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Abstract

Immunohistochemistry (IHC) assays play a central role in evaluating biomarker expression

in tissue sections for diagnostic and research applications. Manual scoring of IHC images,

which is the current standard of practice, is known to have several shortcomings in terms of

reproducibility and scalability to large scale studies. Here, by using a digital image analysis-

based approach, we introduce a new metric called the pixelwise H-score (pix H-score) that

quantifies biomarker expression from whole-slide scanned IHC images. The pix H-score is

an unsupervised algorithm that only requires the specification of intensity thresholds for the

biomarker and the nuclear-counterstain channels. We present the detailed implementation

of the pix H-score in two different whole-slide image analysis software packages Visiopharm

and HALO. We consider three biomarkers P-cadherin, PD-L1, and 5T4, and show how the

pix H-score exhibits tight concordance to multiple orthogonal measurements of biomarker

abundance such as the biomarker mRNA transcript and the pathologist H-score. We also

compare the pix H-score to existing automated image analysis algorithms and demonstrate

that the pix H-score provides either comparable or significantly better performance over

these methodologies. We also present results of an empirical resampling approach to

assess the performance of the pix H-score in estimating biomarker abundance from select

regions within the tumor tissue relative to the whole tumor resection. We anticipate that the

new metric will be broadly applicable to quantify biomarker expression from a wide variety of

IHC images. Moreover, these results underscore the benefit of digital image analysis-based

approaches which offer an objective, reproducible, and highly scalable strategy to quantita-

tively analyze IHC images.
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Introduction

Immunohistochemistry (IHC) is a core technology that is used to evaluate the spatial distribu-

tion and abundance of biomarkers at the protein level in tissue samples. In oncology clinical

diagnosis and research applications, IHC assays play a central role in tumor characterization

and biomarker assessment. Typically, IHC images are qualitatively evaluated by a trained

expert, such as a pathologist, and in some cases this is complemented by a semi-quantitative

score [1]. However, visual quantitative scoring of IHC images is not routinely performed due

to several shortcomings. On the one hand, visual quantitative scoring is time consuming and

is often not feasible to perform on a routine basis especially for large studies. On the other

hand, visual quantitative scores are subjective and often have a limited dynamic range due to

their categorical nature (e.g. manual scores of 0, 1+, 2+, and 3+). Consequently, they may not

have the granularity to adequately capture biomarker expression from an IHC slide [2, 3]. The

subjectivity of the scoring process, in turn, can manifest as poor inter- and intra-observer con-

cordance, and this has been the subject of numerous studies [4–8]. While concordance in

visual quantitative scoring can be improved by the development of standardized scoring guide-

lines and extensive training [9, 10], the labor-intensive aspect and the limited dynamic range

still remain as major impediments to the widespread use of visual quantitative scoring of IHC

images.

Digital image analysis (DIA) based tools overcome some of these limitations of visual quan-

titative scoring by enabling fast, objective, and highly reproducible quantification of biomark-

ers from whole-slide IHC images [1, 11]. DIA endpoints are typically continuous variables

(e.g. cell density and % positive cells) and offer adequate dynamic range to represent bio-

marker expression in the IHC image. One of the widely used endpoints to quantify biomarker

expression is the H-score [2, 12]. In the H-score algorithm (Fig 1A) individual cells and their

sub-cellular compartments (i.e. nucleus, cytoplasm, and cell membrane) are first detected, and

based on the relative expression of the biomarker of interest in one or more sub-cellular com-

partments the cells are classified as either positive or negative. The positive cells are further

classified into high (3+), medium (2+), or low (1+) based on the biomarker signal intensity.

The H-score is given by the ratio of the weighted sum of the number of positive cells to the

total number of detected cells. The H-score captures both the intensity and the proportion of

the biomarker of interest from the IHC image and comprises values between 0 and 300,

thereby offering a dynamic range to quantify biomarker abundance. A different scoring

method developed to quantify estrogen and progesterone receptors in breast cancers, the

Allred score [2, 12], assigns separate categorical scores for the intensity (0–3) and the propor-

tion (0–5) of the biomarkers in immunolabeled specimens, and the final score is the sum of

these two scores. Compared to the H-score, the Allred score has a limited dynamic range (0–8)

and is not extensively used for purposes other than ER/PR quantification in breast cancer.

From a digital image analysis standpoint, both the H-score and the Allred score require the

detection of individual cells, and this requires robust nucleus and cell segmentation algorithms

for individual nucleus detection and delineation of individual cell boundaries.

Another scoring methodology, the average threshold method (ATM), adopts a pixelwise

approach for quantifying biomarker abundance [13]. The ATM score does not require the

detection of individual nuclei or cells and is solely based on the pixel intensities of the DAB

chromogen in the spectrally deconvolved image. Consequently, the calculation of the ATM

score is relatively straightforward but at the expense of decreased dynamic range as compared

to the H-score.

The AQUA score [14] also makes use of a pixelwise strategy for quantifying biomarker

expression. Here, the tissue is fluorescently labeled for the biomarker of interest along with a
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nuclear stain and a cell membrane marker. This in turn allows the generation of pixel masks

pertaining to different subcellular compartments (e.g., cell membrane, nucleus, or cytosolic

mask). The AQUA score is then calculated by taking the total fluorescence signal of the bio-

marker of interest for a given subcellular mask (e.g. the cell-membrane mask) and normalizing

it by the total area of the mask [14]. The advantage of the AQUA score is that it offers a broad

dynamic range. However, the calculation of the AQUA score requires the development of a

fluorescence-based multiplex assay which can be time consuming and technically challenging.

Moreover, the use of fluorescence readout masks anatomic and morphological information

(e.g. necrotic regions, stroma, etc.) that are readily detectable from a brightfield IHC image.

In this manuscript, three different scoring methods are compared, which are illustrated in

Fig 1. We introduce a new DIA method, the pixelwise H-score (pix H-score), for quantifying

biomarker abundance from brightfield IHC images by making use of individual pixel intensi-

ties in DAB and hematoxylin channels and leveraging weighted intensity averages. Our moti-

vation behind developing the pix H-score is to create a simple, yet robust metric to accurately

quantify biomarker expression without relying on the detection and delineation of individual

cells and their sub-cellular compartments. The latter makes the implementation of the pix H-

score to be relatively straightforward. The pix H-score can be thought of as an equivalent of

the traditional H-score that is applied to pixels rather than to cells. The pix H-score takes val-

ues between 0 and 300 thereby providing a dynamic range similar to that of the H-score.

We evaluated the performance of pix H-score using IHC images of three different mem-

brane biomarkers P-cadherin, PD-L1, and 5T4. For comparison, we also calculated the ATM

score and the DIA H-score for these images, where the latter is a DIA implementation of the

traditional H-score. Using the pathologist H-score and biomarker mRNA transcript level

Fig 1. Overview of the different scoring algorithms. Panel A shows the traditional cell-based H-score, panel B shows

the average threshold method (ATM) score, and panel C shows the pix H-score.

https://doi.org/10.1371/journal.pone.0245638.g001
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(measured using qRT-PCR or NanoString analysis of mRNA in adjacent serial sections) as

orthogonal measurements of biomarker abundance, we demonstrate that the pix H-score is

either comparable or superior to other DIA endpoints in quantifying biomarker abundance in

IHC images. We present the detailed implementation of the pix H-score in two commercial,

whole-slide, image analysis software packages, Visiopharm and HALO. We also present an

empirical resampling approach to quantitatively assess the ability of the pix H-score to esti-

mate biomarker abundance when it is calculated from select regions within the tumor resec-

tion when compared to the whole slide pix H-score. We note that a subset of the results

reported here was previously disclosed in a scientific poster at the 34th annual meeting of the

Society for Immunotherapy of Cancer [15]. We anticipate that the new metric will have broad

applicability and pave the way towards establishing an objective, reproducible strategy to

quantify biomarker abundance in IHC images.

Materials and methods

Previously-developed IHC assays for P-cadherin, PD-L1, and 5T4 were used to immunolabel

three cohorts of human tumors. Serial sections from these cohorts were also evaluated for tar-

get mRNA via NanoString (P-cadherin and PD-L1) or qRT-PCR (5T4). Following H-scoring

of the immunolabeled tumor sections by a pathologist, the concordance between the H-score

and mRNA values was evaluated by Spearman correlation. To automate the scoring process

through digital image analysis, we implemented several DIA strategies using different software

tools. Specifically, we implemented digital H-scoring using QuPath and HALO software pack-

ages, the ATM score using Visiopharm software, and the pix H-score, the new digital scoring

method, using HALO and Visopharm software packages. To assess the performance of the var-

ious DIA algorithms, we calculated the Spearman’s correlation coefficient between each DIA

endpoint and two different measurements of biomarker abundance, i.e. the pathologist H-

score and the target transcript level as assessed using either NanoString technology or

qRT-PCR.

Immunohistochemistry

All human tissue biospecimens used in the study were anonymized specimens that were

acquired by Pfizer from multiple collaboration partners and commercial vendors. These speci-

mens were acquired and used in compliance with Pfizer’s policy on the Use of Human Biologi-

cal Specimens [16]. Specifically, these biospecimens were collected with written patient

consent, processed, and distributed in full ethical and regulatory compliance with the sites

from which they were collected. This includes independent ethical review, Institutional Review

Board approval (where appropriate), and independent regulatory review. Head and neck

tumor resections were procured from Flagship Biosciences (Broomfield, CO), and lung cancer

resections were procured from the following vendors: Indivumed (Hamburg, Germany), Pro-

teogeneX (Inglewood, CA), Weill Medical College at Cornell (New York, NY) and University

of Michigan (Ann Arbor, MI).

For PD-L1, we used twenty-four cases of routinely collected non-small cell lung carcinoma

surgical resections. The SP142 clone of anti-PD-L1 antibody was used as per the manufac-

turer-recommended protocol. For P-cadherin, we used thirty cases of routinely collected head

and neck tumor resections. The P-cadherin IHC assay was developed and optimized on the

Dako Autostainer system using a custom anti-P-cadherin antibody that was generated as an

analyte specific reagent for use in a clinical diagnostic assay. For 5T4, we used twenty-one

cases of routinely collected non-small cell lung tumor resections. The development and valida-

tion of the 5T4 IHC assay was reported previously [17]. In all three IHC assays hematoxylin
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was used as the nuclear counterstain and diaminobenzidine (DAB) was the chromogen that

was used to detect the biomarker of interest. P-cadherin and PD-L1 slides were scanned using

a Leica Aperio AT2 whole-slide scanner at 20x magnification, whereas 5T4 slides were scanned

using a Hamamatsu Nanozoomer whole-slide scanner at 20x magnification. All IHC images

were subjected to visual quality assessment which verified that the data was devoid of out of

focus artefacts, gross variation in background level due to white-balancing errors, and signifi-

cant variation in hematoxylin staining among the images for a given biomarker.

NanoString assay

Messenger RNA (mRNA) was isolated from two 4-micron FFPE slide sections using Forma-

Pure1 nucleic acid isolation kit according to manufacturer’s instructions with the addition of

a DNA digestion step. NanoString technology was used to measure RNA transcript levels

using the nCounter assay according to manufacturer’s recommended protocols. Custom

nCounter CodeSet containing either the CDH3 probe (for P-cadherin) or the CD274 probe

(for PD-L1) was used. One hundred nanograms of total RNA was hybridized to the custom

panel for 16 to 20 hours at 65˚C. Samples were processed using an automated nCounter sam-

ple prep station. Cartridges containing immobilized and aligned reporter complex were subse-

quently imaged and counted on an nCounter Digital Analyzer set for maximum fields of view.

Reporter counts were analyzed and normalized using NanoString nSolver Analysis Software.

Briefly, raw counts were multiplied by scaling factors proportional to the sum of counts for

spiked in positive control probes to account for individual assay efficiency variation, and to

the geometric average of the housekeeping gene probes to account for variability in the mRNA

content. FFPE sample sets were normalized to the following housekeeping genes; for P-cad-

herin: FTL, GAPDH, GUSB, HMBS, HPRT1, OAZ1, PCBP1, PFN1, PPIA, PSAP and TBP;

and for PD-L1: AMMECR1L, CNOT10, CNOT4, COG7, DDX50, EDC3, EIF2B4, ERCC3,

FCF1, FTL, GPATCH3, GUSB, HDAC3, HPRT1, MTMR14, PPIA, SAP130, TBP, TMUB2,

and ZNF143.

qRT-PCR assay

The qRT-PCR reaction was performed using the TaqMan Probe-Based Gene Expression

Analysis and ABI ViiA7 Real-Time PCR Systems (Life Technologies) as described previously

[17]. Target gene and endogenous controls were run in quadruplicate for each probe set on

prefabricated TaqMan low density array cards. For each tumor sample 1000 ng of cDNA was

diluted to 55 uL with nuclease-free water and 55 uL of TaqMan gene expression master mix

was added (Life Technologies, cat # 4352042). A total of 100 uL of sample was added to each

of the 8 ports on a single card, after which the plate was sealed and centrifuged two times in

Sorvall/Heraeus buckets based on manufacturer’s directions. TaqMan array cards were then

sealed and loaded into the ABI ViiA7 thermal cycler and run. Default thermal cycling condi-

tions were as follows; the RT-PCR reaction was run on the thermal cycler in three stages; 2

minutes at 50˚C, 10 minutes at 90˚C and 40 cycles of 15 seconds at 90˚C followed by 1 min-

ute at 60˚C.

ExpressionSuite Software v1.0.3 (Life Technologies) was used to generate automated

threshold values for signal amplification for a majority of samples. Rarely were automated

thresholds adjusted manually. Amplification plots resulting in Ct values>35 were discarded,

as were those plots that generated a Ct value but did not display a trend of logarithmic amplifi-

cation. All Ct values were exported from the ExpressionSuite software and relative quantifica-

tion calculations were performed in Microsoft Excel 2010.
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Digital image analysis

IHC images of P-cadherin, PD-L1, and 5T4 were analyzed at 20x magnification using multiple

software packages. The detailed implementation in each software package is described below.

Briefly, the traditional cell-based H-score was implemented in HALO (Version 2.3) and

QuPath (Version 0.2.0-m2) and was calculated based on the cell-membrane localized bio-

marker signal. The ATM score was implemented in Visiopharm (Version 2017.7.3.469) and

the pix H-score was implemented in Visiopharm and HALO. For each biomarker, the results

of the DIA algorithm for every image along with the orthogonal measurements of biomarker

abundance (path H-score an mRNA transcript) are provided in S1 Table.

HALO implementation of H-score (H-score (HALO))

The Membrane module (v1.4) in HALO was used to detect cells and calculate the H-score.

The algorithm first deconvolves the IHC image into hematoxylin and DAB channels, then

detects individual cells and their subcellular compartments, i.e. nucleus and cell membrane, in

the image, and scores the cells as high, medium, and low based on the average DAB signal

associated with the cell membrane. The thresholds for high, medium, and low were deter-

mined separately for each biomarker by examining the membrane-associated DAB signal

across multiple images pertaining to that biomarker. A separate algorithm was implemented

for each biomarker in order to optimize the detection and segmentation of the nucleus and

cell membrane specific to that biomarker. The App outputs the number of negative, high,

medium and low cells, which is then used to calculate the H-score that is given by [18–20]

H � score ¼ 100
3H þ 2M þ L
H þ N þ Lþ N

: ð1Þ

In the above equation, H M, L and N denote the number of high, medium, low and negative

cells, respectively. The H-score quantifies biomarker expression by taking in account the pro-

portion and the intensity of the biomarker in positive cells. Specifically, the numerator in Eq 1

considers the proportion of positive cells and the weighting factors, i.e., 3, 2 and 1 for high,

medium and low cells, respectively, account for the intensities of the positive cells. It should be

pointed out that the choice of weighting factors is empirical and does not always imply a linear

relationship (i.e., intensity of medium cells is not always equal to two times the intensity of low

cells) [2].

QuPath implementation of H-score (H-score (QuPath))

QuPath (verion 0.2.0-m2) is an open-source software for whole-slide image analysis of histo-

pathology data [21]. A custom script was written in the Groovy programming language to

detect cells and score them as high, medium, and low based on the average DAB signal in the

cell membrane (see Supporting information). The script first deconvolves the IHC image into

hematoxylin and DAB channels. A watershed-based cell and membrane detection algorithm

(Analyze -> Cell Analysis -> Cell + membrane detection) was used to detect individual cells

and identify their subcellular compartments, i.e. nucleus and cell membrane. The cell detection

algorithm includes a pre-processing step that involves a local background subtraction by using

the minimum filter. The optional median filtering step was not used. Cells that were devoid of

a nucleus (due to weak or missing hematoxylin staining) were excluded and the remaining

cells were scored as high, medium, and low based on the mean DAB signal associated with the

membrane compartment. The thresholds for high, medium, and low were determined sepa-

rately for each biomarker. A separate script was implemented for each biomarker in order to

optimize the detection and segmentation of the nucleus and cell membrane specific to that
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biomarker. The script outputs the total number detected cells along with the number of high,

medium, and low cells, which is then used to calculate the H-score that is given in Eq 1.

ATM score

The motivation behind the ATM score is discussed elsewhere [13]. Briefly, the idea is to use

all the intensity values in the DAB channel so that the final metric is independent of the

choice of thresholds. Further, the ATM score is a pixel-based metric that does not depend on

the detection of individual cells and/or its subcellular components. Assuming 8-bit resolution

for the color-deconvolved biomarker channel, the ATM score is given by (see Ref. [13] for

derivation)

ATM score ¼
1

255

X255

k¼1
PS kð Þ

¼
1

255
average value of all the pixels in the DAB channelð Þ; ð2Þ

where PS(k) is the proportion score which denotes the proportion of pixels with intensity

greater than or equal to k, where k takes values from 1 to 255 (i.e. 28–1 grey levels). From the

above equation, we see that the ATM score is a weighted average of all the pixels in the DAB

channel. The ATM score was implemented in Visiopharm software. The IHC image was

color deconvolved into hematoxylin and DAB channels. Therefore, the ATM score was calcu-

lated by taking the average intensity of all DAB positive pixels and then dividing this by 255

(see Supporting information for the App).

Visiopharm implementation of pix H-score (pix H-score (VIS))

A threshold-based detection App was used to implement the pix H-score in Visiopharm (see

Supporting information). The App does not require any specific add-on module and was

implemented using the default functionality of the software. The App first deconvolves the

IHC image into hematoxylin and DAB channels. The App then detects and classifies DAB pos-

itive pixels as high, medium, and low, and then detects the hematoxylin positive pixels. The

thresholds for DAB and hematoxylin were separately selected for each biomarker. The App

then outputs the total area of the DAB high, DAB medium, and DAB low pixels and the

hematoxylin positive pixels. These values are then used to calculate the pix H-score which is

given by

pix H � score ¼ 100
3HP þ 2MP þ LP

HP þMP þ LP þ NP
; ð3Þ

where Hp, Mp, Lp and Np denote the area of DAB high, DAB medium, DAB low and hematox-

ylin positive pixels, respectively. The pix H-score is analogous to the traditional cell-based H-

score (Eq 1) but is applied to pixels as opposed to individual cells. Specifically, it is a weighted

sum of the relative proportion of the DAB high, DAB medium and DAB low pixels, where we

have used the same weighting factors (i.e., 3 for DAB high, 2 for DAB medium and 1 for DAB

low) as that of the traditional H-score. This ensures that the pix H-score takes the same range

of values as that of the traditional H-score (i.e. 0–300).

In Visiopharm, the output of the intensity-based thresholding algorithm depends on the

order in which the different color-deconvolved channels are used. For instance, if a pixel con-

tains both hematoxylin and DAB signal that are above their respective threshold values for

positivity and the DAB channel is first analyzed followed by the hematoxylin channel, then

that pixel will be labeled as positive only for the DAB channel. In other words, if a pixel is
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found to be positive for one of the color-deconvolved channels then it is excluded from any

subsequent classification for the other color-deconvolved channels.

HALO implementation of pix H-score (pix H-score (HALO))

The area quantification module (v2.1.3), which is a default module available as part of the

basic HALO software package, was used to calculate the pix H-score with the number of phe-

notypes set to 1 (see Supporting information for the settings files). The algorithm deconvolves

the IHC image into hematoxylin and DAB channels and can detect and classify hematoxylin

and DAB positive pixels as high, medium, and low based on a user defined threshold. For the

calculation of pix H-score, a single threshold was used to detect all hematoxylin positive pixels

and three separate thresholds were used to detect and classify the DAB positive pixels. In

HALO, these thresholds take values between 0 and 1. In order to keep the thresholds imple-

mented in Visiopharm and HALO identical, the threshold values used in Visiopharm, which

take values between 1–255, were rescaled to take values between 0 and 1 and these were then

used in HALO. Unlike Visiopharm, HALO keeps track of the detected pixels in the DAB and

hematoxylin channels separately. Consequently, pixels that contain both DAB and hematoxy-

lin signal that are above the thresholds will be accounted for in both the hematoxylin and DAB

channels. In order to mimic the Visiopharm implementation of pix H-score, we define a third

channel, which is denoted as phenotype 1 channel in HALO that pertains to pixels that are

positive for hematoxylin but negative for DAB. This phenotype 1 channel will contain pixels

that are analogous to the hematoxylin positive pixels detected in the Visiopharm implementa-

tion of pix H-score algorithm. The algorithm outputs the area of high, medium, and low pixels

in the DAB channel, and the area of positive pixels in the phenotype 1 channel, which is used

as an estimate of the total area of pixels containing only the hematoxylin signal. These values

are then used in Eq 3 to calculate the pix H-score.

Statistical analysis

Spearman’s rank correlation coefficient was calculated to assess the correlation between differ-

ent pairs of variables of interest. Our choice of correlation analysis was based on the nature of

relationship between the variables of interest. Unlike Pearson’s correlation, Spearman’s corre-

lation analysis is a rank-based metric that provides a robust estimate of correlation when there

is a non-linear, monotone relationship between the variables of interest [22], which is typically

the case for the different pairs of variables considered in this manuscript. The William’s t test

was used to test for significant difference between a pair of dependent correlation coefficients

[23, 24].

Spatial resampling analysis

For each biomarker, an empirical resampling procedure was performed on every whole-slide

IHC image. The viable tissue region was sampled by non-overlapping circular regions of

radius 0.8 mm (Fig 6A). For each region, the area of DAB high, DAB medium, DAB low, and

hematoxylin positive pixels were determined using Visiopharm. The results were exported to

MATLAB (Mathworks, Natick, MA) for subsequent analysis. For every IHC image, N different

circular regions were randomly selected (N = 1–50), and a regional pix H-score was calculated

using the area of DAB high pixels, DAB medium pixels, DAB low pixels, and hematoxylin pos-

itive pixels that were summed from the N circular regions. This procedure is repeated Niter

times with replacement (Niter = 100 for all the biomarkers). Then for each iteration k = 1,. . .,

Niter, the Spearman correlation coefficient C(N,k) is computed between the regional pix H-

score and the corresponding pathologist H-scores (or the corresponding mRNA levels). The
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average Spearman correlation coefficient for each value of N is computed using the formula

Cav Nð Þ ¼
1

Niter

XNiter

k¼1

C N; kð Þ:

Results

DIA algorithms for P-cadherin quantification

IHC images for P-cadherin (Fig 2A) showed strong immunoreactivity at the cell membrane

and in the cytoplasm, which was consistent with prior reports [25, 26]. Spearman’s correlation

analysis of the membrane H-scores of the 30 cases immunolabeled for P-cadherin, as assessed

by a board-certified pathologist (see S1 Table), and NanoString nCounter values for P-cad-

herin mRNA transcript from serial sections of the same cases had a correlation coefficient of

0.81, p<0.0001 (Fig 2B). Throughout this manuscript, we have used Spearman’s correlation

analysis as it is a more appropriate measure of correlation when the variables of interest exhibit

a non-linear, monotone relationship [22] which is typically the case in our data.

We next investigated whether the differences in the Spearman correlation coefficients for

the various DIA endpoints are statistically significant. Table 1 shows the results of our statisti-

cal analysis where we carried out pairwise comparisons of the correlation coefficients for dif-

ferent DIA endpoints obtained from P-cadherin IHC images. Our analysis shows that the

correlation coefficient between the pix H-score and either of the biomarker abundance end-

points (pathologist H-score and P-cadherin transcript) is significantly higher than the correla-

tion coefficient between DIA based H-scores and biomarker abundance endpoints. This

Fig 2. P-cadherin, PD-L1 and 5T4 IHC datasets. Panels A, C and E show representative images at 20x magnification

with varying levels of P-cadherin, PD-L1 and 5T4 expression, respectively, in tumor resections. Panels B, D and F show

the plot of the pathologist H-score versus mRNA transcript level for P-cadherin (n = 30 cases), PD-L1 (n = 24 cases)

and 5T4 (n = 21 cases), respectively. The panels also show Spearman’s correlation coefficient along with the p-value

and 95% confidence interval. When compared to the P-cadherin pathologist H-score, all P-cadherin DIA endpoints

(see S1 Table) yielded positive correlations (Fig 3A–3E). The correlation with the ATM score (Fig 3C) and pix H-score

(Fig 3D and 3E) were higher than the correlations with the DIA based H-scores (Fig 3A and 3B). More specifically, the

Spearman’s correlation coefficient for HALO and QuPath DIA H-scores were 0.5 (p = 0.005) and 0.39 (p = 0.03),

respectively, whereas the Spearman’s correlation coefficient for the ATM score, the VIS pix H-score and the HALO pix

H-score were 0.78 (p<0.001), 0.77 (p<0.0001) and 0.88 (p<0.0001), respectively. When compared to the P-cadherin

transcript, all DIA endpoints similarly yielded positive correlations (Fig 3F–3J), with the pix H-score exhibiting the

highest Spearman’s correlation coefficient (Fig 3I and 3J; ρ = 0.83 and ρ = 0.81, respectively, for VIS and HALO pix H-

score; p< 0.0001) followed by the ATM score (Fig 3H; ρ = 0.62, p< 0.0001) and the DIA H-scores (Fig 3F and 3G; ρ =

0.5, p = 0.005 for HALO and ρ = 0.45, p = 0.01 for QuPath).

https://doi.org/10.1371/journal.pone.0245638.g002
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suggests that for the P-cadherin dataset, the pix H-score is a better DIA metric to quantify bio-

marker abundance over traditional DIA based H-score. In the case of the ATM score, we

observe a mixed result in that the correlation coefficient between pix H-score and P-cadherin

transcript is significantly higher than the correlation coefficient between ATM score and P-

Table 1. Table lists the results of William’s t-test to test for significant difference in the Spearman correlation coefficients between P-cadherin transcript or patholo-

gist H-score and different DIA endpoints.

Statistical analysis of correlation coefficients for P-cadherin ρ12 ρ13 z-score p-value Result

Comparing pairwise correlations between DIA endpoint and Pathologist H-score

ρ(Path H-score, H-score HALO) vs ρ(Path H-score, H-score QuPath) 0.50 0.39 1.48 0.15 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path Hscore, pix H-score HALO) 0.77 0.88 -2.5 0.01 S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, H-score HALO) 0.77 0.50 3.01 0.005 S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, H-score QuPath) 0.77 0.39 3.87 0.0006 S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, ATM score) 0.77 0.78 -0.12 0.90 N.S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, H-score HALO) 0.88 0.50 5.21 1.7e-05 S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, H-score QuPath) 0.88 0.39 5.34 1.2E-05 S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, ATM score) 0.88 0.78 1.64 0.11 N.S.D.

Comparing pairwise correlations between DIA endpoint and P-cadherin transcript

ρ(Pcad transcript, H-score HALO) vs ρ(Pcad transcript, H-score QuPath) 0.50 0.45 0.79 0.43 N.S.D.

ρ(Pcad transcript, pix H-score VIS) vs ρ(Pcad transcript, pix H-score HALO) 0.83 0.81 0.50 0.62 N.S.D.

ρ(Pcad transcript, pix H-score VIS) vs ρ(Pcad transcript, H-score HALO) 0.83 0.5 4.19 0.0002 S.D.

ρ(Pcad transcript, pix H-score VIS) vs ρ(Pcad transcript, H-score QuPath) 0.83 0.45 4.49 0.0001 S.D.

ρ(Pcad transcript, pix H-score VIS) vs ρ(Pcad transcript, ATM score) 0.83 0.62 2.45 0.02 S.D.

ρ(Pcad transcript, pix H-score HALO) vs ρ(Pcad transcript, H-score HALO) 0.81 0.5 3.31 0.002 S.D.

ρ(Pcad transcript, pix H-score HALO) vs ρ(Pcad transcript, H-score QuPath) 0.81 0.45 3.22 0.003 S.D.

ρ(Pcad transcript, pix H-score HALO) vs ρ(Pcad transcript, ATM score) 0.81 0.62 2.37 0.025 S.D.

S.D. significant difference, N.S.D–no significant difference.

https://doi.org/10.1371/journal.pone.0245638.t001

Fig 3. Performance of DIA endpoints obtained from P-cadherin IHC images. Panels A through E show the plots of different DIA endpoints versus

pathologist H-score for a cohort of 30 head and neck cancer resections. Panels F through J show the plots of different DIA endpoints versus P-cadherin

mRNA transcript for the same 30 cases. Each panel also shows the Spearman’s correlation coefficient between the two quantities plotted in that panel

along with the p-value and the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0245638.g003

PLOS ONE Pix H-score algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0245638 September 27, 2021 10 / 20

https://doi.org/10.1371/journal.pone.0245638.t001
https://doi.org/10.1371/journal.pone.0245638.g003
https://doi.org/10.1371/journal.pone.0245638


cadherin transcript, whereas statistical significance is lost when we consider the pathologist H-

score as the reference for biomarker abundance (Table 1). We also compared the two DIA

based H-scores. We found no significant difference in the Spearman’s correlation coefficient

between QuPath H-score and biomarker abundance endpoints versus HALO H-score and bio-

marker abundance endpoints (Table 1). Similarly, we found no significant difference in the

correlation coefficients for the HALO and VIS implementations of the pix H-score for P-

cadherin.

DIA algorithms for PD-L1 quantification

IHC images for PD-L1 (Fig 2C) showed strong immunoreactivity at the cell membrane and

minimal to no cytoplasmic staining, which was consistent with prior reports [25, 26]. Spear-

man’s correlation analysis of the membrane H-scores of the 24 cases immunolabeled for

PD-L1, as assessed by a board-certified pathologist (see S1 Table), and NanoString nCounter

values for PD-L1 mRNA transcript from serial sections of the same cases had a correlation

coefficient of 0.91, p<0.0001 (Fig 2D).

When compared to the pathologist H-score, all DIA endpoints (see S1 Table) yielded posi-

tive correlations (Fig 4A–4E). The Spearman’s correlation coefficient for the HALO H-score,

QuPath H-score, ATM score, VIS pix H-score and HALO pix H-score with respect to the

pathologist H-score were 0.69 (p = 0.0002), 0.74 (p<0.0001), 0.55 (p = 0.005), 0.76 (p<

0.0001) and 0.71 (p< 0.0001), respectively. When compared to the PD-L1 transcript, all DIA

endpoints similarly yielded positive correlations (Fig 4F–4J). The Spearman’s correlation coef-

ficient for the HALO H-score, QuPath H-score, ATM score, VIS pix H-score and HALO pix

H-score with respect to PD-L1 transcript were 0.73 (p<0.0001), 0.75 (p<0.0001), 0.55

(p = 0.005), 0.79 (p<0.0001) and 0.79 (p<0.0001), respectively.

Statistical analysis of the Spearman’s correlation coefficients revealed that there is no signifi-

cant difference in the correlation coefficient between DIA based H-scores and PD-L1 bio-

marker abundance endpoints versus the correlation coefficient between pix H-score and

PD-L1 biomarker abundance endpoints (Table 2). This shows that the performance of pix H-

score is analogous to that of the DIA based H-score which is in contrast with our observations

for P-cadherin. Also, there was no significant difference in Spearman’s correlation coefficient

Fig 4. Performance of DIA endpoints obtained from PD-L1 IHC images. Panels A-E show plots of the different DIA endpoints as a function of the

pathologist H-score, while panels F-J show the same as a function of PD-L1 mRNA transcript for a cohort of 24 lung cancer resections. All panels show

the Spearman’s correlation coefficient between the two quantities plotted in that panel along with the p-value and the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0245638.g004
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between HALO and QuPath implementations of the H-score, which is analogous to what we

observed for P-cadherin. In addition, we observed that there was no significant difference

between the HALO and Visiopharm implementations of the pix H-score for PD-L1. Spear-

man’s correlation coefficients between the pix H-score and PD-L1 biomarker abundance end-

points were mostly significantly higher than Spearman’s correlation coefficients between ATM

score and PD-L1 biomarker abundance endpoints (Table 2). Although both the pix H-score

and the ATM score are pixel-based algorithms, the higher Spearman’s correlation coefficient

for the pix H-score suggests that this algorithm is superior to the ATM score in estimating bio-

marker abundance for PD-L1.

DIA algorithms for 5T4 quantification

IHC images for 5T4 (Fig 2E) showed strong immunoreactivity at the cell membrane with lim-

ited cytoplasmic staining, which was consistent with prior reports [17]. Spearman’s correlation

of the membrane H-scores of the 21 cases immunolabeled for 5T4, as assessed by a board-cer-

tified pathologist (see S1 Table), and qRT-PCR values for 5T4 mRNA transcript from serial

sections of the same cases had a ρ value of 0.61, p = 0.003 (Fig 2F).

When compared to the pathologist H-score, all DIA endpoints (see S1 Table) yielded posi-

tive correlations (Fig 5A–5E). The Spearman’s correlation coefficient for the HALO H-score,

QuPath H-score, ATM score, VIS pix H-score and HALO pix H-score with respect to the

pathologist H-score were 0.75 (p<0.0001), 0.79 (p<0.0001), 0.76 (p< 0.0001), 0.83

(p< 0.0001) and 0.82 (p< 0.0001), respectively. When compared to the 5T4 transcript, all

DIA endpoints similarly yielded positive correlations (Fig 5F–5J). The Spearman’s correlation

coefficient for the HALO H-score, Qupath H-score, ATM score, VIS pix H-score and HALO

Table 2. Table lists the results of William’s t-test to test for significant difference in the Spearman correlation coefficients between PD-L1 mRNA transcript or

pathologist H-score and different DIA endpoints.

Statistical analysis of correlation coefficients for PD-L1 ρ12 ρ13 z-score p-value Result

Comparing pairwise correlations between DIA endpoint and Pathologist H-score

ρ(Path H-score, H-score HALO) vs ρ(Path H-score, H-score QuPath) 0.69 0.74 -1.04 0.31 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, pix H-score HALO) 0.76 0.72 0.93 0.36 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, H-score HALO) 0.76 0.69 1.23 0.23 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, H-score QuPath) 0.76 0.74 0.34 0.74 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, ATM score) 0.76 0.55 2.58 0.02 S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, H-score HALO) 0.72 0.69 0.44 0.67 N.S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, H-score QuPath) 0.72 0.74 -0.33 0.74 N.S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, ATM score) 0.72 0.55 1.54 0.14 N.S.D.

Comparing pairwise correlations between DIA endpoint and PDL1 transcript

ρ(PD-L1 transcript, H-score HALO) vs ρ(PD-L1 transcript, H-score QuPath) 0.74 0.76 -0.43 0.67 N.S.D.

ρ(PD-L1 transcript, pix H-score VIS) vs ρ(PD-L1 transcript, pix H-score HALO) 0.80 0.79 0.19 0.85 N.S.D.

ρ(PD-L1 transcript, pix H-score VIS) vs ρ(PD-L1 transcript, H-score HALO) 0.80 0.74 1.16 0.26 N.S.D.

ρ(PD-L1 transcript, pix H-score VIS) vs ρ(PD-L1 transcript, H-score QuPath) 0.80 0.76 0.80 0.43 N.S.D.

ρ(PD-L1 transcript, pix H-score VIS) vs ρ(PD-L1 transcript, ATM score) 0.80 0.56 3.29 0.003 S.D.

ρ(PD-L1 transcript, pix H-score HALO) vs ρ(PD-L1 transcript, H-score HALO) 0.79 0.74 1.00 0.33 N.S.D.

ρ(PD-L1 transcript, pix H-score HALO) vs ρ(PD-L1 transcript, H-score QuPath) 0.79 0.76 0.47 0.64 N.S.D.

ρ(PD-L1 transcript, pix H-score HALO) vs ρ(PD-L1 transcript, ATM score) 0.79 0.56 2.48 0.02 S.D.

S.D. significant difference, N.S.D–no significant difference.

https://doi.org/10.1371/journal.pone.0245638.t002

PLOS ONE Pix H-score algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0245638 September 27, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0245638.t002
https://doi.org/10.1371/journal.pone.0245638


pix H-score with respect to 5T4 transcript were 0.74 (p<0.0001), 0.55 (p = 0.01), 0.69

(p = 0.0007), 0.76 (p<0.0001) and 0.74 (p = 0.0001), respectively.

Statistical analysis of the Spearman’s correlation coefficients revealed that there is no signifi-

cant difference in the correlation coefficient between each of the DIA based endpoints and

pathologist H-score (Table 3). An analogous behavior was also observed for the correlation

coefficient between each of the DIA based endpoints and 5T4 transcript except for the QuPath

H-score. Specifically, the correlation between QuPath H-score and 5T4 transcript was

Fig 5. Performance of DIA endpoints obtained from 5T4 IHC images. Panels A-E show plots of the different DIA endpoints as a function of the

pathologist H-score, while panels F-J show the same as a function of 5T4 mRNA transcript for a cohort of 21 lung cancer resections. All panels show the

Spearman’s correlation coefficient between the two quantities plotted in that panel along with the p-value and the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0245638.g005

Table 3. Table lists the results of William’s t-test to test for significant difference in the Spearman correlation coefficients between 5T4 mRNA transcript or pathol-

ogist H-score and different DIA endpoints.

Statistical analysis of correlation coefficients for 5T4 ρ12 ρ13 z-score p-value Result

Comparing pairwise correlations between DIA endpoint and Pathologist H-score

ρ(Path H-score, H-score HALO) vs ρ(Path H-score, H-score QuPath) 0.75 0.79 -0.49 0.63 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, pix H-score HALO) 0.83 0.82 0.31 0.76 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, H-score HALO) 0.83 0.75 1.69 0.11 N.S.D.

ρ(Path H-score, pix H-score VIS) vs ρ(Path H-score, H-score QuPath) 0.83 0.79 0.49 0.63 N.S.D.

ρ(Path H-score, pix Hscore VIS) vs ρ(Path H-score, ATM score) 0.83 0.76 1.37 0.18 N.S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, H-score HALO) 0.82 0.75 1.46 0.16 N.S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, H-score QuPath) 0.82 0.79 0.37 0.71 N.S.D.

ρ(Path H-score, pix H-score HALO) vs ρ(Path H-score, ATM score) 0.82 0.76 1.32 0.20 N.S.D.

Comparing pairwise correlations between DIA endpoint and 5T4 transcript

ρ(5T4 transcript, H-score HALO) vs ρ(5T4 transcript, H-score QuPath) 0.74 0.55 2.11 0.05 S.D.

ρ(5T4 transcript, pix H-score VIS) vs ρ(5T4 transcript, pix H-score HALO) 0.76 0.74 0.67 0.51 N.S.D.

ρ(5T4 transcript, pix H-score VIS) vs ρ(5T4 transcript, H-score HALO) 0.76 0.74 0.50 0.63 N.S.D.

ρ(5T4 transcript, pix H-score VIS) vs ρ(5T4 transcript, H-score QuPath) 0.76 0.55 2.40 0.03 S.D.

ρ(5T4 transcript, pix H-score VIS) vs ρ(5T4 transcript, ATM score) 0.76 0.69 1.40 0.18 N.S.D.

ρ(5T4 transcript, pix H-score HALO) vs ρ(5T4 transcript, H-score HALO) 0.74 0.74 0.10 0.92 N.S.D.

ρ(5T4 transcript, pix H-score HALO) vs ρ(5T4 transcript, H-score QuPath) 0.74 0.55 2.10 0.05 S.D.

ρ(5T4 transcript, pix H-score HALO) vs ρ(5T4 transcript, ATM score) 0.74 0.69 1.11 0.28 N.S.D.

S.D. significant difference, N.S.D–no significant difference.

https://doi.org/10.1371/journal.pone.0245638.t003
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significantly lower than the correlation between the HALO H-score or the pix H-score end-

points and 5T4 transcript (Table 3). Finally, we note that there is no significant difference in

the correlation coefficient between the HALO and Visiopharm implementations of the pix H-

score and either of the biomarker abundance endpoints for 5T4. These results suggest that the

pix H-score algorithm has comparable performance to the other DIA algorithms to quantify

biomarker abundance for 5T4.

Effect of spatial sampling on pix H-score

We next investigated the robustness of the pix H-score when it is calculated from select regions

within the tissue section as opposed to the entire tumor resection. For this purpose, a statistical

sampling procedure known as bootstrapping needs to be performed. However, technical limi-

tations in Visiopharm and HALO software packages precluded us from implementing a formal

bootstrapping procedure. Therefore, we resorted to an empirical resampling approach (see

Methods for details) wherein for a given biomarker each tumor resection was divided into

non-overlapping circular regions (Fig 6A). N different circular regions (N ranging from 1 to

Fig 6. Empirical approach to assess robustness of pix H-score to spatial sampling. Panel A shows the breakup of the tumor resection into non

overlapping circular regions. Panels B, C and D show the results of the bootstrap analysis for PD-L1, P-cadherin and 5T4, respectively, where the

average Spearman’s correlation coefficient between the regional pix H-score estimate from N circular regions and pathologist H-score is plotted as a

function of the number of circular regions, where N varies from 1 to 50. The red dashed line shows the Spearman’s correlation coefficient between

whole-slide Pix H-score and pathologist H-score for that biomarker. Error bars indicate ± SEM.

https://doi.org/10.1371/journal.pone.0245638.g006
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50) were randomly selected, and a regional pix H-score was computed from these circular

regions. Then the Spearman’s correlation coefficient between the pathologist H-score and the

regional pix H-score was computed for that biomarker. This procedure was repeated 100

times for all the tumor resections pertaining to that biomarker, and the average Spearman cor-

relation coefficient from 100 iterations was then plotted as a function of the number of circular

regions N.

Fig 6B–6D show the behavior of the average Spearman’s correlation coefficient for PD-L1,

P-cadherin and 5T4, respectively, between pathologist H-score and the regional pix H-score as

a function of the number of circular regions from which the regional pix H-score was calcu-

lated. For all the biomarkers, we see that for fewer than five circular regions the average Spear-

man correlation coefficient between the regional pix H-score and pathologist H-score is

consistently smaller than the Spearman’s correlation coefficient between the whole-slide pix

H-score and pathologist H-score (shown by the red dashed line). When 10 or more circular

regions are sampled the average Spearman’s correlation coefficient for the regional pix H-

score starts to plateau out and reaches a steady state. In the case of PD-L1, the plateau region

converges with the Spearman’s correlation coefficient between the whole-slide pix H-score

and pathologist H-score (Fig 6B). In contrast, for P-cadherin and 5T4 the plateau region is

slightly lower than the Spearman’s correlation coefficient for the whole-slide pix H-score (Fig

6C and 6D). A similar behavior is also observed when biomarker mRNA levels are used as the

reference ground truth data in the Spearman’s correlation coefficient calculation (S1 Fig).

Discussion

Robust quantification of biomarker expression in tissue sections is a critical need in many

diagnostic and investigative pathology workflows. Our motivation to develop a new digital

image analysis metric was driven by the need to automate the process of manual scoring by a

pathologist. Digital image analysis holds the promise to offer a fast, objective, and reproducible

strategy to quantify biomarker expression from histopathology images. In this manuscript, we

introduced an unsupervised algorithm, the pix H-score. With it we quantified P-cadherin,

PD-L1, and 5T4 signals in immunolabeled FFPE sections of human tumors and found good

correlation between the digitally-analyzed IHC signals and manual (visual) signal quantitation

as performed by a board certified pathologist. As pathologist scoring is known to be susceptible

to intra- and inter-observer variability, we also used biomarker mRNA level as an orthogonal

measurement of biomarker abundance to validate the pix H-score. Our observation that there

was good concordance between both digital and visual IHC signal quantitation and mRNA

transcript abundance for each analyte not only demonstrated the robust nature of the pix H-

score algorithm but also validated the pathologist scores.

There are two basic approaches to quantifying biomarker expression from histology images.

One approach utilizes cell segmentation and quantifies markers per unit cell whereas a second

approach avoids cell segmentation and quantifies markers per unit pixel. In this manuscript,

we compared both approaches to quantify biomarker levels from immunohistochemistry

images. Unlike the H-score and the Allred score, the pix H-score is a pixel-based algorithm

that does not rely on the identification of individual cells and their subcellular compartments.

This reduces the computational complexity of the pix H-score and renders its implementation

in two different software packages as relatively straightforward.

In our case, the IHC assay for each biomarker was carried out using a different brand of

instrument (PD-L1 –Ventana, P-cadherin–DAKO, and 5T4 –Leica Bond RX). Similarly, the

slides were scanned at different times (2014–2018) using different slide scanners, although the

same scanner was used for a given biomarker. These differences could introduce stain
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variation [27] and shading correction artefacts [28, 29] which in turn can affect the colorimet-

ric composition of the IHC images [30], especially in large histopathology datasets that are

generated in multiple batches. In our study, all the IHC images passed our visual image quality

assessment (see Methods). Consequently, we did not carry out stain normalization or shading

correction. Despite this, the pix H-score demonstrated robust performance when bench-

marked against orthogonal measurements of biomarker abundance. This can be attributed in

part to the small batch size of our datasets which likely did not exhibit significant variability

that arise due to the above factors. Nevertheless, a systematic analysis on the impact of image

quality variation on the pix H-score is warranted and is a topic for future investigation for vali-

dating the pix H-score in large, multi-batch image sets.

Our observation that the Visiopharm and the HALO versions of pix H-score exhibited sim-

ilar performance suggests that the pix H-score is a robust algorithm for estimating IHC bio-

marker abundance in whole-slide images. This is especially relevant due to the proprietary

nature of these software packages which precludes users from understanding several technical

aspects of the image analysis workflow. For instance, the specific details regarding the color

deconvolution algorithm, which is a key pre-processing step, are not accessible to the user in

either Visiopharm or HALO. Consequently, while implementing the pix H-score we did not

know how similar the output of the color deconvolution step (i.e. hematoxylin and DAB chan-

nels) would be in the two software packages.

An important question arises as to why the DIA based H-score exhibited very different per-

formance for P-cadherin but not for PD-L1. The H-score algorithm relied on the detection of

individual cells and their subcellular compartments to quantify biomarker levels. Although

this task may seem relatively straightforward for a human observer, nucleus/cell-membrane

detection and segmentation are challenging image processing problems especially when

applied to whole-slide image analysis where there can be considerable variability in the inten-

sity and the sub-cellular localization pattern of the biomarker of interest [31, 32]. In our case,

the latter could be a contributing factor since in the P-cadherin IHC images the biomarker sig-

nal was localized to both the cell membrane and cytoplasm whereas in the PD-L1 IHC images

the biomarker signal was predominantly localized to the cell membrane. Consequently, this

may partly explain the reason why for P-cadherin the performance of the DIA H-score was

consistently lower than that of the pix H-score whereas for PD-L1 the performance of the DIA

H-score was comparable to that of the pix H-score. Not surprisingly others have also reported

similar challenges in automated analysis of membrane-localized biomarker signal [33]. This

may also partly explain our observation for 5T4 where the correlation between QuPath H-

score and 5T4 transcript was lower than the correlation between pix H-score and 5T4 tran-

script. More specifically, while 5T4 immunoreactivity is predominantly membranous, there is

still detectable cytoplasmic signal in the tumor cells which can affect the quantification of the

DIA based H-score.

A similar question also arises for the ATM score which, unlike the H-score, is a pixel-based

algorithm but also exhibited very different performance for P-cadherin but not for PD-L1 and

5T4. By definition. the ATM score is proportional to the average intensity of the biomarker in

the DAB channel. This is calculated by taking all pixels in the DAB channel including pixels

that are negative for the biomarker. When the averaging is performed on a whole-slide image,

this can significantly dilute the contribution from pixels that are positive for the biomarker

resulting in poor performance in predicting biomarker abundance from the IHC image. In con-

trast, the pix H-score only considers pixels with a valid biomarker signal as DAB positive pixels

(based on a user defined threshold). As a result, the pix H-score can robustly estimate bio-

marker abundance the IHC image. These differences may also explain in part the reason for the

limited range of values taken by the ATM score when compared to the pix H-score. Specifically,
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the ATM score for P-cadherin, PD-L1, and 5T4 took values in the range of 24 to 77, 8 to 33, and

11 to 49, respectively. In contrast the pix H-score for P-cadherin, PD-L1, and 5T4 took values

in the range of 20 to 207, 1 to 131, and 3 to 170, respectively. The latter values are more compa-

rable to the pathologist H-score, which for P-cadherin, PD-L1, and 5T4 ranged from 17 to 298,

0 to 225, and 0 to 224, respectively. In this context, we note that the pix H-score, analogous to

traditional H-score, is based on binned intensity data (i.e., DAB high, DAB medium and DAB

low pixels) whereas the ATM score is based on continuous intensity values (0–255).

The application of deep learning methodology for nucleus and cell membrane segmenta-

tion holds significant promise as it has been shown to have improved performance over tradi-

tional algorithms [34]. However, deep learning methods are supervised approaches that

require a substantial amount of training data and extensive validation. In many practical appli-

cations, generating such large training datasets is not feasible and algorithm validation can be

time consuming. In this regard, the pix H-score algorithm introduced here provides a simple

yet robust strategy to quantify biomarker expression even from small datasets, as demonstrated

here, and can be implemented within a very short timeframe. An interesting follow up study

would be to compare the performance of the pix H-score algorithm with deep learning based,

scoring approaches.

We note that while our results are encouraging and show the potential for the pix H-score

in scoring membrane biomarkers, the algorithm can benefit from additional validation for

other biomarkers. Also, the effect of pre-analytical variables (e.g., cold ischemia time, age of

unstained cut slides, etc.) on the performance of the pix H-score needs to be investigated.

Although not shown here, we expect the pix H-score to also be applicable to immunofluores-

cence images. In conclusion, we anticipate the pix H-score to be a useful addition to the digital

image analysis toolbox for a fast, reproducible and objective strategy to quantify biomarker

expression from immunolabeled tissue sections.

Supporting information

S1 Fig. Robustness of pix H-score to spatial sampling. Panels A, B and C show the results of

the bootstrap analysis for PD-L1, P-cadherin and 5T4, respectively, where the average Spear-

man’s Correlation coefficient between the regional pix H-score estimate from N circular

regions and mRNA transcript is plotted as a function of the number of circular regions, where

N varies from 1 to 50. The red dashed line shows the Spearman’s correlation coefficient

between whole-slide Pix H-score and mRNA transcript for that biomarker. Error bars

indicate ± SEM.

(TIF)

S1 Table. Visual and digital scores for P-cadherin, PD-L1 and 5T4. The table lists the

pathologist H-score, mRNA transcript level and the various DIA endpoints for every sample

for a given biomarker.

(XLSX)

S1 File. Zip file that contains the QuPath scripts in Groovy scripting language to detect

and score cells based on membrane signal. The scripts were written in Version 0.2.0-m2. The

script has not been tested in subsequent releases of QuPath.

(ZIP)

S2 File. Zip file that contains the Visiopharm apps to calculate the ATM score and pix H-

score for the different biomarkers.

(ZIP)
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S3 File. Zip file that contains the settings file which can be loaded in HALO to implement

the pix H-score algorithm for the different biomarkers.

(ZIP)
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