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Abstract

The main goal of the current paper is to contribute to the existing literature of probability dis-

tributions. In this paper, a new probability distribution is generated by using the Alpha Power

Family of distributions with the aim to model the data with non-monotonic failure rates and

provides a better fit. The proposed distribution is called Alpha Power Exponentiated Inverse

Rayleigh or in short APEIR distribution. Various statistical properties have been investigated

including they are the order statistics, moments, residual life function, mean waiting time,

quantiles, entropy, and stress-strength parameter. To estimate the parameters of the pro-

posed distribution, the maximum likelihood method is employed. It has been proved theoret-

ically that the proposed distribution provides a better fit to the data with monotonic as well

as non-monotonic hazard rate shapes. Moreover, two real data sets are used to evaluate

the significance and flexibility of the proposed distribution as compared to other probability

distributions.

Introduction

In statistical theory, the development of new distributions has become a common practice in

recent decades; this is done generally by adding an extra parameter [1] to the baseline distribu-

tion, using generators [2, 3], or by combining two distributions [4]. Ramadan and Magdy [5]

produced a new probability distribution by applying the Inverse Weibull (IW) to the Alpha

Power Family of distribution. Alzaatreh et al. [2] introduced T-X family of continuous distri-

butions by interchanging the probability density function of any continuous random variable

with the probability density function of Beta distribution. Lee et al. [3] developed a technique

of generating single variable continuous distributions. Jones [6] applied the Beta distribution

to the family of distribution presented by Eugene et al. [7].

The main purpose of such an amendment to the existing distributions is to model the real

data both with monotonically and non-monotonically hazard rate functions. Secondly, to

increase the model flexibility of the complex data structures as compared to existing probabil-

ity distributions. Because the existing distribution has some limitations so model the complex

data structures, for example, Exponential and Weibull distributions fail the real data following

a non-monotonic failure rate functions.
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In this aim of presenting the paper is to contribute a new probability distribution that will

model the data with both monotonically and non-monotonically hazard rate functions. The

proposed model will also increase the model flexibility as compared to other models.

Alpha Power Transformation

In the Recent past, Mahdavi and Kundu [8] suggested a new technique, called Alpha Power

Transformation (APT), for including an additional parameter in the life time distributions.

The primary purpose of this family was to utilize the non-symmetrical behavior of the parent

distribution. The Alpha Power Transformation is defined by

Let X is a continuous random variable with F(x) as Cumulative Distribution Function, the

Cumulative Distribution Function of Alpha Power Transformation is as follows;

FAPTðxÞ ¼
aFðxÞ � 1

a � 1
if a > 0; a 6¼ 1

FðxÞ if a ¼ 1 :

8
<

:
ð1Þ

The associated Probability density function is given below

fAPTðxÞ ¼
log a
a � 1

aFðxÞf ðxÞ if a > 0; a 6¼ 1

f ðxÞ if a ¼ 1 :

8
<

:
ð2Þ

The Alpha Power transformation has been used by many researchers, for example, Dey et.al

[9] explored the new probability distributions by applying the Exponential and Rayleigh distri-

bution to the Alpha Power Family of distributions. By using the same Transformation Nassar

et al. [10] produced Alpha Power Weibull distribution, Alpha Power Inverse Weibull distribu-

tion was produced by Ramadan and Magdy [5], Alpha Power Transformed Extended Expo-

nential distribution by Hassan et al [11].

The main aim of the paper is to produce a new probability distribution by using the Alpha

Power family of distribution. In this paper, we considered the Exponentiated Inverse Rayleigh

distribution as a baseline distribution presented by Rehman and Sajjad [12]. The Exponen-

tiated Inverse Rayleigh distribution is the extension of the Inverse Rayleigh distribution pre-

sented by Voda [13]. He discussed various statistical properties such as moment generating

function, survival function, and order statistics. A random variable X is said to be Inverse Ray-

leigh if it possesses the following Pdf and Cdf

f ðyÞ ¼
2g

y3
e
� g

y2 ; y > 0; g > 0 ð3Þ

FðyÞ ¼ e
� g

y2 ; y > 0; g > 0: ð4Þ

The Exponentiated Inverse Rayleigh (EIR) distribution has the following pdf and cdf;

f ðxÞ ¼
2xy
x3
e
� ay

x2 ; x; a; y > 0 ð5Þ

FðxÞ ¼ e
� ay

x2 ; x; a; y > 0: ð6Þ

The current study is linked with the introduction of a novel distribution which is stated as

Alpha Power Exponentiated Inverse Rayleigh (APEIR) distribution. Various statistical proper-

ties of the APEIR distribution are studied such as quantile function, median, mode, moment
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generating function and rth moment, order statistics, mean residual life function, and stress

strength parameter are obtained and discussed. Furthermore, an expression for the Renyi

entropy and for the Mean Waiting Time has been explored. The estimation of the parameters

is done by using the maximum likelihood. In order to prove the flexibility of the model, we

considered the application by using two real data sets as well as simulated data.

Alpha Power Exponentiated Inverse Rayleigh (APEIR) distribution

By applying the cumulative distribution function of the Exponentiated inverse Rayleigh distri-

bution to the ALPF, we obtained the following Cdf and Pdf for the APEIR and is given by

FAPEIRðxÞ ¼
ae

� by

x2

� 1

a � 1
a > 1

0 a ¼ 1:

8
>>><

>>>:

ð7Þ

fAPEIRðxÞ ¼

loga
a � 1

2by

x3
e
� by

x2 ae
� by

x2
a > 1

f ðxÞ a ¼ 1

0 otherwise:

8
>>><

>>>:

ð8Þ

Fig 1 reflects the graphical structure of the CDF of APEIR with various parameter values.

Fig 1. Graph of CDF of APEIR distribution.

https://doi.org/10.1371/journal.pone.0245253.g001
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The hazard and survival function corresponding to the probability density function are as

follows

hAPEIRðxÞ ¼
2by loga e

� by

x2 ae
� by

x2

x3 a � ae
� by

x2

� � a > 1 :

8
>>><

>>>:

ð9Þ

SAPEIRðxÞ ¼
a � ae

� by

x2

a � 1
a > 1 :

8
><

>:
ð10Þ

Fig 2 shows the hazard rate function and survival function of APEIR distribution with vari-

ous values of parameters. Clearly, the hazard rate function of APEIR distribution is unimodal

and positively skewed for α> 1.

Lemma 1: If α< 1 then f(x) is a decreasing function, this implies that fAPEIR(x) is decreasing

function.

Proof: If f(x) is a differentiable function and if its first order derivative or d
dx logf xð Þ < 0 for

x in (α, β, θ) then f(x) is a decreasing function and vice versa.

Taking the first derivative of logfAPEIR(x) i.e.

d
dx
logfAPEIR xð Þ ¼

� 3

x
�

2by

x3
þ

2by

x3
loga e

� by

x2 ð11Þ

For α< 1, β and θ> 0, which show that

d
dx
logfAPEIR xð Þ < 0;

Hence fAPEIR(x) is a decreasing function.

Fig 2. Graph of and hazard rate and survival function of APEIR distribution.

https://doi.org/10.1371/journal.pone.0245253.g002

PLOS ONE APEIR

PLOS ONE | https://doi.org/10.1371/journal.pone.0245253 January 14, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0245253.g002
https://doi.org/10.1371/journal.pone.0245253


Lemma 2: If α< 1 and f(x) is decreasing function so f(x) is log-convex hence hAPEIR(x) is

decreasing function.

Proof: If the second order derivative of f(x) exists and f"(x) > 0 or d2

dx2 logf xð Þ > 0, then f(x)
is said to be log-convex.

Taking second order derivative of Eq (11), we get

d2

dx2
logfAPEIR xð Þ ¼

� 3

x
�

6by

x4
�

6by

x4
loga e

� by

x2 þ
4b

2
y

2

x6
loga e

� by

x2 ; ð12Þ

0< α< 1, β and θ> 0

Then d2

dx2 logfAPEIR xð Þ > 0.

Therefore fAPEIR(x) is log-convex.

Quantile function

Let X *APEIR (α β, θ) then its Quantile function is given below;

FðXÞ ¼ u which impliesX ¼ F� 1ðuÞ;where u is uniformly distributed. The Quantile func-

tion of APEIR distribution is

xp ¼
� by

log logfuða� 1Þþ1g

loga

n o

2

4

3

5

1
2

: ð13Þ

Median of APEIR distribution is obtained by substituting u = 1/2 in Eq (13), we get

Median ¼
� by

log
log 1

2
aþ1ð Þf g
loga

� �

2

6
6
4

3

7
7
5

1
2

: ð14Þ

Mode

Mode of APEIR distribution is that point by which the distribution reaches its maximum

point and it is obtained by solving the following equation

d
dx
fAPEIR xð Þ ¼ 0

d
dx

loga
a � 1

2by

x3
e
� by

x2 ae
� by

x2
� �

¼ 0

We finally, obtained the result

x ¼
3

� 2byð1þ logaÞ

� �� 1=2

: ð15Þ
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Rth moment of APEIR distribution

Let X *APEIR (α β, θ), then the expression of its rth moment is as follows;

m=r ¼ EðXrÞ ¼
ð1

0

xr
loga
a � 1

2by

x3
e
� by

x2 ae
� by

x2 dx ; ð16Þ

Using y = x−2 and series notation a� z ¼
P1

k¼0

ð� logaÞk

k! ð� zÞ
k

and logz ¼ �
P1

j¼1

ð� 1Þjð� 1þzÞj

j , we get

the final result as

m=r ¼
� 1

by

� �l loga
a � 1

X1

k¼o

Xjl

i¼0

X1

j¼1

ð� 1Þ
jlþlþiþ2k

jl
jl

i

 !
ðlogaÞk

k!
1

ðjl � iþ kþ 1Þ
: ð17Þ

where l ¼ � r
2

. which is the required result.

Moment Generating Function (MGF)

Let X ~ APEIR(α, β, θ) then the expression for its MGF is as follows;

Mx tð Þ ¼ E ð etxÞ ¼
ð1

0

etx
loga
a � 1

2by

X3
e
� by

x2 ae
� by

x2 dx; ð18Þ

Using y = x−2, etx ¼
P1

r¼0

trxr
r! and the series representation a� z ¼

P1

k¼0

ð� logaÞk

k! ð� zÞ
k

in Eq (18).

The MGF of APEIR distribution has the following form

MXðtÞ ¼
� 1

by

� �l loga
a � 1

X1

r¼0

X1

k¼0

Xjl

i¼0

X1

j¼1

tr

r!
ð� 1Þ

jlþlþiþ2k

jl
jl

i

 !
ðlogaÞk

k!
1

ðjl � iþ kþ 1Þ
: ð19Þ

where l ¼ � r
2

.

Mean residual life function

Let X be the survival time of an object having pdf “f(x)” and survival function specified in Eq

(10), the mean residual life function is the average remaining lifespan, which is a component

survived up to time t. The mean residual life function, say, μ(t) has the following expression.

mðtÞ ¼
1

PðX > tÞ

ð1

t

PðX > xÞdx ; t � 0

m tð Þ ¼
1

SðtÞ
�

ðt

0

xf ðxÞdxþ EðtÞ

0

@

1

A � t; t � 0 ð20Þ

where

ðt

o

xf ðxÞdx ¼
� 1

by

� �� 1
2 loga
a � 1

X1

j¼1

Xjl

i¼0

X1

k¼0

ð� 1Þ
jlþlþiþ2k

jl
jl

i

 !
ðlogaÞk

k!
e
� byðjl� iþkþ1Þ

t2

jl � iþ kþ 1
; ð21Þ
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and

E tð Þ ¼
1

y

� 1

by

� �� 1
2 loga
a � 1

X1

j¼1

Xjl

i¼0

X1

k¼0

ð� 1Þ
jlþlþiþ2k

jl
jl

i

 !
ðlogaÞk

k!
1

jl � iþ kþ 1
; ð22Þ

putting Eqs (10), (21) and (22) in Eq (20), we get

m tð Þ ¼

a � 1ð Þ
� 1

by

� �l loga
ða � 1Þ

X1

j¼1

Xjl

i¼0

X1

k¼0

ð� 1Þ
jlþlþiþ2k

jl
jl

i

 !
ðlogaÞk

k!
1 � ye

� byðjl� iþkþ1Þ

t2

yðjl � iþ kþ 1Þ

( )

� t a � ae
� by

x2

� �

a � ae
� by

x2

� � ð23Þ

where l ¼ � 1

2
.

Order statistics

Let X1, X2, X3, . . ., Xn be a random sample of size n from APEIR distribution and let X(1)�

X(2)� . . .� X(n) denote the order statistics. Let Xi:n denotes the ith order statistics, then the

Probability Density function of Xi:n is given by

fi:nðxÞ ¼
n!

ði � 1Þ!ðn � iÞ!
f ðxÞ ½FðxÞ�i� 1

½1 � FðxÞ�n� i; ð24Þ

putting Eqs (7) and (8) of APEIR distribution in (24), we obtain the pdf of ith order statistic for

x> 0, as is mentioned below

fi:nðxÞ ¼
n!

ði � 1Þ!ðn � iÞ!
loga
ða � 1Þ

n
2by

x3
e
� by

x2 ae
� by

x2
ae
� by

x2
� 1

� �i� 1

a � ae
� by

x2
� �n� i

; ð25Þ

by inserting i = 1 in Eq (25), we obtain the smallest order statistic as follows:

f1:n xð Þ ¼
2nbyloga
ða � 1Þ

n
1

x3
e
� by

x2 ae
� by

x2
a � ae

� by

x2
� �n� 1

: ð26Þ

For largest order statistic insert i = n in Eq (25), we get

fn:n xð Þ ¼
n loga
ða � 1Þ

n
2by

x3
e
� by

x2 ae
� by

x2
ae
� by

x2
� 1

� �n� 1

: ð27Þ

Put i = n /2 in Eq (25), to obtain the distribution of median, we have

fn
2:

:n xð Þ ¼
n! loga
ða � 1Þ

n
2by

x3

1
n
2
� 1

� �
! n � n

2

� �
!
e
� by

x2 ae
� by

x2
ae
� by

x2
� 1

� �n
2
� 1

a � ae
� by

x2
� �n� n

2

: ð28Þ
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Stress-strength parameter

Let X1, X2 are independently and identically distributed variables such that X1 ~ APEIR(α1, θ1,

β) and X2 ~ APEIR(α2, θ2, β) then its stress strength parameter has the following expression.

R ¼
ð1

� 1

f1ðxÞF2ðxÞdx:

using Eqs (7) and (8) of APEIR distribution then Stress Strength Parameter is given as;

R ¼
2by1loga1

ða1 � 1Þða2 � 1Þ

ð1

0

x� 3 e
� by

1

x2 a1
e
� by1

x2
a2
e
� by2

x2 dx �
1

ða2 � 1Þ
; ð29Þ

after simplification, we finally obtained the equation for Stress-Strength Parameter.

R ¼
by1loga1

ða1 � 1Þða2 � 1Þ

X1

k¼0

ðloga1Þ
k
ð loga2Þ

m ð� 1Þ
2kþ2m

k!m!

1

ðby1 þ by1kþ b y2mÞ
�

1

ða1 � 1Þ
:ð30Þ

Lemma 3: Let X~ APEIR(α, θ, β), then its Renyi entropy is defined by

RExðvÞ ¼
1

1 � v
log

bloga
a � 1

� �

ð� vbyÞ� l
X1

j¼1

Xjl

i¼0

X1

k¼0

ð� 1Þ
jlþlþiþ2k

jl
jl

i

 !
ðlogaÞk

k! ðjl � iþ kþ 1Þ
:ð31Þ

where l ¼ 3ðv� 1Þ

2
:

Proof: For APEIR distribution, Renyi entropy has the following expression;

REXðvÞ ¼
1

1 � v
log

ð1

� 1

f ðxÞvdx

8
<

:

9
=

;

¼
1

1 � v

ð1

0

loga
a � 1

2by

x3
e
� by

x2 ae
� by

x2
� �v

dx

The result can be obtained easily by substituting a� z ¼
P1

k¼0

ð� logaÞk

k! ð� zÞ
k
:

Lemma4: The Mean Waiting Time say �mðtÞ of APEIR distribution is as follows;

�m tð Þ ¼

t ae
� by

t2 � 1

� �

� a � 1ð Þ � 1

by

� �� 1=2
loga
ða� 1Þ

X1

j¼1

Xjl

i¼0

X1

k¼0

ð� 1Þjlþlþiþ2k

jl
ðlogaÞk

k!
e
� byðjl� iþkþ1Þ

t2

ðjl� iþkþ1Þ

� �" #

ae
� by

t2 � 1

� � :ð32Þ

Proof: For APEIR, the mean waiting time is given by

�m tð Þ ¼ t �
1

FðtÞ

ð1

0

x f xð Þdx;

the result can be obtained easily by substituting a� z ¼
P1

k¼0

ð� logaÞk

k! ð� zÞ
k
:
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Parameters estimation

Let we have a random sample of size “n” from APEIR (α, β, θ), then their joint density function

is as follows;

lða; b; yÞ ¼
loga
a � 1

� �
nð2byÞ

n 1
Qn
i¼1
xi3
e
� by
Pn

i¼1

1

x2 i � a

Pn

i¼1
e
by

x2 i
; ð33Þ

taking the logarithm, Eq (33) becomes

logl a; b; yð Þ ¼ nlog
loga
a � 1

� �

þ nlog 2byð Þ � log
Yn

i¼1
xi

3

� �
� by

Xn

i¼1

1

x2
i
�
Xn

i¼1
e
by

x2 i loga; ð34Þ

differentiating Eq (34) with respect to α, β and θ, and taking equal to 0, we get the following

normal equations;

@loglða; b; yÞ
@a

¼
nða � 1 � logaÞ
aða � 1Þloga

�
1

a

Xn

i¼1
e
by

x2 i ¼ 0; ð35Þ

@loglða; b; yÞ
@b

¼
n
b
� y

Xn

i¼1

1

x2
i
�
Xn

i¼1
e
by

x2 i
y

x2
i

� �

loga ¼ 0; ð36Þ

@loglða; b; yÞ
@y

¼
n
y
� b

Xn

i¼1

1

x2
i
�
Xn

i¼1
e
by

x2 i
b

x2
i

� �

loga ¼ 0: ð37Þ

By solving (35), (36) and (37) all together, we get the estimates of α, β and θ. We can

get the solution of the above equations by using methods like Newton Raphson method

or Bisection method. ML Estimators follows asymptotically normally distribution, that is
ffiffiffi
n
p
ðâ � a; b̂ � b; ŷ � yÞ � N3ð0;SÞ, ∑ is a matrix contains variability measures of the esti-

mated parameters and computed from the following F matrix;

F ¼

@2logl
@a2

@2logl
@a@b

@2logl
@a@y

@2logl
@b@a

@2logl
@b

2

@2logl
@b@y

@2logl
@y@a

@2logl
@y@b

@2logl
@y

2

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;
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again, differentiating Eqs (35), (36) and (37) w.r.t α, β and θ, we obtained;

@2logl
@a2

¼ n
a a � 1ð Þloga 1 � 1

a

� �
� ða � 1 � logaÞðða � 1Þ þ ð2a � 1ÞlogaÞf g

ðaða � 1ÞlogaÞ2

" #

þ
1

a2

Xn

i¼1
e
by

x2 ið38Þ

@2logl
@b

2
¼ �

n
b

2
� y

2loga
Xn

i¼1
xi

2e
by

x2 i : ð39Þ

@2logl
@y

2
¼ �

n
y

2
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Large sample (1 − z)100% confidence interval for the suggested distribution parameters has

the following expression;

â � Zz=2

ffiffiffiffiffiffiffi
S11

p
:

b̂ � Zz=2

ffiffiffiffiffiffiffi
S22

p
:

ŷ � Zz=2

ffiffiffiffiffiffiffi
S33

p
:

Simulations study

The parameter estimates of APEIR distribution, their Mean Square Error (MSE) as well as the

bias measure are computed using a simulation study with 1000 replications each with a sample

of size n = 30, 70, 130 and 170. A simulated data is generated from APEIR distribution using

the following expression

X ¼
� by

log loguða� 1Þþ1Þ

loga

n o

2

4

3

5

1
2

;

where U follows a standard uniform distribution. The average bias and MSE are computed by

PLOS ONE APEIR

PLOS ONE | https://doi.org/10.1371/journal.pone.0245253 January 14, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0245253


using the mathematical formulae as under

Bias ¼
1

W

Xw

1¼1

b̂i � b
� �

MSE ¼
1

W

Xw

1¼1

ðb̂i � bÞ
2

where b = (α, β, θ). The average bias and MSEs are given in Table 1. It has been observed that

the MSEs and bias of the estimates are decreasing for all parameter combinations with the

increase in the sample of size n.

Applications

In this section, we provide two applications of the proposed distribution to the lifetime data.

The performance of the suggested model is checked by the goodness of fit criteria including

they are the AIC, CAIC, BIC, HQIC, and the P-value. For more details of the goodness of fit

criteria, we refer to see [14–19]. In general, with fever values of these statistics, a probability

model would perform better than others. The proposed model is compared with Exponen-

tiated Inverse Rayleigh distribution by Rehman and Sajjad [12], Weibull Rayleigh distribution

by Merovci and Elbatal [20], Generalized Rayleigh distribution by Raqab and Madi [21], two

parameter Rayleigh distribution by Dey et.al [22], Transmuted inverse Rayleigh distribution

by Afaq et al [23] and modified inverse Rayleigh distribution by Muhammad [24]. The proba-

bility functions of these distributions are given by

• Exponentiated Inverse Rayleigh Distribution

f xð Þ ¼
2by

x3
e
� by

x2 y; b; X > 0:

Table 1. Average values of MLE, corresponding MSE and bias.

Parameter n MSE (α̂) MSE (β̂) MSE (θ̂) Bias (α̂) Bias (β̂) Bias (θ̂)

α = 0.5 30 1.600291 0.140596 0.076240 0.296260 0.034060 0.029888

β = 1.5 70 0.274669 0.080418 0.044591 0.093877 0.014399 0.012343

θ = 2 130 0.148004 0.078995 0.043825 0.060626 0.004091 0.003544

170 0.079246 0.030490 0.017141 0.042915 0.003248 0.001590

α = 1.5 30 3.781425 0.234186 0.153185 0.367721 0.132582 0.112368

β = 2 70 3.080643 0.101876 0.066932 0.338951 0.062667 0.052157

θ = 2.5 130 1.926952 0.067971 0.038254 0.278251 0.026125 0.022521

170 0.741660 0.052949 0.037985 0.115542 0.021330 0.018270

α = 0.5 30 1.088054 0.066637 0.031088 0.231466 0.029975 0.022030

β = 1 70 0.459863 0.038682 0.008550 0.104862 0.018523 0.013168

θ = 1.5 130 0.180847 0.027694 0.006936 0.063190 0.003021 0.002425

170 0.163698 0.015616 0.004694 0.049297 0.002392 0.000973

α = 0.5 30 1.614823 0.195070 0.138455 0.306416 0.068536 0.062257

β = 2.5 70 0.351019 0.114477 0.079823 0.104602 0.032169 0.028678

θ = 3 130 0.179059 0.107070 0.078002 0.064438 0.006292 0.005975

170 0.163570 0.066727 0.046419 0.051060 0.006192 0.005712

https://doi.org/10.1371/journal.pone.0245253.t001
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• Weibull Rayleigh (WR) Distribution

f xð Þ ¼ abyxeyx
2

2 eyx
2

2 � 1
� �b� 1

e
� a e

yx2
2 � 1

� �b

a; y; b; X > 0:

• Generalized Rayleigh (GR) Distribution

f ðxÞ ¼ 2ag2xe� ðgxÞ
2

ð1 � e� ðgxÞ
2

Þ
a� 1
a; g; X > 0:

• Two Parameter Rayleigh (TPR) Distribution

f ðxÞ ¼ 2aðx � mÞe� aðx� mÞ
2

x > m; a > 0:

• Modified Inverse Rayleigh Distribution.

f ðxÞ ¼ aþ
2y

x

� �
1

x

� �2

e�
a
x� y

1
xð Þ

2

a; y; X > 0:

• Transmuted Inverse Rayleigh Distribution.

f ðxÞ ¼
2y

x3
e
� y

x2 1þ l � 2le
� y

x2

� �
y;X > 0:

Data set 1. Patients receiving an analgesic. The data set is taken from Gross and Clark

[25] which consists of 20 observations of patients receiving an analgesic. The values are as fol-

lows

1:1 1:4 1:3 1:7 1:9 1:8 1:6 2:2 1:7 2:7

4:1 1:8 1:5 1:2 1:4 3:0 1:7 2:3 1:6 2:0

Table 2 describes the parameter values of the probability models and also describes the

goodness of fit measures. It is evident that the goodness of fit measures has fever values for the

proposed model and hence it is concluded that the proposed model increased the flexibility of

the model.

In Fig 4, the histogram represents the theoretical densities of the Alpha Power Exponen-

tiated Inverse Rayleigh (APEIR), Two Parameter Rayleigh (TPR) and Exponentiated Inverse

Rayleigh (EIR) by continuous red color line, dotted blue line and dotted green line respec-

tively. It is evident from the above figure that the Alpha Power Exponentiated Inverse Rayleigh

(APEIR) is leptokurtic and positively skewed as compared to other densities. Furthermore, the

graph suggests that the Alpha Power Exponentiated Inverse Rayleigh (APEIR) distribution is

less thick as compared to Two Parameter Rayleigh (TPR) distribution and thicker than Expo-

nentiated Inverse Rayleigh (EIR) in the tail.

Table 2. Goodness of fit measures for data set 1.

Distribution MLE AIC CAIC BIC HQIC p-value

APEIR 0.0041 0.7964 7.8595 37.2560 38.7560 40.2432 37.8391 0.1205

EIR 0.8714 3.1686 46.3650 47.0709 48.3564 46.7537 0.1435

WR 11.8552 1.2364 0.0545 48.5149 50.0149 51.5021 49.0980 0.4597

GR 3.2748 0.6926 40.8050 41.5109 42.7965 41.1938 0.4630

TPR 0.6225 0.8352 39.6164 40.3223 41.6078 40.0051 0.3397

https://doi.org/10.1371/journal.pone.0245253.t002
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Fig 3. Comparison between fitted distributions for data set 1.

https://doi.org/10.1371/journal.pone.0245253.g003

Fig 4. Probability density function, Q-Q plot, distribution function and P-P plot for data set 1.

https://doi.org/10.1371/journal.pone.0245253.g004
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If the plot of empirical against the theoretical CDFs is observed, then Alpha Power Expo-

nentiated Inverse Rayleigh (APEIR) provides a better fit as compared to Exponentiated Inverse

Rayleigh (EIR) and Two Parameter Rayleigh (TPR). Fig 3 describes the comparison of the pro-

posed against other existing distributions. Fig 4 describes the PP-plot, QQ-plot, empirical and

theoretical densities of Alpha Power Exponentiated Inverse Rayleigh (APEIR).

Data set 2. Rainfall. The second data set consists of thirty observations for the rainfall (in

inches) of March in Minneapolis/St Paul [19]. The values are as follows

0:77 1:74 0:81 1:20 1:95 1:20 0:47 1:43 3:37 2:20 3:00 3:09 1:51 2:10 0:52

1:62 1:31 0:32 0:59 0:81 2:81 1:87 1:18 1:35 4:75 2:48 0:96 1:89 0:90 2:05

Table 3 describes the MLE of the probability models and describe the goodness of fit mea-

sures. Again, it is concluded that by increasing another parameter, we get a more significant

result as compared to others.

Fig 5 describe the theoretical densities of Alpha Power Exponentiated Inverse Rayleigh

(APEIR), Transmuted Inverse Rayleigh (TIR) and Exponentiated Inverse Rayleigh (EIR) by

continuous red color line, dotted blue line and dotted green line respectively. Fig 5 clarify that

Alpha Power Exponentiated Inverse Rayleigh (APEIR) is positively skewed. Moreover, the

empirical and theoretical densities demonstrate that the Alpha Power Exponentiated Inverse

Rayleigh (APEIR) provides a better fit to this data. Fig 6 describes the PP-plot, QQ-plot, empir-

ical and theoretical densities of Alpha Power Exponentiated Inverse Rayleigh (APEIR).

Table 3. Goodness of fit measures for data set 2.

Distribution MLE AIC CAIC BIC HQIC p-value

APEIR 13.7590 7.8802 0.0585 87.1186 88.0417 91.3222 88.4634 0.1031

EIR 0.7668 1.1201 92.2730 92.7175 95.0754 93.1695 0.0638

TIR 0.6306 0.6674 88.2024 88.6469 91.0048 89.0989 0.2779

MIR 0.36016 0.5895 91.2599 91.7044 94.0624 92.15651 0.2698

https://doi.org/10.1371/journal.pone.0245253.t003

Fig 5. Comparison between fitted distributions for data set 2.

https://doi.org/10.1371/journal.pone.0245253.g005
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Conclusion

The paper presents a new probability distribution called Alpha Power Exponentiated Inverse

Rayleigh (APEIR) distribution. The objective of the proposed distribution is to model the data

with both monotonic and non-monotonic hazard rate shapes. The proposed distribution is of

keen interest due its desirable properties. To estimate the parameters of the new distribution,

Maximum likelihood estimation procedure is used. Furthermore, to evaluate the performance

of the proposed distribution, it was fitted to two real data sets. The results showed that the new

distribution provides a better fit to these data sets as compared to other versions of the Ray-

leigh distributions. Future researchers may derive new flexible distributions by using transmu-

tation technique, or by increasing the scale or shape parameter to the proposed distributions

in this paper. Further one can study the Bayesian analysis by choosing informative and non-

informative priors.

Supporting information

S1 Data. Patients receiving an analgesic [22].

(TIF)

Fig 6. Probability density function, Q-Q plot, distribution function and P-P plot for data set 2.

https://doi.org/10.1371/journal.pone.0245253.g006
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S2 Data. Rainfall [19].

(TIF)
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