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Abstract

We use the Positions and Covering methodology to obtain exact solutions for the two-

dimensional, non-guillotine restricted, strip packing problem. In this classical NP-hard prob-

lem, a given set of rectangular items has to be packed into a strip of fixed weight and infinite

height. The objective consists in determining the minimum height of the strip. The Positions

and Covering methodology is based on a two-stage procedure. First, it is generated, in a

pseudo-polynomial way, a set of valid positions in which an item can be packed into the

strip. Then, by using a set-covering formulation, the best configuration of items into the strip

is selected. Based on the literature benchmark, experimental results validate the quality of

the solutions and method’s effectiveness for small and medium-size instances. To the best

of our knowledge, this is the first approach that generates optimal solutions for some litera-

ture instances for which the optimal solution was unknown before this study.

Introduction

The Two-Dimensional Strip Packing Problem (2SP) is composed of a given set of n rectangular

items, each one with specific width wi and height hi, for i = 1, . . ., n, and a strip of width W and

infinite height. The aim is to place all the items into the strip orthogonally; without overlap-

ping, minimizing the overall strip’s height [1, 2]. We assume that all input data wi, hi, and W
are positive integers and that wi�W for all items i = 1, . . ., n. We consider the case when the

items have a fixed orientation, and the guillotine cut constraint is unnecessary.

The 2SP is NP-hard in the strong sense since it can be reduced to the one-dimensional bin-

packing problem [2–4], and according to the typology proposed by [5], the 2SP belongs to the

class of cutting and packing problems: two-dimensional, open dimension problem (2D-ODP).
Fig 1 shows the optimal configuration for an instance proposed by [6] with 50 items and a

strip of width W = 40. The optimal height isH = 15. In this case, there is no wasting in the

strip; that is, we have a perfect packing.
Many real-world applications of this problem can be found in the paper, textile, glass, steel,

and wood industries, where rectangular items are cut from larger rectangular sheets of material
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that can be considered with infinite height [7, 8]. The 2SP also appears in scheduling problems

where the tasks require a contiguous subset of identical resources [9].

In this study, we propose an adaptation of the Positions and Covering (P&C) methodology,

used by [10] to obtain optimal solutions for the two-dimensional bin packing problem. Con-

sidering the similarity of the 2SP with other packing problems, some potential applications for

the P&C methodology can be found in agricultural fields to delineate rectangular and homoge-

neous management zones [11–13], in scheduling problems applied to environmental, automo-

tive, ferry, and manufacturing industries to ensure maximum use of materials [14–16], in

healthcare applied to operating rooms schedules [17–19], in cloud computing where a set of

jobs must be processed on virtual machines of physical servers with the aim of improves the

energy efficiency [20–22], and in optimal deliveries in e-commerce where the objective is opti-

mizing the total number of containers to integrate into several delivery trips [23].

The P&C methodology adapted to the 2SP is as follows. Given an instance of the 2SP, the

first step of the P&C is to compute the strip’s height with the assumption that a perfect packing

exists. Then we generated a set of valid positions to determine all possible places to locate it on

the strip for each item. This pre-processing is the key-point of the P&C methodology. Finally,

using the H computed, the P&C solves a set-covering model for the decision version of the 2SP

(D-2SP(H)): is there a non-overlapping packing of the n items into the strip with H height? If

there is a feasible solution, then H is the optimal value for the 2SP. Otherwise, P&C iterates

again, increasing the height H of the strip by one. The P&C is an exact methodology that

obtains optimal solutions for the 2SP, that is, every time our methodology is executed, the

same solution and time are going to be obtained.

The main differences of our methodology with respect to the mentioned exact approaches

is that the P&C groups the items with identical size and computes their demand. Indeed, all

the other approaches consider similar items as individual. This grouping makes a better cover-

ing model that can be solved faster. Moreover, this new set-covering formulation is strength-

ened with two families of valid inequalities. This manner, the P&C methodology is power

enough to obtain optimal solutions for the 2SP problem without any more complex methodol-

ogy as column generation.

Because of the combinatorial complexity of the 2SP, the attempts to solve it are roughly

divided into exact and approximation methods. Some reviews of the 2SP are presented in [8,

24, 25], and some surveys for packing and cutting problems are showed in [26–29].

Fig 1. Example for 2SP. The optimal configuration for an instance proposed by [6] with 50 items, a strip of widthW = 40,

and an optimal heightH = 15.

https://doi.org/10.1371/journal.pone.0245267.g001
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In terms of other exact methods, there have been recent combinatorial branch-and-bound

(B&B) algorithms that build solutions by packing items one at a time in the strip like the ones

of [1, 2, 30–33]. In [1], the authors propose a B&B algorithm to solve the 2D rectangular pack-

ing problems, a particular case of the 2SP. This B&B algorithm is enhanced with a dynamic

programming mechanism for determining if gaps can be filled.

A new relaxation to produce good lower bounds and obtain practical heuristic algorithms

is introduced in [2]. These bounds were also used in a B&B algorithm. The authors of [33] pro-

pose two algorithms for the 2SP with and without 90-degrees rotations. They are based on a

branching operation that uses the staircase placement. Two exact algorithms and an approxi-

mate algorithm have been proposed by [34] to solve a variant of the strip cutting problem.

These algorithms are based on B&B and dynamic programming procedures.

Concerning the heuristics and metaheuristics methods to solve the 2SP, in [3], the authors

introduce the bottom-left (BL) heuristic. Some approaches with variants or implementations

of the BL strategy to solve packing problems can be found in [6, 35–39]. Other works that

implement metaheuristics methods as tabu-search, simulated annealing, and genetic algo-

rithms are presented in [40–43].

In [44], the authors propose two metaheuristics that involve the application of the simulated

annealing with a heuristic construction algorithm. In many of these studies, the authors use a

version of the BL heuristic to arrange the items. In [45] the authors show some models

strengthen with well-known valid inequalities and based on the work of [43]. Some improve-

ments for the best-fist heuristic, where it is presented a simple local random local search, are

showed in the work of [46]. The use of data mining techniques also has been implemented to

assess the quality of heuristics solutions [47]. Other approaches that consider hierarchical or

multi-stage methodologies can be found in the works of [48–50]. A survey of heuristics for the

two-dimensional rectangular strip packing problem is presented in [51], and upper bounds for

heuristic approaches in [52].

The main strength of the P&C methodology for the 2SP is that it obtains optimal solutions

for many instances of the classical benchmarks that none of the previous (and more elabo-

rated) methods could find. For example, the P&C solved to optimality several instances pro-

posed by [53] for which the optimal solutions were not known before of this study. To the best

of our knowledge, the P&C methodology is one of the best methods to find optimal solutions

for the 2SP for small and medium-size instances.

The rest of this article is organized as follows. In SectionMaterials and methods, we describe

the P&C methodology for the 2SP. In Section Results, we present the experimental results for

the P&C methodology by using a set of small and medium-size instances that have been

broadly used in the literature to test other algorithms. Finally, in Section Conclusions, we make

some concluding remarks.

Materials and methods

In this section, we present the materials and methods used to solve the 2SP. First, we show the

adaptation of the P&C proposed by [10] to solve the 2d-bin packing problem. Then, we

describe each part of the methodology for the 2SP.

The P&C methodology for the 2SP

The adaptation of the P&C methodology for the 2SP is schematized in Fig 2. Given an instance

of the 2SP, the first step is to compute the height H of the strip, assuming that a perfect packing

exists, that is, the total area of the items divided by the width of the strip, as shown in Eq (1).

Notice that if a better lower bound of the 2SP instance is known, then this first value of the
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height could be updated, and some iterations of the P&C may be avoided.

H ¼

Xn

i¼1
wihi

W

& ’

ð1Þ

Considering this H-value, the P&C generates the set of valid positions that locate the items

inside of the strip. This step is the key-point of our methodology, and it will be later explained

in detail. Then, an integer linear programming set-covering formulation (ILP) for the decision

version of the 2SP, named as D-2SP(H), is solved to optimality. If the covering model is feasi-

ble, then H is the optimal height of the strip. Else, the H-value is increased by one or in a

dichotomous way, the new set of valid positions for the items is generated, and the covering

model is solved again. These last three steps represent the main difference with the P&C for

the 2D-BPP (see [10]). The procedure ends when P&C finds a feasible solution of the D-2SP

(H), and the current height becomes the optimal one.

Positions stage for the 2SP

The objective of the Positions stage is to generate the set of valid positions where an item can be

placed into the strip, that is, from the infinite set of positions that an item can take in the bin,

the P&C determines only a finite set that guarantees the optimality of the solution. The inputs

of the Positions stage are i) the number n of items with their specifics width wi, height hi, and

demand di, ii) the width W of the strip, and iii) the current height H of the strip (first com-

puted with Eq 1 or a known lower bound, or an updated value).

With the current height H of the strip, the first step in the Positions stage is to delineate a

Cartesian grid inside the strip, that is, a regular tessellation of the 2-dimensional Euclidean

space by congruent unit squares, where each square has a particular identification. We arbi-

trarily choose the enumeration that starts at the top left corner square and ends at the bottom

right square (see Fig 3a). Thus, for each item, a valid position is created if its top left corner

coincides with a tiling, and its width and height dimensions do not exceed the size of the strip.

Each valid position is labeled to differentiate one from each other. Fig 3b shows the valid posi-

tion for an item with dimensions 2 × 3 with its top-left corner at tile 1. Notice that the position

which starts in the tile 1 ×W would not be a valid position for this item. Let JH be the set of

valid positions for all the items for a fixed height H of the strip. To generate JH, we start

Fig 2. Adaptation of the P&C methodology. The two-step methodology to solve the 2SP.

https://doi.org/10.1371/journal.pone.0245267.g002
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populating its valid positions width-wise and then length-wise for each item. The size of JH is

pseudo-polynomial, but this pre-processing allows the P&C method to decompose the prob-

lem and to reach optimal solutions.

Fig 4 shows the set of valid positions for an item of 2 × 3 and an item of 5 × 3 in a strip with

dimensions 6 × 4. In this case, JH has 14 valid positions. The set from 1 to 10 corresponds for

the first item while the set from 11 to 14 to the second item. Each valid position is unique;

therefore, it has a specific label and an unrepeatable tiles set. For example, position 1 (corre-

sponding to the 2 × 3 item) contains tiles 1, 2, 3, 5, 6, and 7.

The resulting set of valid positions may be view as a correspondence matrix CH = {cjp},
where rows represent the set of valid positions j 2 JH and columns are the tiles in the strip.

Matrix CH is composed of 1’s and 0’s, where cjp = 1 if valid position j covers tile p, cjp = 0 other-

wise. The correspondence matrix of Fig 4 (set JH for an item of 2 × 3 and another one of 5 × 3

in a strip with H = 6 and W = 4) appears in Table 1. Each row in the correspondence matrix

represents the respective valid position presented in Fig 4. For example, row 1 has ones in tiles

1, 2, 3, 5, 6, and 7, which correspond with position 1 of the figure.

Notice that the set of valid positions determined by the unitary grid is sufficient to reach the

optimal solution of the 2SP since all input data are integer.

Covering stage

In this stage, the P&C executes a set-covering formulation based on an integer linear program-

ming model. This formulation solves the decision problem for the strip packing problem D-

2SP(H), that is, is there a solution for the 2SP when the height is set toH? If the answer is posi-

tive, then the procedure ends (since we are minimizing the height), else the height of the strip

is increased by one. A new iteration begins by populating the new set of valid positions for

each item, and the decision model is solved again.

Formalizing, let I be the set of items, recall that JH is the set of valid positions for a fixed

height of the strip, V(i) be the subset of valid positions for each item i 2 I where V(i)2J, and P
be the tiles set inside of the strip. Furthermore, we know other parameters such as the demand

di of item i 2 I and the maximum of times that this item can be packed inside the strip: UBi.

Fig 3. First step of the P&C methodology. a) Grid inside of the strip and b) Valid position for an item with dimensions

2 × 3 with its top-left corner at tile 1.

https://doi.org/10.1371/journal.pone.0245267.g003
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Fig 4. Generation of positions. Set JH of valid positions for items of 2 × 3 and 5 × 3 in a strip withH = 6 andW = 4.

https://doi.org/10.1371/journal.pone.0245267.g004

Table 1. Correspondence matrix CH for the set JH of two, one of 2 × 3 and the other of 5 × 3, in a strip with H = 6 and W = 4, corresponding to Fig 4.

Tiles on the strip (p)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . 24

Valid positions (j) 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 . . . 0

2 0 1 1 1 0 1 1 1 0 0 0 0 0 0 . . . 0

3 0 0 0 0 1 1 1 0 1 1 1 0 0 0 . . . 0

4 0 0 0 0 0 1 1 1 0 1 1 1 0 0 . . . 0

5 0 0 0 0 0 0 0 0 1 1 1 0 1 1 . . . 0

6 0 0 0 0 0 0 0 0 0 1 1 1 0 1 . . . 0

7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 . . . 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . . 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 1

11 1 1 1 0 1 1 1 0 1 1 1 0 1 1 . . . 0

12 0 1 1 1 0 1 1 1 0 1 1 1 0 1 . . . 0

13 0 0 0 0 1 1 1 0 1 1 1 0 1 1 . . . 0

14 0 0 0 0 0 1 1 1 0 1 1 1 0 1 . . . 1

https://doi.org/10.1371/journal.pone.0245267.t001
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The decision variables for the ILP model are:

xij ¼

(
1 if item i is placed in valid position j 2 VðiÞ; for i 2 I;

0 otherwise:

This manner, the set-covering formulation to solve the decision problem D-2SP(H) is as

follows.

min z ¼ 0 ð2Þ

s.t.
X

i2I

X

j2VðiÞ

cjpxij � 1 p 2 P; ð3Þ

X

j2VðiÞ

xij � di i 2 I; ð4Þ

X

j2VðiÞ

xij � UBi i 2 I: ð5Þ

X

i2I

X

j2VðiÞ

X

p2P

cjpxij �WH ð6Þ

xij 2 f0; 1g i 2 I; j 2 J ð7Þ

where (2) establishes that any feasible solution for the 2SP is desirable. Constraints (3) avoid

the overlapping assigning at most one item at each tile of the strip. Constraints (4) guarantee

that all the items will be packed into the strip. Constraints (5) act as valid inequalities (valid by

definition) since we bound the number of occurrences of each item in the strip. Constraint (6)

determines that the capacity of the strip must not be exceeded; that is, it is impossible to pack

more items than allowed. This constraint is also a valid inequality that strengthens the con-

straint space. Finally, in (7), the nature of the variables is declared.

Besides valid inequalities (5) and (6), other valid inequalities could enhance the ILP, but

these proved in preliminary results to be the more efficient for the 2SP (and also for the 2BPP,

see [10]).

Results

To test the P&C methodology, we use two sets of instances: the original benchmark for the

strip packing and the benchmark for other two-dimensional cutting problems. The description

for each group of instances is given in the following sections. Then, we present the experimen-

tal results on these sets.

Original instances for the strip packing

This instance set refers to the instances generated for the two-dimensional strip packing prob-

lem. This set contains:

• 2 perfect packing instances proposed by [6], known as jack01-jack02.

• 4 instances proposed by [53–55], known as dagli01-dagli04.
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• 1 instance proposed by [56], known as kendall.

• 25 instances proposed by [34], known as hifi01-hifi25.

• 9 of 21 instances proposed by [36], known as hopper.

The optimum for instances dagli01, dagli03 and, dagli04 was not known until

now, according to the Working Group on Cutting and Packing within the Association of the

European Operational Research Societies (ESICUP) (https://www.euro-online.org/websites/

esicup/data-sets/#1535972088188-55fb7640-4228).

For some instances like the hopper ones, we are no testing all of the instances of the

benchmark since they are too large for the P&C methodology. Indeed, other instances bench-

mark exist in the literature but they are also too large for the P&C so they are not mentioned in

this section.

Instances for other two-dimensional cutting problems

This set of instances was originally introduced for other two-dimensional cutting problems

and was transformed into strip packing instances considering the item size and the bin width.

We found the following instances:

• 100 of 300 instances proposed by [57]. These instances are divided into 10 classes (6 and 4,

respectively), where each class is composed of 5 groups of 10 instances. Each group has a dif-

ferent number of items to be packed into the bin with n = {20, 40, 60, 80, 100}. The corre-

sponding best-known solution and lower bound for each instance are available at http://

www.or.deis.unibo.it/research_pages/ORinstances/2BP.html. This set of instances is known

as the BW instances.

• 3 instances proposed by [58], known as cgcut.

• 12 instances proposed by [59], known as ngcut. The cgcut and ngcut instances are test prob-

lems for 2D cutting problems, which were transformed to 2D bin packing instances accord-

ing to [60]. These instances are available from the ORLIB library.

• 10 instances generated by [61], known as beng. They are vailable at PackLib2 ([62]), http://

www.ibr.cs.tu-bs.de/alg/packlib/index.shtml.

• 6 instances proposed by [33], known as kenmochi.

As in the original instances for the strip packing problem, there are other set of instances

that we do not include in this study since they are too large for the P&C.

Computational results

To solve the set-covering formulation, we use the integer linear programming solver (B&B) of

CPLEX 12.7 using its default options, except for the optimality parameter set to 0%. All the

instances were executed on a computer equipped with a processor 8-Core Intel Xeon E5-2609

@1.70 GHz, and 64 GB of RAM. The time limit for the B&B execution was fixed to 8 hours

(28800 seconds).

For all of the instances, we start the P&C methodology using the height of the strip H given

by the best lower bound obtained in the literature. When this bound is not available, we com-

pute the H parameter assuming that a perfect packing exists (Eq (1)). We report the execution

time for the last iteration of the P&C.

We compare the P&C with several methodologies that were implemented and tested on

computers with different characteristics. Thus, our comparison is informative more than
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comparative. The main purpose of this study is to obtain optimal solutions for instances of the

2SP. Furthermore, statistical tests are not required to determine the solution quality because

P&C is an exact method without statistical components on its procedure.

Original instances for the strip packing. Tables 2–5 show the experimental results for

the original instances of the 2SP. The structure of these tables is as follows: the first three col-

umns describe the instance, that is, the name (“Inst”), the width size W of the strip, and the

number n of items. The fourth column indicates the optimum (“Opt”) or the best lower bound

known (“LB”) in the literature. Columns 5–7 present the values for the P&C methodology: the

generation time in seconds of the correspondence matrix (“GT”), the execution time in sec-

onds required by the B&B solver (“ET”), and the optimum value z�. In the last columns, we

present the solutions obtained by other approaches in the literature.

The results for jack and kendall instances from [6] and [56] are showed in Table 2.

The last four columns are the solutions obtained by other approaches such as the genetic algo-

rithm combined with a deterministic algorithm proposed by Jakobs in [6], a bottom-left algo-

rithm for the genetic algorithm proposed by Liu and Teng in [39], the genetic algorithm

proposed byMumford-Valenzuela in [63], and the genetic algorithm based on layouts pro-

posed by Bortfeld in [41]. These approaches are heuristics, and no execution times were

reported. To the best of our knowledge, there are no other exact algorithms that have solved

these instances. The P&C is the only method that guarantees the optimal solution (bold num-

bers) for the three instances, which were solved in less than 70 seconds, considering the gener-

ation time of the correspondence matrix and the execution time of the B&B.

Table 3 shows the experimental results for dagli instances. For these instances, we add

two columns for the P&C: column “%” represents the packing density which is added to make

a comparison with the other approaches, and column “LB” that shows the best lower bound

found by the P&C methodology when an instance is not solved to optimality considering the

time limit. The last three columns show the results in terms of the average of packing density

for other approaches (no execution times were reported for these algorithms) such as an

object-based evolutionary algorithm proposed by Ratanapan and Dagli in [54, 55], an artificial

neural network, mathematical programming and genetic algorithm proposed by Dagli and

Table 2. Results for jack and kendall instances.

Inst Size Opt P&C Jakobs Liu and Teng Mumford–Valenzuela Bortfeldt

W n GT ET z�

jack01 40 25 15 0.59 22.40 15 17 16 16 16

jack02 40 50 15 0.71 14.70 15 17 16 16 15

kendall 80 13 140 65.70 1.59 140

Number of optimal solutions 3/3 0/3 0/3 0/3 1/3

https://doi.org/10.1371/journal.pone.0245267.t002

Table 3. Results for dagli instances.

Inst Size LB P&C Ratanapan and Dagli Dagli and Poshyanonda Bortfeldt

W n GT ET z� % LB
dagli01 60 31 45 4.21 843.86 46 100 91.88 – 95.67

dagli02 60 21 40 1.87 4.41 40 100 92.50 – 97.56

dagli03 30 37 112 8.02 78.78 112 100 94.41 96.03 98.58

dagli04 20 37 161 10.43 17.89 209 100 208 – 97.15 97.62

Number of optimal solutions 3/4 0/4 0/4 0/4

A “-” mark means that the authors did not solve this particular instance.

https://doi.org/10.1371/journal.pone.0245267.t003
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Table 4. Results for hifi instances.

Inst Size LB P&C Hifi Sbb Sda Sbp
W n GT ET z� z ET z ET z ET z ET

hifi01 5 10 13 0.01 0.00 13 13 <0.10 13 0.00 13 0.00 13 0.00

hifi02 4 11 40 0.01 0.08 40 40 0.30 40 0.00 40 0.00 40 0.00

hifi03 6 15 14 0.01 0.06 14 14 0.30 14 7.10 14 403.83 19 0.00

hifi04 6 11 19 0.01 0.02 20 20 0.60 20 2.45 20 160.35 22 OM

hifi05 20 8 20 0.04 0.00 20 20 0.50 20 0.00 20 0.00 20 0.00

hifi06 30 7 38 0.58 0.01 38 38 4.90 38 0.00 38 0.00 38 0.00

hifi07 15 8 14 0.01 0.02 14 14 0.30 14 0.01 14 0.06 14 1.01

hifi08 15 12 17 0.02 0.05 17 17 0.50 17 1.57 17 10.45 17 0.00

hifi09 27 12 68 1.2 4.14 68 68 7.60 68 0.14 68 0.01 68 0.00

hifi10 50 8 80 3.72 20.84 80 80 0.30 80 0.18 80 0.01 80 0.00

hifi11 27 10 48 1.05 3.21 48 48 8.60 48 4.89 48 0.42 48 0.00

hifi12 81 18 34 3.36 0.03 34 34 2.80 38 3600 34 0.01 38 3600

hifi13 70 7 50 4.78 11.47 50 50 6.10 50 0.38 50 0.15 50 0.00

hifi14 100 10 60 12.31 77.63 69 69 4.10 69 15.57 69 196.65 69 0.00

hifi15 45 14 34 1.70 13.22 34 34 6.00 34 2688.13 34 445.94 34 0.00

hifi16 6 14 32 0.02 0.11 33 33 1.40 33 606.12 33 216.83 35 OM

hifi17 42 9 34 1.12 5.70 34 39 7.10 34 2.07 34 0.00 34 0.00

hifi18 70 10 89 17.38 2777.12 100 101 10.70 100 9.43 100 97.03 100 88.25

hifi19 5 12 25 0.01 0.08 25 26 0.30 26 0.01 26 16.36 27 OM

hifi20 15 10 19 0.05 0.29 20 21 1.80 20 1.73 20 1.32 20 0.00

hifi21 30 11 140 7.22 141.44 140 145 3.90 140 24.31 140 63.29 140 0.00

hifi22 90 22 34 6.70 35.57 34 34 11.80 42 3600 39 1597.91 43 3600

hifi23 15 12 34 0.08 0.21 34 35 1.50 34 37.97 34 24.07 39 0.00

hifi24 50 10 103 18.96 995.92 109 114 18.90 109 19.34 109 71.05 109 0.00

hifi25 25 15 35 0.82 14.04 35 36 11.50 36 3600 36 657.15 43 3600

Number of optimal solutions 25/25 17/25 21/25 22/25 15/25

https://doi.org/10.1371/journal.pone.0245267.t004

Table 5. Experimental results for hopper instances.

Class Inst Size Opt P&C Iori Best-fit Burke Bortfeldt GRASP

W n GT ET z� BF+TS BF+SA BF+GA Avg Best Avg Best

C1 01 20 16 20 0.21 0.00 20 20 21 20 20 20 20 20

02 20 17 20 0.20 12.67 20 21 22 21 20 21 20 20

03 20 16 20 0.19 2.42 20 20 24 20 20 20 20 20

Average percentage deviation from optimum 0 1.59 10.17 1.59 0 1.59 1.59 1.59 0 0

C2 04 40 25 15 0.73 26.05 15 15 16 16 16 16 15 15

05 40 25 15 0.69 64.59 15 16 16 16 16 16 15 15

06 40 25 15 0.66 16.39 15 15 16 16 16 16 15 15

Average percentage deviation from optimum 0 2.08 6.25 6.25 6.25 6.25 3.33 2.08 0 0

C3 07 60 28 30 7.58 2134.92 30 31 32 31 31 31 30 30

08 60 29 30 8.16 4334.20 30 31 34 32 31 32 31 31

09 60 28 30 8.02 0.05 30 30 33 31 31 31 30 30

Average percentage deviation from optimum 0 2.15 9.04 4.23 3.23 4.23 3.16 3.16 1.08 1.08

Number of optimal solutions 9/9 5/9 0/9 2/9 3/9 2/9 8/9 8/9

https://doi.org/10.1371/journal.pone.0245267.t005
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Poshyanonda in [53] and [64], and a genetic algorithm based on layouts proposed by Bortfeld
in [41] (we report the best solution obtained by this author). The P&C improves or certifies

the optimality of the lower bound in the literature for the four instances. The optimum for

dagli01 and dagli03 was not known before of this study according to the Working

Group on Cutting and Packing within EURO of the Association of the European Operational

Research Societies (ESICUP). The P&C methodology was able to solve 3 of 4 instances to opti-

mality obtaining the best average packings. Furthermore, the P&C improves the LB of the liter-

ature for dagli04 instance from 161 to 208. For this instance, our methodology cannot

guarantee the optimality because the B&B reaches the time limit with the value of 208. How-

ever, it obtains a feasible packing for the value 209 and infeasible for 207. When the lower

bound is not close to the optimum, as for dagli04, we searched for the optimal height of the

strip in a dichotomous way. Notice that the times of the last iteration of the P&C methodology

are less than 15 minutes.

The experimental results for hifi instances proposed by [34] are shown in Table 4. This

table is interesting since it compares several dichotomous algorithms based on exact method-

ologies. The P&C is compared with four approaches of the literature (the last eight columns)

such as the dichotomous exact approach based on a B&B and dynamic-programming proce-

dures developed byHifi in [34], the B&B algorithm of [65] called Sbb, based on the B&B of [2],

the dichotomous algorithm of [65] named Sda, based on the one of [34] with the decision ver-

sion problem solved with the model of [66], and the branch-and-price algorithm of [65] called

Sbp. For each approach, we present its solution z and the execution time ET. Hifi’s algorithm

was coded in C and tested on a Sparc-Server20 (module 712 MP). The Sbb, Sda and Sbp algo-

rithms were coded in C++ and tested on a Pentium M 1.7 GHz with 1G of RAM. The column

generation and linear programs were solved with CPLEX and Concert Technology.

For hifi instances, we are not comparing the dichotomous behavior that seems to be a

promising characteristic for the 2SP, but, we are analyzing the exact algorithms that solve the

one-dimensional problem. Indeed, the best algorithms in terms of solution value are P&C, Sda,
and Sbb, respectively. To the best of our knowledge, the P&C methodology is the only one find-

ing the optimal solution for instances hifi19 and hifi25. Furthermore, the execution

times of the last iteration for the P&C are efficient since they are less than 45 minutes in the

worst case (instance hifi18). Nevertheless, the execution times of Hifi’s algorithm seem

more competitive.

The experimental results for small-medium size instances proposed by Hopper and Turton

in [36] are presented in Table 5. We add a new column at the beginning of the table to specify

the class of the instance. We compare the results of the P&C with the hybrid algorithm pro-

posed in [42] (column 9). Columns 10–13 show the results obtained by the best-fit algorithm

from [67] and its enhancements adding Tabu-search (TS), simulated-annealing (SA), and a

genetic algorithm (GA) from [68]. In columns 14 and 15 are presented the average and best

solutions obtained by the genetic algorithm presented in [41], the authors do not present

detailed solutions for each instance. Finally, the last two columns show the average and best

results obtained by the GRASP proposed by [40]. Numbers in bold represent the optimal solu-

tions. To make a comparison of our methodology with respect to other approaches, we use the

average percentage deviation from optimum proposed by [40]. This average is calculated as

(sol–opt)/opt. The results show that the P&C algorithm obtains the best solutions for the first

three classes (small-medium instances), getting 9 of 9 optimal solutions, improving the best

results of the GRASP proposed by [40]. We do not present the results for large instances since

P&C cannot obtain their optimal solutions. Indeed, the size of the correspondence matrix for

these instances is too large, and the memory of our computer is not enough to solve them.
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Instances for other two-dimensional cutting problems

In this section, we present the experimental results for the other two-dimensional cutting

instances which have been adapted to the 2SP (Tables 6–10). The format for each table is simi-

lar to the previous ones.

In Table 6, we show the results for the burke instances of [67]. We compare the P&C with

the best-fit algorithm from [67] and its enhancements adding Tabu-search (TS), simulated-

annealing (SA), and a genetic-algorithm (GA) from [68] (columns 8–11). Finally, the last two

Table 6. Results for burke instances.

Inst Size Opt P&C Best fit Burke GRASP

W n GT ET z� BF+TS BF+SA BF+GA Average Best

N1 40 10 40 1.66 3.01 40 45 40 40 40 40 40

N2 30 20 50 2.98 72.64 50 53 50 50 50 50 50

N3 40 30 50 8.31 27.91 50 52 51 51 52 51 51

N4 80 40 80 102.85 25047.90 80 86 83 82 83 81 81

Number of optimal solutions 4/4 0/4 2/4 2/4 2/4 2/4 2/4

https://doi.org/10.1371/journal.pone.0245267.t006

Table 7. Results for ngcut, cgcut, and beng instances.

Class Inst Size LB P&C Iori GRASP

W n GT ET z� Average Best

Beasley ngcut 01 10 10 23 0.01 0.03 23 23 23 23

02 10 17 30 0.04 0.14 30 30 30 30

03 10 21 28 0.08 1.02 28 28 28 28

04 10 7 20 0.01 0.01 20 20 20 20

05 10 14 36 0.07 0.37 36 36 36 36

06 10 15 29 0.06 0.42 31 31 31 31

07 20 8 20 0.04 0.00 20 20 20 20

08 20 13 32 0.21 1.04 33 33 33 33

09 20 18 49 0.82 67.47 50 50 50 50

10 30 13 80 1.81 13.98 80 80 80 80

11 30 15 50 1.26 102.08 52 52 52 52

12 30 22 87 3.66 586.74 87 87 87 87

Christofides cgcut 01 10 16 23 0.04 0.23 23 23 23 23

02 70 23 63 15.09 24314.86 64 65 65 65

03 70 62 636 MO TO – 661 661

Bengtsson beng 01 25 20 30 1.52 40.80 30 31 30 30

02 25 40 57 11.06 2756.12 57 58 57 57

03 25 60 84 36.42 8096.72 84 86 84 84

04 25 80 107 73.53 18104.00 107 110 107 107

05 25 100 134 130.22 TO – 136 134 134

06 40 40 36 11.12 1110.94 36 37 36 36

07 40 80 67 75.23 19849.40 67 69 67 67

08 40 120 101 214.07 TO – – 101 101

09 40 160 126 379.02 TO – – 126 126

10 40 200 156 645.63 TO – – 156 156

Number of proven optimal solutions 19/25 13/25 23/25 23/25

https://doi.org/10.1371/journal.pone.0245267.t007
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Table 8. Results for BW instances, class 1.

Inst Size LB P&C Iori Bortfeldt GRASP

W n cLB LB GT ET z� Average Best Average Best

1 30 20 65 70 0.62 8.45 70

2 44 44 0.30 11.38 44

3 65 73 0.71 17.75 73

4 47 48 0.41 51.00 48

5 54 54 0.48 36.70 54

6 74 77 0.94 19.83 79

7 53 55 0.47 0.96 55

8 51 52 0.44 7.05 52

9 62 69 0.63 5.93 69

10 67 69 0.71 1.27 69

60.3 58.2 61.1 61.3 61.2 62.0 61.6 61.3 61.3

11 30 40 90 91 2.15 78.69 91

12 107 108 3.53 98.66 108

13 139 145 6.48 53.89 145

14 125 129 6.07 74.24 129

15 138 140 5.48 336.94 140

16 107 121 4.22 3.37 122

17 108 109 3.26 41.40 109

18 146 165 7.32 41.05 169

19 101 102 3.20 80.72 102

20 103 103 3.07 3722.60 103

121.6 116.4 121.3 121.8 122.1 122.3 122.0 121.9 121.9

21 30 60 201 217 16.94 1140.48 217

22 177 181 11.97 715.23 181

23 182 194 13.39 218.68 194

24 183 209 16.49 3021.05 209

25 165 165 10.32 462.32 165

26 166 168 11.41 488.32 168

27 148 150 10.13 221.44 150

28 189 196 15.84 314.78 196

29 174 175 12.35 745.81 175

30 211 230 18.71 310.80 230

187.4 179.6 188.5 188.5 189.0 189.1 189.0 188.7 188.6

31 30 80 228 240 29.41 90.10 240

32 241 254 28.64 207.28 254

33 230 265 30.90 343.02 265

34 244 261 33.02 1843.17 261

35 236 245 29.65 1316.57 245

36 253 263 32.45 2147.05 263

37 266 289 36.16 2113.05 289

38 265 282 37.09 101.73 282

39 279 282 35.54 26216.00 282

40 243 245 29.50 2707.75 245

262.2 248.5 262.6 262.6 262.8 262.9 262.8 262.9 262.8

41 30 100 274 274 42.60 4015.39 274

42 304 306 47.56 8514.15 306

(Continued)
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columns show the average and best results obtained for the GRASP proposed by [40]. Notice

that the P&C is the only approach that obtains the optimal solutions for all the instances.

Table 7 shows the experimental results for ngcut, cgcut, and beng instances proposed by [58,

59], and [61], respectively. For these instances, the P&C methodology is compared with the

algorithms of [42] and the GRASP of [40]. MO means that the computer memory was not

enough to generate the correspondence matrix, and TO means the time limit to solve the

instances was reached. The best results were obtained for the GRASP algorithm of [40]. How-

ever, our contribution here is that we have increased and validated the optimal solutions

reported by the GRASP from 19/25 to 23/25. For the cgcut_02 instance, the P&C cannot prove

its optimal solution since the model reached the time-limit when the lower bound was used as

the maximum height of the strip. However, the P&C obtains the best result for this instance

with respect to the other approaches.

Tables 8 and 9 present the experimental results for Class 1 and 2 of Berkey and Wang

instances proposed in [57]. For each table, we add two new columns for the P&C. Column L̂B
represents the initial lower bound computed with Eq (1) and used to start our algorithm. Col-

umn LB shows the best lower bound found by the P&C when an instance is not solved to opti-

mality (considering the time limit established for the B&B).

As we mention in the description of the instances, each class has five groups of ten instances

that differ one with each other in the number of items. Therefore, both tables are divided into

five sections that represent the corresponding group of instances for each class. For each

group, we show the average to compare our results with other approaches of the literature. For

Class 1, the P&C cannot solve to optimality instances 6, 16, and 18. However, our methodology

can find new lower bounds for the first two groups of instances, improving the bounds given

in the literature. For the last three groups of Class 1, the P&C can solve all the instances to opti-

mality, improving the lower bounds and the results of other methodologies. Finally, for Class

2, the P&C solved all the instances to optimality, improving the results of the GRASP.

Table 10 shows the results for kenmochi instances proposed by [33]. The first three col-

umns describe the instance as usual. Columns 4–7 show the results obtained with the P&C. In

this case, we show the width W (the fourth column) and the optimal height z� of the strip

because some anomalies exist in the instances, and a perfect packing does not exist with the

original width. The anomalies exist in the first two instances where the width of some items is

larger than the width of the bin. Therefore, to solve these instances, we set the width of the bin

as long as the width of the larger item (numbers in bold in column 4 show the modification of

W). Furthermore, the optimal solutions obtained by our methodology in the last four instances

Table 8. (Continued)

Inst Size LB P&C Iori Bortfeldt GRASP

W n cLB LB GT ET z� Average Best Average Best

43 267 267 36.29 5709.47 267

44 289 293 46.68 3592.48 293

45 302 309 49.34 5481.73 309

46 338 355 66.29 3223.22 355

47 274 276 38.73 4500.47 276

48 313 315 57.47 8984.06 315

49 299 300 50.70 7200.16 300

50 342 353 64.95 2556.37 353

304.4 300.2 304.8 304.8 305.5 305.2 305.0 305.6 305.5

https://doi.org/10.1371/journal.pone.0245267.t008
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Table 9. Results for BW instances, class 2.

Inst Size LB P&C Iori Bortfeldt GRASP

W n cLB LB GT ET z� Average Best Average Best

1 30 20 22 22 0.69 30.60 22

2 15 15 0.34 4.35 15

3 22 22 0.77 45.98 22

4 16 16 0.35 21.28 16

5 18 18 0.46 16.72 18

6 25 25 0.98 23.25 25

7 18 18 0.47 19.43 18

8 17 17 0.45 47.61 17

9 21 21 0.65 17.64 21

10 23 23 0.87 23.34 23

19.7 19.7 19.7 19.7 19.9 20.5 20.5 19.8 19.8

11 30 40 30 30 2.66 62.38 30

12 36 36 4.46 122.07 36

13 47 47 7.10 262.07 47

14 42 42 6.22 200.17 42

15 46 46 6.86 735.38 46

16 36 36 4.14 84.77 36

17 36 36 3.82 99.84 36

18 49 49 7.63 292.17 49

19 34 34 3.73 109.64 34

20 35 35 3.36 84.92 35

39.1 39.1 39.1 39.1 40.0 39.5 39.1 39.1 39.1

21 30 60 67 67 20.07 2311.94 67

22 59 59 16.90 1476.75 59

23 61 61 17.67 1987.65 61

24 61 61 18.67 1985.76 61

25 55 55 12.89 2450.50 55

26 56 56 15.48 1288.01 56

27 50 50 13.39 564.08 50

28 63 63 20.35 2493.82 63

29 58 58 16.27 1784.42 58

30 71 71 27.23 4553.50 71

60.1 60.1 60.1 60.1 61.6 60.5 60.1 60.2 60.1

31 30 80 76 76 37.64 6942.25 76

32 81 81 40.78 6197.83 81

33 77 77 37.45 6332.58 77

34 82 82 42.84 6223.78 82

35 79 79 37.46 4777.47 79

36 85 85 39.72 12458.30 85

37 89 89 45.45 17841.10 89

38 89 89 49.60 7866.01 89

39 93 93 58.32 14936.60 93

40 81 81 43.05 7035.82 81

83.2 83.2 83.2 83.2 84.7 83.4 83.3 83.2 83.2

41 30 100 92 92 63.05 8929.45 92

42 102 102 70.02 10779.90 102

(Continued)
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do not correspond with the results presented by Kenmochi [33]. Columns 8–10 present the

results of [33] that implement two branching strategies: the bottom-left (BL) point and the the

staircase (S) strategy. The bounding operations are based on dynamic programming (DP) and

linear programming (LP). The P&C shows the optimal results for all the instances.

The experimental results show that the P&C is an efficient methodology to solve small-

medium size instances for the 2SP. Larger instances cannot be solved with the P&C methodol-

ogy since the combinatorial complexity of the problem also relies on the generation of all the

possible positions of the items. In this case, we have detected an opportunity area where we

propose to apply a decomposition approach, such as a column generation, to obtain optimal

solutions for large instances.

Conclusion

In this study, we present a new methodology called “Positions and Covering (P&C)” to obtain

exact solutions for the two-dimensional strip packing problem. The methodology is based on a

two-stage procedure where first, a set of valid positions is generated in a pseudo-polynomial

way representing how each item can be allocated inside of the strip. The height of the strip is

computed assuming that a perfect packing exists (or using the best lower bound, if it exists). In

the second stage, a set covering formulation (using the set of valid positions) is solved to deter-

mine if the height of the strip is optimal. If the mathematical model is feasible, then the proce-

dure ends with the optimal solution. Else, the height of the strip is increased by one, a new set

of valid positions is generated, and a new iteration begins.

Table 9. (Continued)

Inst Size LB P&C Iori Bortfeldt GRASP

W n cLB LB GT ET z� Average Best Average Best

43 89 89 52.28 11173.80 89

44 97 97 68.12 18199.50 97

45 101 101 74.76 15758.60 101

46 113 113 93.92 22739.10 113

47 92 92 59.66 10663.10 92

48 105 105 84.50 16105.70 105

49 100 100 78.56 15360.00 100

50 114 114 97.13 23182.70 114

100.5 100.5 100.5 100.5 101.8 100.7 100.7 100.5 100.5

https://doi.org/10.1371/journal.pone.0245267.t009

Table 10. Results for kenmochi instances.

Inst Size P&C Kenmochi

W n W GT ET z� BL+DP BL+DP+LP S+DP

1 13 9 15 0.08 0.14 20 20 20 20

2 13 9 15 0.08 0.00 20 20 20 20

3 20 10 20 0.25 0.19 23 20 20 20

4 20 11 20 0.26 1.13 22 20 20 20

5 20 12 20 0.27 1.37 21 20 20 20

6 20 13 20 0.25 0.00 22 20 20 20

Number of optimal solutions 6/6

https://doi.org/10.1371/journal.pone.0245267.t010
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The P&C methodology was tested using the benchmark for the 2SP solving small and

medium-size instances. We verify that many of the solutions proposed by other approaches

were the optimal solutions. The main contribution of this study is that we have obtained opti-

mal solutions for instances proposed in the literature where the optimum was not known

before. Furthermore, we have modified some other instances of the literature, which were

infeasible, and we have solved them, obtaining the optimal solutions.

An essential characteristic of the P&C is its simple implementation. Nevertheless, a future

research line consists of developing a decomposition approach to enhance the P&C methodol-

ogy to give optimal solutions for larger instances of the 2SP.
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