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Abstract

We suggest a novel mathematical framework for the in-homogeneous spatial spreading of

an infectious disease in human population, with particular attention to COVID-19. Common

epidemiological models, e.g., the well-known susceptible-exposed-infectious-recovered

(SEIR) model, implicitly assume uniform (random) encounters between the infectious and

susceptible sub-populations, resulting in homogeneous spatial distributions. However, in

human population, especially under different levels of mobility restrictions, this assumption

is likely to fail. Splitting the geographic region under study into areal nodes, and assuming

infection kinetics within nodes and between nearest-neighbor nodes, we arrive into a contin-

uous, “reaction-diffusion”, spatial model. To account for COVID-19, the model includes five

different sub-populations, in which the infectious sub-population is split into pre-symptom-

atic and symptomatic. Our model accounts for the spreading evolution of infectious popula-

tion domains from initial epicenters, leading to different regimes of sub-exponential (e.g.,

power-law) growth. Importantly, we also account for the variable geographic density of the

population, that can strongly enhance or suppress infection spreading. For instance, we

show how weakly infected regions surrounding a densely populated area can cause rapid

migration of the infection towards the populated area. Predicted infection “heat-maps” show

remarkable similarity to publicly available heat-maps, e.g., from South Carolina. We further

demonstrate how localized lockdown/quarantine conditions can slow down the spreading of

disease from epicenters. Application of our model in different countries can provide a useful

predictive tool for the authorities, in particular, for planning strong lockdown measures in

localized areas—such as those underway in a few countries.

Introduction

The COVID-19 pandemic is now spread over most of the globe. Its vast consequences are asso-

ciated with severe public health issues, i.e. overwhelmed health system, high death toll, and a
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huge economic crisis worldwide [1–5]. In order to optimize decisions in both aspects, health

and economy, authorities need information and predictions about the spatial distribution of

the disease [6], thereby allowing selective quarantine or lockdown measures [7, 8].

Infectious disease spreading models are largely based on the assumption of perfect and con-

tinuous “mixing”, similar to the one used to describe the kinetics of spatially-uniform chemical

reactions. In particular, the well-known susceptible-exposed-infectious-recovered (SEIR)

model, builds on this homogeneous-mixing assumption. Some extensions of SEIR-like models

that account for spatial variability employed mainly diffusion processes for the different sub-

populations [9–12] (where the term sub-population refers to people under a certain stage of

the disease). Yet, clearly, while such processes can effectively describe wildlife motion in some

systems, they fail to describe the (non-random) human behavior [13]. To mimic human

behavior more realistically, recent extensions employed diffusion processes of the sub-popula-

tions that are limited to contact networks [14]. However, one of the most important artifacts

for the application of diffusion process for human population is its unrealistic tendency to

spread all populations to uniformity (be it in real space or on contact networks). Moreover,

these models do not involve naturally a spatial dependence of infection spreading parameters,

which are required to model geographically local quarantine. Thus, to implement such depen-

dence using homogeneous models requires a division of the geographic region into multiple

number of patches [14, 15].

Early in the COVID-19 pandemic spread, different modeling groups used homogeneous

models to predict the epidemic evolution in China and in other countries [16–23]; their pre-

dictions urged the World Health Organization (WHO) to issue a global warning. Wu et al.
were the first to model the COVID-19 spreading [16]. They applied the SEIR model using data

from the very early (exponential) stage of the outbreak, to predict epidemic spread mainly in

Wuhan and mainland China. Extensions for this first attempt were quick to follow. Ivorra and

Ramos applied the “Be-CoDiS” mathematical model—a multi-sub-population extension of the

SEIR model—to COVID-19 [19, 20]. A fit of the parameters of the model to a longer period of

evolution, up to the time where the outbreak nearly peaked (maximum number of new daily

infected people), yielded remarkably accurate predictions for the stages that followed. More

recently, He et al. [21] and Giordano et al. [22] provided further improvements and analysis

on the original application of the SEIR model to COVID-19 [16].

As mentioned, conventional epidemiological models assume spatially uniform (statistical)

frequency of encounters between infectious and susceptible people, which is associated with

uniform spatial densities of these sub-populations at all times [16, 24, 25]. As such, these mod-

els do not require any spatial variable. However, the assumption of “infinitely fast mixing”

might fail even in normal life conditions, let alone under (the often used) various travel and

gathering restrictions, or moderate quarantine conditions [7]. Moreover, the basic reproduc-

tive number, R0, may vary from one area to the other, for example, if people behave differently

across areas. A further complication may arise when human behavior evolves in time during

an epidemic, implying that R0 is also time-dependent. As a consequence, accurate predictions

of such models rely on repeated readjustments of the infection rate constant as the epidemic

progresses.

Specifically, these models give a broad regime of exponential growth of the cumulative

number of infected people, whereas the actual growth is sub-exponential, which can be effec-

tively described by a power-law (i.e. Atν where A and ν are numerical constants) [26–30]. Early

data from several countries indeed demonstrated such a wide temporal regime of power-law

growth, which occurred much prior to the peak of the epidemic [26, 30–32]. In accord with

similar ideas [26], we propose that such a temporal behavior can result from the lateral
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spreading of infected domains, similar to the spreading of wildfire, which gives further motiva-

tion to the present work.

In this paper, we develop a novel theoretical framework to model the spread of infections,

thereby allowing researchers working in close contact with authorities to apply the model in

their own countries. To demonstrate our theoretical framework, we chose to improve on

homogeneous SEIR-like models, in particular in the context of the COVID-19 pandemic, in

three major aspects. The first is derivation of a spatial spreading (diffusion-like) operator, that

generates propagation of the front of an infected population domain into a susceptible one

[33–35]. Importantly, this operator is associated only with infection spreading and does not

describe motion of the different populations as previously suggested [9, 12]; as argued above,

the use of a diffusion process is inadequate for human population. The second, and strongly

linked to the first, is the ability to account for the geographical population density variation

and study its effect on the spreading [36]. The combination of these two aspects leads to the

spreading of the disease from areas of low density to areas of high density. The third aspect is

the account of geographic variation in quarantine levels if such are employed. In addition, to

apply our approach for COVID-19, we split the infectious sub-population into a transient

“infectious-presymptomatic” group and an “infectious-symptomatic” group (the SEPIR model

mentioned below).

Our results provide infection “heat-maps”, reminiscent of those appearing in publicly avail-

able resources (e.g., for South Carolina [37] and Nashville, Tennessee [38]); see also the heat-

map snapshots in the SI, Figs SI-6 and SI-7 in S1 File. These heat-maps demonstrate unique

features of the disease spreading depending on the spatial variation of population density, loca-

tion of the initial epicenters, and local quarantine levels. They show that the accumulated num-

ber of infected people deviates significantly from the associated homogeneous model.

In-homogeneous SEPIR model

Our model, which builds on the homogeneous SEIR model, includes five sub-populations

associated with different stages of the disease: susceptible-exposed-presymptomatic-

infectious-recovered (SEPIR). This basic SEPIR model is extended to account for the

spatially varying density of people n(x)—where x is a 2-dimensional (2D) vector in the

plane, whose components will be denoted by x and y—between different geographical areas

of the region under study, which is assumed in the present study to be isolated from other

regions. Our model also aims to predict the effect of different quarantine levels imposed in

different areas within the region of study, which is modeled via spatial dependence of infec-

tion rates.

We define the variables h, b, w, f, and r as follows:

h(x, t): 2D (areal) density of susceptible (healthy but not immune) people

b(x, t): density of exposed people that do not yet infect others and are not yet symptomatic (i.e.

within the incubation period [39])

w(x, t) density of pre-symptomatic people that can already infect others but are not yet symp-

tomatic (i.e. still within the incubation period)

f(x, t): density of symptomatic (infectious) people.

r(x, t): density of people that have recovered from illness, thus assumed (here) to be immune

from a second infection
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We require that the total local density of people is equal to prescribed values n(x) at differ-

ent positions x (obtained, e.g., from public databases) and is independent of time:

hðx; tÞ þ bðx; tÞ þ wðx; tÞ þ f ðx; tÞ þ rðx; tÞ ¼ nðxÞ ; ð1Þ

implying the same for the total population number, N =
R

area d2 x n(x). In what follows, capital

letters will denote the corresponding global quantities, e.g., H(t) =
R

area d2 x h(x, t), B(t) =
R

area

d2 x b(x, t), etc. We note in passing that these variables correspond to the variables of the well-

known (homogeneous) SEIR model [24, 40, 41] as follows: H$ S (susceptible), B$ E
(exposed), W + F$ I (infectious), R$ R (recovered). Thus, unlike in the SEIR model, in our

model the infectious sub-population (I) is split into two sub-populations, pre-symptomatic

(W) and symptomatic (F).

In order to develop the spatial epidemic spread model, we consider first a 2D discrete space

(square or triangular lattice), in which the nodes are defined as areal units of linear size (hence-

forth “grid-size”) δ. The present model assumes some traveling (or mobility) restrictions, and

the value of δ is chosen such that node-node infections can occur only between those nodes

that are nearest-neighbors, while within each node homogeneous infections take place. For

example, if people avoid traveling distances over 30 km, but still travel a lot within 30 km, one

has to choose δ’ 30 km. Likewise, under stronger restrictions (i.e. a “lockdown”), traveling

may be restricted to 1 km, which implies δ’ 1 km.

We define by hi(t) the number of susceptible people at node i at time t. Similarly bi(t), wi(t),
fi(t), and ri(t) describe the numbers of the different sub-populations at each node. Infection

can occur at a rate constant k1(i) when infectious and susceptible people from the same node i
meet each other, and at a rate constant k2(j, i) = k2(i, j) when meetings occur between an infec-

tious person from node i and a susceptible person from a nearest-neighbor (NN) node j (i.e.

the infection rate, for an infectious person at node i and a susceptible one at node j, is identical

to the rate when the two nodes are interchanged). The total number of people at node i is

denoted by ni. Accordingly, the set of (non-linear) master equations for the distribution of

these sub-populations is

@hi
@t
¼ � k1ðiÞ

hi
ni
ðwi þ fiÞ �

hi
ni

X

j2i

k2ðj; iÞðwj þ fjÞ

@bi
@t
¼ k1ðiÞ

hi
ni
ðwi þ fiÞ þ

hi
ni

X

j2i

k2ðj; iÞðwj þ fjÞ � g0bi

@wi

@t
¼ g0bi � g1wi

@fi
@t
¼ g1wi � g2fi

@ri
@t
¼ g2fi :

ð2Þ

where j 2 i stands for node j that is NN to i. In Eq (2), γ0, γ1, and γ2 are the rate coefficients for

the transition of the b-population to w, of w to f, and of f to r, respectively.

We now transform the master Eq (2) to the continuum using the Kramers-Moyal expansion

[42], x$ i. Using the symmetry for infection rates between NN nodes i and j, k2(j, i) = k2(i, j),
and defining a local density of a sub-population y as y(x, t)� yi(t)/δ2 (e.g., b(x, t)� bi(t)/δ2),
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we obtain

@h
@t
¼ � k xð Þ

h
n
ðwþ f Þ �

h
n
~r Dk xð Þ~rðwþ f Þ
h i

@b
@t
¼ k xð Þ

h
n
ðwþ f Þ þ

h
n
~r Dk xð Þ~rðwþ f Þ
h i

� g0b

@w
@t
¼ g0b � g1w

@f
@t
¼ g1w � g2f

@r
@t
¼ g2f :

ð3Þ

where the last line in Eq (3) can be replaced—using the conservation law Eq (1)—by r = n − (h
+ b + w + f). In Eq (3), k(x) = k1(x) + zk2(x) defines an effective local rate coefficient of infection

growth, and Dk(x) = (z/4)k2(x)δ2 is an effective diffusion coefficient of the infection spreading,

henceforth termed epidemic diffusion coefficient; z is the number of nearest-neighbors to a

node (coordination number), z = 4, 6 for square and triangular lattices, respectively. The diffu-

sive-like term, in the first two lines of Eq (3), governs the diffusion of the epidemic, not the

people. Its presence, on top the (familiar, homogeneous) infection growth rate (first term in

these two lines), can describe the lateral growth of infected sub-population domains (hence-

forth “infected domains”), as the front—i.e. the boundary between infected and susceptible

domains—propagates into susceptible domains [34, 35]. In the special case of homogeneous

distribution of all populations and homogeneous rate constants, k can be identified as the SEIR

parameter ratio R0/τI, where R0 is the basic reproductive rate and τI is the mean infectious

period. It is easy to verify, by summing all lines in Eq (3), that @n(x,t)/@t = 0, as required. Thus,

any initial in-homogeneous population density distribution n(x) is not altered by our infection

spreading model.

For simulation purposes we rescale the local densities by the mean total population density

(in the whole region under study), n0, such that ~yðx; tÞ � yðx; tÞ=n0. In particular, ~nðxÞ ¼
nðxÞ=n0 presents the relative local population density. In addition, distance is scaled by δ, i.e.

~x ¼ x=d, such that ~r becomes dimensionless. This leads to the following scaled equations

@~b
@t
¼ k ~xð Þ

~h
~n
ð~w þ ~f Þ þ

~h
~n
~r ~Dk ~xð Þ~rð~w þ ~f Þ
h i

� g0
~b

@~h
@t
¼ � k ~xð Þ

~h
~n
ð~w þ ~f Þ �

~h
~n
~r ~Dk ~xð Þ~rð~w þ ~f Þ
h i

@ ~w
@t
¼ g0

~b � g1 ~w

@~f
@t
¼ g1 ~w � g2

~f

@~r
@t
¼ g2

~f :

ð4Þ

where ~Dk ¼ Dk=d
2
¼ k2.

The parameters to be used for COVID-19 pandemic should be obtained from the up-to-

date literature. Parameters that are associated with the physiological response to the disease are

fairly well known, however, the basic reproductive rate, R0, varies strongly between different

countries due to differences in social behavior [43, 44]. In the absence of any quarantine

PLOS ONE Epidemiological model for the inhomogeneous spatial spreading of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0246056 February 19, 2021 5 / 25

https://doi.org/10.1371/journal.pone.0246056


conditions or safety measures (e.g., use of masks), it ranges predominantly between 2 and 4

whereas initial estimates from China were R0 = 2–3. In this work we chose R0 = 2.5 as a typical

value. It has been reported that τI = 16.6 days [45] yielding an infection rate coefficient k = R0/

τI that is about 0.15days−1. The mean time for the appearance of symptoms (from the moment

of infection), τS, is known to be about 5 days [45, 46] (ranging between 2-11 days) which sets

up g� 1
0
þ g� 1

1
¼ tS ¼ 5 days. In addition, there is evidence that people are infecting already

about 2-3 days before showing symptoms [47], hence we set g� 1
1
¼ 3 days. It follows that the

transition rate from exposed (infected but non-infecting) to presymptomatic-infecting, is

g� 1
0
’ 2 days, which is quite a reasonable estimate given that viral load needs to rise before a

person sheds enough virus to be considered infecting.

The rate coefficients γ1 and γ2, describing the transitions from presymptomatic-infecting

to symptomatic-infecting, and from symptomatic-infecting to recovered, respectively, must

obey g� 1
1
þ g� 1

2
¼ tI ¼ 16:6 days (i.e. the whole infection period), implying g� 1

2
¼ 13:6 days.

The dimensionless effective diffusion coefficient ~Dk ¼ k2 is the most difficult model parame-

ter to estimate and is sensitive to the choice of nodes. Likely ~Dk⪡ k, since k = k1 + zk2 and we

may also assume k2 ≲ k1. For numerical purposes in the present study we use, from now on,

square lattice node geometry, i.e. z = 4, and choose k1 = k2 = 0.03 days−1, yielding k = 0.15

days−1 (as required) and ~Dk ¼ 0:03 days−1. Sensitivity analysis for a wide parameter range is

performed in the S1 File; see Figs SI-3, SI-4, and SI-5 in S1 File. As can be expected, the

speed of epidemic spread is highly sensitive to the model parameters. Yet, the spatial epi-

demic spreading patterns that are obtained are quite similar to one another in the range of

chosen parameters, e.g., a larger R0 pattern appears similar—though at shorter times—to a

smaller R0 pattern.

In the proceeding section we solve this spatially dependent multiple population model, at

different initial conditions (using the above parameters unless otherwise stated). For a few ini-

tial conditions, we use a specific inhomogeneous density populations n(x) to examine its effect.

Obviously, to obtain realistic predictions one requires: (i) detailed local population density

data (i.e. density maps), and (ii) data for the initial local densities of the above five different

populations (i.e. “heat-maps”), both given to the grid size resolution δ (requiring cooperation

with authorities). The present work is therefore limited to present the strength of the model

and its ability to give insight on the way the infection spreads under different levels and spatial

variation of quarantine or safety measures. For brevity, henceforth, we drop the ‘�’ sign from

the notations of (density) normalized spatially dependent variables, i.e. ~f ! f , and a similar

transformation with the other variables. Recall that capital letters denote global quantities, i.e.

spatial integrals of the lowercase spatially dependent quantities, e.g., F =
R
f(x)d2 x, represent-

ing now the fraction of the specific population—out of the total population—as now f(x)

implies ~f ðxÞ.

Results

The initial conditions of an epidemic are unknown unless in exceptional cases, yet they have

major consequences on the number of infected people. In all examples below, we use identical

initial conditions for the global quantities as follows: W = R = F = 0 and B = 10−3 (i.e., one out

of 1000 people is in the incubation period). In our non-uniform model, we are able to analyze

the effect of the different, non-uniform, initial conditions, yet identical global initial condi-

tions. Comparing the evolution in time of the global quantities, between the locally different—

yet globally identical—initial conditions, we will assess both the spreading patterns and the

overall effect of the epidemic. For clarity, Table 1 summarizes the scenarios considered.
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Study of model behavior

In order to better understand the basic features of the model, we commence with oversimpli-

fied cases. First, we ignore any spatial dependence of the initial (t = 0) sub-populations, and

that of the (overall) local population density n(x). In such cases, when the initial conditions are

uniform in space, Eq (4) ensures that all sub-population densities are kept uniform at all times.

In this limit, our model converges to a homogeneous SEPIR model (i.e. no diffusive-like terms

in Eq (4)). As mentioned above, it is similar to the SEIR model with the addition of a pre-

symptomatic sub-population. Although this limit cannot be achieved realistically, it is studied

here for comparison with the conventional, homogeneous, models. Obviously, in this case of

uniform distributions, the global (spatial integral) quantities do not provide additional

information.

Fig 1 shows the model predictions for the evolution of the global variables against time t
when all local variables: n, b, h, w, f, and r, are spatially uniform, and for the above stated initial

conditions (W = R = F = 0 and B = 10−3). Fig 1(a) shows the time evolution of the model vari-

ables H, B, W, F, and R. At a time t’ 92 days the epidemic attains its peak, i.e. the infectious

population (W + F) attains its maximum and later declines (dashed line). At the epidemic

peak, we have H’ 0.37, i.e. the fraction of immune population is 1 −H’ 0.63. Thus, within

our (five sub-populations) SEPIR model, and the chosen parameters, “herd immunity” is

reached at 1 −H = 0.63 fraction of the susceptible population being infected. The fraction of

recovered (“removed”) people, R (green curve), is increasing monotonously. In this particular

example, at very long times R attains a value of R� 0.89 and correspondingly H� 0.11.

A common quantity used to follow the epidemic is the accumulated number of people that

have been infected until time t, 1 −H. In Fig 1(b) we present 1 −H vs time on a log-log scale.

We observe a separation of the growth into two (albeit very short) power-law regimes, 1 −H’
Atν (where A and ν are numerical constants) with the early evolution exponent ν’ 0.26 being

much smaller than the late evolution exponent ν’ 4; a smaller power-law exponent ν signifies

a slower growth. However, given the short duration in time of these power-law regimes, it

should be recognized that a power-law description is not useful for the homogeneous SEPIR

model; the above analysis is shown mainly for comparison with the in-homogeneous examples

below, where power-law regimes are much wider.

As a second example (Fig 2), consider a rather different initial spreading of the b-popula-

tion, still with n uniform in space. In Fig 2, and in all following figures, the epidemic heat-

maps are on shown on the left-hand-side, and the corresponding global quantities are depicted

Table 1. Summary of population distribution n, b population at time t = 0, and quarantine measures employed in all figures. For more details see the figure captions.

Fig. Population density n Exposed population density b(t = 0) Quarantine

1 Uniform Uniform No

2 Uniform Two centers No

3 Gaussian Two centers near “city” No

4 Uniform Scattered centers No

5 Gaussian Numerous centers inside “city” No

6 Gaussian Scattered centers outside “city” No

7 Nonuniform Scattered centers outside “city” No

8 Nonuniform Scattered centers outside “city” Yes, belt

9 Uniform Numerous infections near center No

10 Uniform Numerous infections near center Yes, belt

11 Uniform Numerous infections near center Yes, area

https://doi.org/10.1371/journal.pone.0246056.t001
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on the right-hand-side. In Fig 2, the initial conditions are two relatively large infection centers

—see panel (a). The parameters are set such that the (initial) value of B is taken to be the same

as in Fig 1. All other populations are initially vanishing: w = f = r = 0. Although n is uniform at

all times, all specific populations are nonuniform at t> 0 (even though h, w, f, and r are set

uniformly to zero at t = 0). The exposed sub-population centers grow and develop into ring-

like structures of the symptomatic sub-population f, later start to overlap, and subsequently

merge into one large ring that continuously spreads outwards—panels (b)-(f). The core of the

rings is seen to evolve quickly to contain mostly recovered population (since r’ n − f). The

evolution in time of global populations is shown in panels (g) and (h). In comparison to the

case of uniform initial b (Fig 1), here the peak of the epidemic occurs at much longer times (t
’ 324) and is much smaller in magnitude. The early-time power-law regime quickly crosses

over (at t = 10) to a long power-law behavior with exponent ν’ 2. The latter exponent may be

explained by the outward propagation of the ‘f’-rings (or those of w + f, not depicted in Fig 2),

at constant velocity. If the front of infectious sub-populations moves at constant velocity

Fig 1. Solution of the epidemic model for the case of spatially uniform population densities n, b, h, w, f, and r,
against the time t (in units of days). (a) Curves depicting the global sub-population fractions (capital letters),

amounting here to simple multiplication of the local densities by the area. The initial conditions are B = 10−3 and W =

F = R = 0. (b) A log-log plot of the cumulative infected population, 1 −H, vs time (in days). The dashed and dash-

dotted lines are fits at t = 2 and t = 55, respectively. In this and in all other figures Dk = 0.03, k = 0.15 days−1, γ0 = 1/2

days−1, γ1 = 1/3 days−1, γ2 = 1/13.6 days−1.

https://doi.org/10.1371/journal.pone.0246056.g001
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[34, 35], as dictated by Eq (4), it implies that the domain area, corresponding to the cumulative

number of infected people, grow as� t2.

We now turn to study a situation in which the given population density is not uniform in

space, and our model is highly suitable to handle such cases. To mimic a large density variation

around a densely populated area, as for a city surrounded by suburban areas, the population

density is assumed to follow a centered Gaussian function with a non-zero baseline,

nðxÞ ¼ 10ae� ðx2þy2Þ=‘2 þ a, where the standard deviation (width), ℓ, of the density is 10, and the

baseline a is set such that the spatial average of n is 0.2; see Fig SI-1 in S1 File for illustration.

Fig 2. Time evolution of an epidemic starting from two infection centers (in this and in all other figures, t is the time in days, and x and y are the spatial Cartesian

coordinates). (a) Initial conditions of b. B—the global value of b—is the same as in Fig 1. n is uniform and all other populations are initially zero: w = f = r = 0. Panels (b)-

(f) depict the spreading pattern of the symptomatic population ‘f’ as time progresses. The two circular domains grow and merge into one oval-like domain. Panel (g)

shows the global sub-populations F, H, B, W, and R vs time t (in days). Panel (h) shows the cumulative fraction of infected population 1 −H vs time t in (in days) on a log-

log scale. Compare to the cases of uniform (Fig 1). Dashed and dash-dotted curves in panel are linear fits at t = 3 and t = 150, respectively.

https://doi.org/10.1371/journal.pone.0246056.g002
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The density in the “city center”, x’ 0, is therefore 10 times higher than in its “suburbs”, and

its main core spans over a radius of 10.

Fig 3 depicts an epidemic that initiates from two infection centers of exposed (b) sub-popu-

lation, situated on the two sides of this model “city”, as in Fig 2. Interestingly, there is a

remarkable strong influx of the epidemic towards the densely populated area, as evident from

panels (d) and (e): the two growing infection centers merge into one large central spot with

significantly more symptomatic people. This is very different from the evolution seen in Fig 2.

The “late” power-law exponent governing the cumulative fraction of infected population is

Fig 3. Time evolution of a epidemic starting from two infection centers near a heavily populated region, see (a) (top-left panel); t is the time given in days, and x and y are

the spatial Cartesian coordinates. n is non-uniform and given by nðrÞ ¼ 10ae� r2=‘2 þ a, with ℓ = 10 and a taken such that the spatial average of n is 0.2; see Fig SI-1 in S1

File for illustration. The global value of b is the same as in previous figures, B = 10−3, and all other populations are initially zero everywhere: w = f = r = 0. Panels (b)-(f)

show the spread of the symptomatic population f as time progresses. The symptomatic population quickly spreads into the denser region in the center and its density

there increases dramatically. The global sub-population fractions, and the cumulative fraction of infected population 1 −H, are shown in panels (g) and (h), respectively.

https://doi.org/10.1371/journal.pone.0246056.g003
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ν’ 3.2, i.e. in between the values obtained for the evolution depicted in Fig 2 (homogeneous n
only) and Fig 1 (no spatial dependence).

More complex scenarios

Let us now look at epidemic evolution that initiates from different nonuniform initial condi-

tions, in either uniformly or non-uniformly populated areas. Consider, first, several infection

centers of the exposed sub-population b, randomly scattered within a uniformly populated

area, Fig 4(a) (t = 0). In real-life, such initial infection centers obviously result from in-flux of

Fig 4. Time evolution of an epidemic with randomly scattered infection centers; t is the time given in days, and x and y are the spatial Cartesian coordinates. (a) At

t = 0 (top-left panel), there are small infection centers of the exposed sub-population b scattered randomly in space. The global value of b (B) is the same as in Fig 1, i.e.

B = 10−3. n is uniform and all other populations are set initially to zero: w = f = r = 0. Panels (b)-(f) show the spread of the symptomatic population f as time progresses.

Panel (g) shows the global sub-populations F, H, B, W, and R vs time t (in days), and panel (h) shows the cumulative fraction of infected population 1 −H vs time in on a

log-log scale. Dashed and dash-dot curves are linear fits at t = 2 and t = 73, respectively. In Fig SI-2 in S1 File we plot heat-maps of 1 − h—the corresponding cumulative

infections.

https://doi.org/10.1371/journal.pone.0246056.g004
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infections via numerous processes, e.g., when infecting people visit the city for a short period,

or when infecting and susceptible people meet in different locations outside the city (creating

infection events) and then return home, and so on. The global value of b is the same as in Fig

1, i.e. B = 10−3, and all other populations vanish at t = 0 as before. Panels (b)-(f) show the time

evolution of the symptomatic population f. As can be seen, each infection point initially grows

locally and develops into a “ring” of symptomatic f centered around the original center (similar

to Fig 2). These rings further grow and coalesce into a complex boundary pattern which keeps

evolving. Panels (g)-(h) show the integrated values of F, H, B, W, and R and 1 −H. In compari-

son to Fig 1 for the case of uniform b, here the epidemic evolves much more slowly, peaks at a

longer time and, more importantly, the value of F at the peak (likewise that of W+ F, almost

indistinguishable from F) is significantly smaller. The “herd immunity” value deduced from

the value of 1 −H when W + F peaks (almost indistinguishable from F), at t’ 123, is 1 −
H = 0.35, which is quite smaller than the value obtained from the homogeneous case, Fig 1 (1

−H = 0.63), showing the non-universality of this value and its high sensitivity to the initial

spreading conditions. The early evolution power-law exponent is similar to the uniform b
case, but the long-time exponent ν’ 2.6 is significantly smaller, leading to a significantly lon-

ger time for the epidemic to decay. In Fig SI-5 in S1 File we use identical initial conditions as

in Fig 4 but with a value of R0 that is twice larger—R0 = 5. The snapshots in Fig SI-5 in S1 File

are taken at shorter times, which yields patterns almost indistinguishable from those shown in

Fig 4, and shows the universality of the epidemic spreading patterns formed by the SEPIR

model.

We now go back to study situations in which the given population density is non-uniform
in space, and consider again, as in Fig 3, a central heavily populated area (“city”) whose density

declines away from its center as a Gaussian with a finite width, see explanation related to Fig 3.

Here, however, we consider more realistic initial conditions, where exposed (b) sub-popula-

tion centers are scattered in a number of places. We distinguish here between two different

cases: (i) The infection (b sub-population) initiates from multiple centers within the city (Fig

5). (ii) The infection evolves from several, randomly distributed, centers in the city periphery

(Fig 6).

Consider first an infection initiating from around the city center (case (i)), as several small

b-centers randomly distributed within the city core. Initially, the epidemic consumes non-neg-

ligible portion the susceptible (h) sub-population within the city core, associated with a sub-

stantial growth of f, see Fig 5(b) and 5(c). After this early evolution (t≳ 90) the infection

slowly spreads outward by formation of ring-like patterns, bearing some similarity to the

above studies. Conversely, when the infection initiates from the city outskirts (case (ii), Fig 6),

the pattern is more heterogeneous, and local infection centers grow effectively independently

of each other. Here, as the epidemic reaches the core of the city, the relatively high density of

susceptible population (h) allows the f-population to keep rising. Hence F(t), seen in case (ii)

(Fig 6(g)), grows for a somewhat longer time and reaches a higher peak, as compared to case

(i) (Fig 5(g)). The apparent “herd immunity” value (1 −H at the peak of F or W + F) is also

higher in case (ii) (1 −H’ 0.45) than in case (i) (1 −H’ 0.27), and both values are lower

than the one obtained in the homogeneous case (Fig 1), demonstrating again the sensitivity of

this value to both initial conditions and spatial density variation.

Quarantine strategies

So far we looked at the unperturbed spread of an epidemic. Yet, authorities often use numer-

ous active tools to confine the disease or slow down its spread. Usually people are instructed to

stay home for a considerable period, the so-called “quarantine”, “lockdown” or “stay-at-home”
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order. In addition, roads connecting between “hotspots” and uninfected regions are sometimes

blocked. Here we consider two types of quarantine strategies. We define local “area lockdown”

as strong restrictions on activity within a certain area. Examples where “area lockdown” have

been employed are: Wuhan (China), Anxin county (China), dozens of residential compounds

in Beijing (China), Bnei-Brak (Israel), New York (USA)—“stay-at-home” order [48, 49], Flor-

ida State—“stay-at-home” order [50, 51]. We also propose another strategy that inflicts less

burden on the society, which we term “belt quarantine”. Here movement restrictions are

imposed between a certain region and its surroundings, but not inside the region itself. Partial

belt quarantine has been employed for instance in Canada, as the whole state reopened from

Fig 5. Time evolution of an epidemic starting from multiple infection centers inside a heavily populated region (“city”, panel (a)); t is the time given in days, and x and y
are the spatial Cartesian coordinates. The population density of the city n is nonuniform and given by nðxÞ ¼ 10ae� x2=‘2 þ a, with x = (x,y), ℓ = 10, and a taken such that

the spatial average of n is 0.2; see Fig SI-1 in S1 File for illustration. The integrated initial value of b (B = 10−3) is the same as in all previous figures. All other populations

are initially zero: w = f = r = 0. Panels (b)-(f) show the spread of the symptomatic sub-population f as time progresses. The global sub-populations and the cumulative

infected population 1 −H are shown in panels (g) and (h), respectively.

https://doi.org/10.1371/journal.pone.0246056.g005
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lockdown, using checkpoints and roadblocks [52–54]. In both, there are fewer and less fre-

quent encounters between people implying locally reduced values of Dk and k.

We commence by examining the effectiveness of belt quarantine that is imposed in order to

protect an uninfected heavily populated area (“city”) from its infected surroundings. For com-

parison, we also consider the case without quarantine, see Fig 7. To mimic belt quarantine, see

Fig 8, we impose significantly reduced values of Dk and k within a belt surrounding a city. Spe-

cifically, between radii 10 and 12, the values of Dk and k are reduced to 20% of their back-

ground values (that are identical to those used for Fig (7)). The density profile (in both

figures), describing the city and its surroundings, is not a Gaussian (as in the previous exam-

ples), but uniform within the city, and uniform but ten-folds lower outside the city. The

initial (t = 0) scattered centers that surround the city, of exposed sub-population (b), are identi-

cal in both figures (panel (a) in both). The resulting epidemic spreading patterns shown in

Fig 6. Same as in Fig 5 but with the initial (t = 0) infection centers located outside of the “city”.

https://doi.org/10.1371/journal.pone.0246056.g006
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Figs 7(b)–7(f)) and 8(b)–8(f), suggest that with the protective belt quarantine the infection

takes considerably longer time to invade the city.

Comparing the resulting evolution in time of the global sub-populations, Fig 7(g) and 7(h)

vs Fig 8(g) and 8(h), we observe that the belt quarantine slows down significantly the growth of

symptomatic population F. Under quarantine (Fig 8(g)), F first develops a very wide plateau

corresponding to the epidemic spreading only in the surroundings, outside the quarantined

city. Later, at t’ 230 days, F further grows and builds a major (second) peak (t’ 268), corre-

sponding to the epidemic spreading in the quarantined zone, Fig 8(f). While the height of the

peak without quarantine is similar to the one with quarantine, the first occurs at about 90 days

earlier (t’ 177 days). As a result, the value of H at the major epidemic peak is, in fact, smaller

Fig 7. Time evolution of an epidemic starting from multiple random infection centers near a heavily populated region—mimicking a city—see (a) (top-left panel); t is the

time given in days, and x and y are the spatial Cartesian coordinates. n is non-uniform, and is given by n = 10a within a circle of radius 10, and n = a outside of that circle,

with a taken such that the spatial average of n is 0.2. The initial (t = 0) integrated value of b is the same as in previous figures, B = 10−3. All other populations are initially

zero: w = f = r = 0. The global sub-population fractions are shown in panels (g)-(h).

https://doi.org/10.1371/journal.pone.0246056.g007
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in the presence of quarantine, as most of the (whole) region has been infected before penetra-

tion to the quarantined city occurred. This suggests that a belt quarantine, protecting a highly

populated area from its surrounding, only delays the epidemic spread and, in case the majority

of population lives in the protected zone, is unable to flatten the epidemic curve significantly.

Finally, we turn to investigate a neighborhood, which is considered as the epidemic epicen-

ter, within a large, uniformly populated, urban area. The population density n is thus uniform

in the whole region of study. The neighborhood area is assumed to be a circle of radius 11, and

within it there is initially a high fraction of exposed population b as multiple, randomly scat-

tered, centers. We consider again belt quarantine which is imposed on the neighborhood in

Fig 8. Belt quarantine. Time evolution of an epidemic starting from multiple random infection centers (see panel (a)), near a city identical to that of Fig 7: n is

nonuniform, and is given by n = 10a within a circle of radius 10, and n = a outside of that circle, with a taken such that the spatial average of n is 0.2; t is the time given in

days, and x and y are the spatial Cartesian coordinates. The “city” is under a protective circumferential “belt”, formed by two concentric circles (radii 10 and 12), within

which Dk and k are reduced to 20% of their values elsewhere. The initial (t = 0) integrated value of b is the same as in previous figures, B = 10−3. All other populations are

initially zero: w = f = r = 0. Panels (b)-(f): The infection is seen to spread quickly within the external area, but penetrates very slowly into the protected region. The global

sub-population fractions are shown in panels (g)-(h); F shows a very wide plateau followed by a higher peak.

https://doi.org/10.1371/journal.pone.0246056.g008
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order to contain the epidemic within it. In addition, we examine the effect of a more severe

measure: lockdown on the whole neighborhood, which we term “area lockdown”. Fig 9 depicts

the spreading patterns in the absence of quarantine, which is shown for comparison. Fig 10

represents the effect of belt quarantine between radii 10 and 11. Fig 11 depicts the conse-

quences of area lockdown within the whole (highly infected) neighborhood. In both belt quar-

antine and area lockdown the values of Dk and k are reduced to 20% of their background

values.

The comparison of the epidemic spreading patterns between the above three cases, shows

that with belt quarantine (Fig 10) the escape of infection from the neighborhood to its sur-

roundings takes longer time relative to the no quarantine situation (Fig 9). Note that area

Fig 9. (a)-(f): Time evolution of a epidemic starting from multiple random infection centers with uniform n, see (a); t is the time given in days, and x and y are the spatial

Cartesian coordinates. The global value of b is the same as in previous figures, B = 10−3. All other populations are initially zero: w = f = r = 0. Both Dk and k are uniform.

The symptomatic population f spreads and forms ring-like structures that expands in time. Panels (g) and (h) show (respectively) the different global populations and the

cumulative infected population, 1 −H, vs time t.

https://doi.org/10.1371/journal.pone.0246056.g009
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lockdown (Fig 11) is even more efficient than belt quarantine in prolonging this escape time.

Furthermore, it appears that in the case of belt quarantine the late-time spreading pattern are

nearly isotropic, while in the case of area lockdown the escape pattern is highly non-isotropic.

This occurs since prior to the escape, in the case of belt quarantine the infected population

homogenizes rather quickly within the neighborhood, while for area lockdown the slow

spreading within the neighborhood prevents this homogenization.

The overall effect of the different quarantine measures on the global populations is shown

in panels (g) and (h) of the respective figures. Belt quarantine produces two peaks of symptom-

atic population (F), one (small) that corresponds to the spreading within the neighborhood,

and the other (larger) corresponding to the external spreading after escape from the neighbor-

hood occurred. The major rise in F is delayed mostly under area lockdown, due to the relative

Fig 10. Belt quarantine. Same as in Fig 9 but now with a protective “belt” quarantine in the region between the two concentric circles (radii 10 and 11). Within the belt,

the values of Dk and k are reduced to 20% of their values in the rest of the region. Initially the epidemic is confined to the quarantined region, but at long times it leaks out

through the belt and contaminates the exterior. Note the relatively isotropic spreading patterns in the exterior, despite the initial non-isotropic b depicted in (a).

https://doi.org/10.1371/journal.pone.0246056.g010
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long epidemic escape time from the neighborhood. Another pronounced effect of area lock-

down appears in the slow increase of cumulative fraction of infected population, 1 −H: at the

longest simulation time we obtain 1 −H’ 89% without quarantine, 1 −H’ 88% with belt

quarantine, and 1 −H’ 77% with area lockdown. Thus, it is clear that area lockdown should

be the preferred choice for containing the epidemic; belt quarantine, unless almost hermetic

(“leakage-proof”), has a minor contribution. Moreover, none of the two quarantine strategies

considered is able to reduce significantly the level of the (major) peak in F (even though its tim-

ing is delayed), which is considered important for the ability of health systems to cope with the

epidemic. This occurs due the escape of the epidemic from the quarantined region, leading to

its free spreading. This may be prevented by moving the quarantine to newly infected regions,

Fig 11. Area lockdown. Same as Fig 9 but now the quarantine is throughout the whole area within a circle of radius 11. Within this quarantined area, the values of

Dk and k are reduced to 20% of their values in the rest of the region. The “contamination” of the exterior is slower than in Fig 10. Also note the relatively

anisotropic spreading patterns seen at long times in the exterior, as compared to Figs (9) and (10).

https://doi.org/10.1371/journal.pone.0246056.g011
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which has not been addressed here. If such a careful orchestration is performed, localized

quarantine strategies can have a strong impact.

Conclusions

A general mathematical framework is presented for the spatial spreading of an infectious dis-

ease. We take into account nearest-neighbor node infection kinetics, and show that it leads to

a diffusion-like term in the dynamical equations, thereby providing a unified framework for

heterogeneous spread of the epidemic. Nodes are defined by the assumption that within each

node the frequency of contacts is still uniform, thus following a homogeneous model descrip-

tion. This allows to estimate the lateral (linear) size of a node δ (i.e. area equal to Â δ2), for

example by examining the mean distance traveled by people—e.g., 30 km under moderate

restrictions or normal life, or 1 km under strong lockdown—and makes our model flexible

enough to describe infectious disease spreading on a scale ranging from a neighborhood to a

whole country.

We focus here on an epidemiological spreading model for COVID-19 with inherent spatial

dependency of five populations, the in-homogeneous SEPIR model. We show that the complex

pattern formation is sensitive to the initial conditions, i.e., to the spatial location of the exposed

population, which has important consequences for the total number of infected people. Our

general mathematical framework allows to include many more populations than those appear-

ing in our SEPIR model, as suggested by other studies [19, 20, 22]. In particular, the asymp-

tomatic population forms about 16%-40% of the total infectious population [55], and its

infectious properties are quite different from those of the symptomatic population [56]. As

knowledge is accumulating, it would be worthwhile to include into the model the asympto-

matics, either as a single population, or as two separate populations, “asymptomatic-normal”

and “asymptomatic-super-spreaders”.

The homogeneous (i.e. prefect mixing) models cannot provide epidemiological heat-maps,

such as those occasionally appearing on-line (e.g., for South Carolina [37]), and prediction of

such heat-maps is the main purpose of our work. Moreover, failures of the homogeneous mod-

els might be due to their inability to account for the spatial spreading of the epidemic, which

yields an overestimation of the epidemic growth rate. Hence, observed deviations from the

homogeneous models, i.e. as effective power-law regimes [26, 30], can be rationalized without

assuming time variation of the infection rates, as is customary done in practice. We show this

in the present work by comparing the results of the homogeneous SEPIR model (Fig 1) to the

results of our inhomogeneous SEPIR model (Figs 2–6). It is gratifying that some of the power-

law exponents found in our studied examples are close to observed exponents in different

counties; in particular the exponent ν’ 2 has been deduced for China and Iran [30].

The evolution of the homogeneous SEPIR model suggests “herd immunity” at about H’
0.37 (corresponding to W + F reaching its maximum, Fig 1)—i.e. fraction of immune popula-

tion 1 −H’ 0.63—indeed very close to the known SIR result 1 −H = 1 − (1/R0) = 0.6 for R0 =

2.5. Importantly, the “herd immunity” values that could have been (wrongly) inferred from

the inhomogeneous evolution, i.e. assuming the homogeneous SEPIR model to still hold, are

much lower. For example, from Fig 4 one obtains 1 −H’ 0.35. Moreover, different initial

conditions are seen to lead to different apparent herd immunity values. Thus, interpreting

observed epidemic curves based on homogeneous models may lead to wrong conclusions

regarding the population reaching herd immunity. Further support for this conclusion has

been reached by examining epidemic curves of European countries, where it was noted that

spatial heterogeneity can lower the apparent herd immunity value [57], supporting our model

conclusions.
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Our model can naturally describe the flux of infection from a suburban area into a densely

populated city, or in the opposite direction. Interestingly, we find that relative “curve flattening”

of the infected-symptomatic population (F) can naturally occur due to either non-uniform pop-

ulation density, non-uniform distribution of initial infectious populations, or the combination

of both. This may have important implications when comparing the epidemic evolution in dif-

ferent regions or states, where one needs to distinguish between the effects of quarantine mea-

sures and population conditions. For example, when comparing Sweden (essentially no

quarantine measures) and Israel (severe quarantine measures), conclusions might be hampered.

Accurate predictions of COVID-19 heat-maps will require complete data sets for: (i) the

geographic (i.e. position dependent) overall population density n(x), and (ii) the “initial heat-

maps” for the different five population types defined in our model. In many countries n(x) can

be obtained from public resources, e.g., see [58]. Unfortunately, the initial heat-maps, i.e. ini-

tial conditions for the five population densities, are currently publicly available only for a small

number of countries (apparently due to privacy regulations), and moreover, usually limited

only to the time-cumulative density of the infected population, i.e. 1 − h(x) [37]. Cooperation

with health authorities is needed to obtain complete data sets. Our predicted evolution of

COVID-19 heat-maps (see Fig SI-2 in S1 File for the cumulative infected population, corre-

sponding to the heat-maps shown in Fig 4) show strong resemblance to those available on pub-

lic resources [37]; future work will be devoted to quantitative comparison. Incomplete testing

data is not going to severely hamper our predictions so long as it is uniform in space (e.g., only

10% of the COVID-19 positives are detected everywhere), and in general we may expect this to

be so within a certain country where a uniform testing policy is adopted. Obviously, absolute

predicted numbers will not be obtained without the use of an adjusting factor between tested

and predicted numbers. It should be noted that when normal life conditions are restored, our

model has to be modified to include far-distance traveling; this can be readily done using long

distance infections, which we defer to future work.

Importantly, the possibility to mimic in our model spatially-varying and evolving quaran-

tine or lockdown conditions, by using both spatially-dependent (as done in this work) and

time-dependent values of Dk and k, will allow a quantitative predictive tool for the effectiveness

of quarantine measures. For instance, in Israel, a plan has been proposed (“the traffic lights

plan” [59]) to impose differential lockdown measures on cities with strong outbreak (“red cit-

ies”), and similar plans have been issued for the UK [60]. Our model allows to simulate the

impact of these measures and make comparison with the evolution without intervention. We

hope authorities will use this tool, in addition to established venues [8, 61], to simulate differ-

ent lockdown policies for choosing the best exit strategy [62].
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