown [29]. More recently, Bup SR

became commercially available and confers analgesia for 48–72 h in adult rats, thereby reduc-

ing animal handling and subsequent stress [20,21]. Despite the widespread use of Bup SR in

adult laboratory animals, no publications exist regarding its safety or efficacy in neonatal ani-

mals. Previous studies in adult Sprague-Dawley rats have found that Bup SR administered any-

where between 0.3 to 1.2 mg/kg provides effective antinociception in an incisional pain model

for at least 48 h [20]. We chose our high-SR dose (1 mg/kg) based on these results. The low-SR

dose (0.5 mg/kg) was based on equivalent dosing with Bup HCl at 0.05 mg/kg every 8 h for 3 d.

In the current study, both the low- and high-SR groups effectively attenuated thermal hyper-

sensitivity in neonatal animals for at least 8 h. Surprisingly, analgesic effects of Bup HCl at 0.05

mg/kg in neonatal rats were not observed at 4 h despite previous findings that this same dose

provides adequate attenuation of hypersensitivity for 12 h in the incisional pain model in adult

rats [26].

Though generally accepted to have a wide margin of safety [30], Bup HCl has been reported

to produce dose-dependent respiratory depression and sedation [31], decreased GI transit

time [32], and pica behavior [17] in a variety of species. Neonatal procedures are further com-

plicated by the possibility of cannibalism or neglect by the dam postoperatively [19]. We did

not note any observable clinical effects associated with buprenorphine, nor were there compli-

cations associated with maternal acceptance as typified by the presence of a milk spot and

increased weight gain at all time points. Additionally, previous studies evaluating Bup SR have

reported skin lesions, scabbing, and ulcerations at the injection site [15,33]. In our current

study, there was no visible erythema, scabbing, or irritation of the skin at the administration

site for Bup SR in any of the rat pups. We did find that the skin temperature of both the ipsilat-

eral and contralateral thighs was significantly lower in the high-SR treatment group at 1 h as

compared to baseline skin temperatures. This is contradictory to studies in adult animals

which showed an association between buprenorphine administration and elevated body tem-

perature [34,35]. One potential explanation of our finding is that buprenorphine’s activation

of peripheral μ-opioid receptors causes a receptor-mediated release of histamine [36], produc-

ing peripheral vasodilation [37] and the potential for subsequent heat loss. These vasodilatory

sequelae are likely more pronounced in neonates due to their decreased insulation and limited

ability to thermoregulate as compared to adult animals.

From a practical standpoint, the cost of a 5mL vial of 0.5 mg/mL Bup SR from ZooPharm is

more expensive than an equivalent volume of Bup HCl ($105 and $75, respectively). However,

the volume necessary to singly dose a neonatal rat with either drug was negligible (0.01 mL for
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Bup and low-SR; 0.02 mL for high-SR). Bup SR is viscous and generally larger gauge needles

are recommended for administration. Due to the small administration volumes needed in this

study, insulin syringes were used to ensure accurate dosing. Drawing up Bup SR through the

irremovable 31-gauge insulin needle did take marginally longer than did pulling up Bup but is

very doable.

Based on the results of our current study, a single dose of Bup SR at 0.5 or 1 mg/kg SC pro-

vides at least 8 h of postoperative attenuation of thermal hypersensitivity in a neonatal rat inci-

sional pain model. A model causing longer-term pain in neonates is needed to determine the

actual length and dose dependency of Bup SR’s efficacy in this demographic. Additional stud-

ies measuring the plasma concentrations of Bup SR in neonates, as well as further research

examining its effectiveness in different neonatal surgical pain models and with other neonatal

laboratory animal species are warranted.
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