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Abstract

Humans’ decision making process often relies on utilizing visual information from different

views or perspectives. However, in machine-learning-based image classification we typi-

cally infer an object’s class from just a single image showing an object. Especially for chal-

lenging classification problems, the visual information conveyed by a single image may be

insufficient for an accurate decision. We propose a classification scheme that relies on fus-

ing visual information captured through images depicting the same object from multiple per-

spectives. Convolutional neural networks are used to extract and encode visual features

from the multiple views and we propose strategies for fusing these information. More specifi-

cally, we investigate the following three strategies: (1) fusing convolutional feature maps at

differing network depths; (2) fusion of bottleneck latent representations prior to classifica-

tion; and (3) score fusion. We systematically evaluate these strategies on three datasets

from different domains. Our findings emphasize the benefit of integrating information fusion

into the network rather than performing it by post-processing of classification scores. Fur-

thermore, we demonstrate through a case study that already trained networks can be easily

extended by the best fusion strategy, outperforming other approaches by large margin.

Introduction

Convolutional neural networks (CNNs) represent the state of the art in computer vision and

perform on par or even better than humans in manifold tasks [1, 2]. CNNs have especially

been demonstrated to yield great potential for fine-grained classification problems [3–6].

However, there are fine-grained classification problems where a single image does not yield

sufficiently discriminative information for accurate classification and a continuous demand

for better classifier performance exists. In this paper, we study multi-view classification in the

area of machine learning as one way to improve classification performance. Thereby, view is

meant literal, i.e., each view is a distinct image displaying the same object instance or part of it

from a certain perspective. Images of the same object from different views form an image col-

lection (cp. Fig 1).

Classification based on multi-view collections is especially relevant for objects characterized

by high inter-class similarity and intra-class variability, hence, for fine-grained classification

problems where different views of the same object are expected to provide complementary

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245230 January 12, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Seeland M, Mäder P (2021) Multi-view
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access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: - CompCars dataset

is available from http://mmlab.ie.cuhk.edu.hk/

datasets/comp_cars/index.html - PlantCLEF

dataset is available from https://www.imageclef.

org/lifeclef/2016/plant - AntWeb data is available

from the online database www.antweb.org.

Funding: We are funded by the German Federal

Ministry for the Environment, Nature Conservation,

Building and Nuclear Safety (BMUB) grants:

3514685C19, 3519685; the German Ministry of

Education and Research (BMBF) grants:

01LC1319, 01IS20062; the Thuringian Ministry for

Environment, Energy and Nature Conservation

https://orcid.org/0000-0001-7204-3972
https://doi.org/10.1371/journal.pone.0245230
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245230&domain=pdf&date_stamp=2021-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245230&domain=pdf&date_stamp=2021-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245230&domain=pdf&date_stamp=2021-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245230&domain=pdf&date_stamp=2021-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245230&domain=pdf&date_stamp=2021-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245230&domain=pdf&date_stamp=2021-01-12
https://doi.org/10.1371/journal.pone.0245230
https://doi.org/10.1371/journal.pone.0245230
http://creativecommons.org/licenses/by/4.0/
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
https://www.imageclef.org/lifeclef/2016/plant
https://www.imageclef.org/lifeclef/2016/plant
https://www.antweb.org


information. Multi-view classification is inspired by humans’ behavior, e.g., a botanist observ-

ing various traits of an unknown plant to be identified. Plant species identification also repre-

sents a typical use-case for multi-view classification (cp. Fig 1), where certain species can

hardly be distinguished by their flowers alone, but require additional information, e.g., regard-

ing their leaves [3].

In general, multi-view CNNs seek to combine useful information from different views so

that more comprehensive representations may be learned yielding a more effective classifier

[7, 8]. However, it remains unclear which model topology and fusion operation are most effec-

tive for information fusion. We propose and evaluate three strategies for fusing visual informa-

tion from different views of an object instance at different stages of the prediction process. For

the strategy that fuses information within a CNN’s feature extraction, we further investigate

classifier performance with respect to depth of fusion. To the best of our knowledge, this study

represents the first systematic investigation of this problem. Acquiring and labeling collection

data requires vast efforts [9]. Within the past years, several collection-based datasets were

acquired by researchers or citizen-science and community-driven initiatives enabling us to

investigate multi-view classification on large real-world datasets from three different domains:

(1) plants [10], (2) car brands and models [11], and (3) insects (the Formicidae ants genera)

[5]. With emerging consumer-level technologies, e.g., 3D scanning and visual odometry from

Fig 1. A collection of images is composed of multiple views depicting the same object instance from different perspectives.

https://doi.org/10.1371/journal.pone.0245230.g001
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image series [12–15], we expect an increasing number of collection-based datasets and rising

interest in multi-view classification.

The contributions of our study are as follows:

• Overview: we provide a concise overview on relevant previous studies proposing multi-view

classification.

• Fusion strategies: we derive three potential fusion strategies for CNN-based multi-view

classification.

• Systematic evaluation: we conduct a systematic evaluation on three datasets from different

domains.

• Usage scenario: we demonstrate the ease of applying the best performing fusion strategy on

an exemplary use case resulting in considerably increased classification accuracy.

Related work

Supervised training of deep neural networks requires a vast amount of labeled data. Available

image datasets typically depict objects solely by single images rather than a collection of views.

This limited availability of collection data and the need for representative datasets for training

efficient deep models results in little research been conducted towards multi-view object classi-

fication with deep learning. Table 1 provides an overview of previous work that we deem rele-

vant with respect to multi-view object classification. Per study, we list the application domain,

the utilized features, and the applied fusion methods and discuss selected methods in detail

below.

Closest to multi-view object classification is 3D object recognition. There, Su et al. intro-

duce a multi-view CNN (MVCNN) architecture that aggregates information from multiple 2D

views of computer-designed 3D objects into single and compact representations [11]. For each

view, i.e., each image rendered from a 3D model of an object, they use the output of the penul-

timate fully-connected layer of a pre-trained VGG-M model as feature map. The authors fuse

twelve views by an element-wise maximum operation across all feature maps and found

slightly increased accuracy when using 80 views. Feng et al. extend the MVCNN by introduc-

ing a view-grouping module [16]. Rather than equally fusing information from different views

by a maximum operation, they group views based on discrimination scores determined by

Table 1. Overview of previous work utilizing multi-view classification.

Study Application domain Fused features� Fusion method Performance

metric score

Su et al. [11] 3D shape classification (ModelNet40) fully-connected (8 × 4096) maximum acc. 90.1%

Feng et al. [16] 3D shape classification (ModelNet40) conv feature maps (8 × 2048) weighted sum acc. 93.1%

Lin et al. [17] 3D fingerprint matching fully-connected (3 × 128) concatenation acc. 99.89%

Wang et al. [18] RGB-D Object classification (RGB-D Objects) fully-connected (2 × 128) learned transformation acc. 88.5%

Do et al. [19] Image classification (PlantCLEF2015 selection) class scores (2 × 50) product acc. 89.8%

Lee et al. [20] Image classification (PlantCLEF2015 selection) fully-connected (N × 4096) gated recurrent unit acc. 74.5%

Setio et al. [21] Pulmonary nodule detection (LIDC-IDRI selection) fully-connected (9 × 16) concatenation AUC 99.3%

Dolata et al. [22] Grain classification class scores (2 × 7) sum acc. 97.7%

Barbosa et al. [23] Crop yield regression fully-connected (16 × 1) concatenation MSE 0.7

Geras et al. [24] Breast cancer screening fully-connected (4 × 256) concatenation AUC 73.3%

� Numbers in brackets are (no. of views × no. of dimensions)

https://doi.org/10.1371/journal.pone.0245230.t001
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auxiliary fully-connected layers. The fused feature map is then computed as weighted average

of the grouped views showing slightly improved classification accuracy compared to MVCNN.

Also, Geras et al. proposed a fusion architecture inspired by the MVCNN. They concatenated

view-specific feature vectors to a combined feature vector that is fed into a fully connected

layer for breast cancer screening [24]. Feature vector concatenation was also used by Lin et al.

[17], who evolve these 3D shape classification approaches for 3D fingerprint recognition.

Wang et al. [18] fuse color and depth information for RGB-D object recognition. They pre-

train two CNNs on color and depth images separately and then fuse the resulting feature vec-

tors, i.e., the outputs of the penultimate fully-connected layers, by transformation to a joined

representation containing modal-specific parts and a shared common part via regression. The

method introduces additional parameters requiring manual optimization, e.g., the percentage

of shared features.

Feichtenhofer et al. investigate various ways of fusing CNN feature maps both spatially and

temporally [25]. They performed fusion by stacking the output of two network branches and

subsequent 1 × 1 convolution for modeling the correspondence between the branches. They

found that fusing feature maps of convolutional layers is more informative than fusion at the

softmax layer.

Do et al. [19] perform plant species identification using multi-organ collections. The

authors fine-tune an AlexNet and fuse the softmax scores of image pairs by sum-, product-,

or max-rule. They found the product-rule to yield the highest classification accuracy.

Furthermore, a product-rule fusion with scores of Support Vector Machines trained on the

concatenated score vectors slightly increased accuracy. Lee et al. [20] propose a combination

of convolutional and recurrent neural network for multi-organ based plant identification.

They treat different views as image sequences ordered in terms of depicted plant organs. They

model dependencies between different views by concatenating the bi-directional output of a

Gated Recurrent Unit.

Setio et al. [21] evaluate three multi-view CNN-based fusion approaches for Pulmonary

nodule detection in Computer Tomography images. Nine candidate patches from specific

views are analyzed by corresponding network branches. The investigated fusion approaches

are: (a) product-rule score fusion of separately trained CNNs, (b) concatenating the output of

the penultimate fully-connected layers, followed by classification, and (c) fusion of manually

grouped patches followed by product-rule based fusion of group scores. The authors found the

concatenation approach to yield the best detection performance. Dolata et al. [22] also evaluate

different fusion approaches for visual inspection of grains from two perspectives. They found

sum-based score fusion to yield the highest classification accuracy.

Also Barbosa et al. investigated different strategies for fusing agronomy related maps for

crop yield prediction [23]. They compared feeding stacked inputs through a multi-channel 2D

or 3D CNN, concatenation of flattened convolution feature maps, and concatenation of the

output of one single neuron for every branch. On a dataset gathered from nine corn fields,

they found the feature concatenation strategy to achieve 26% less error compared to the

stacked multi-channel 2D CNN.

In conclusion, previous studies demonstrate the feasibility and potential of multi-view clas-

sification for individual problems. However, we argue that a systematic study is required to

substantiate findings in the following directions:

• Fusing methods: mostly element-wise sum or maximum operations have been studied for

fusing CNN feature maps from multiple views for the purpose of classification. Correspon-

dence between multiple views is thereby lost, while fusion by concatenation or convolution

were found to efficiently model correspondences between different views for other learning
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tasks. Comparative evaluations of different strategies for image classification are either miss-

ing or yield contradicting results.

• Domains: multi-view classification is mainly performed on domain-specific data, e.g., ren-

dered images of 3D models and computer tomography scans. Results may not generalize

well to other domains.

• Scale: utilized datasets for multi-view classification studies are small compared to current

single view classification studies.

Combining all vacancies from above, we argue that a systematic evaluation of different

fusion strategies on datasets from different domains is required.

Fusion strategies for multi-view image classification

The task of image classification is inferring to which of k categories an input image x 2 X
belongs to. Thereby, a classifier is an approximated function f: x! {1, . . ., k} that maps the

input x to its corresponding class label y 2 {1, . . ., k}. The default choice for image classifier are

CNN [1, 2]. In this work, we exemplarily use widely applied ResNet-50 CNN [26] backbone

network and extend it to multi-view classification by the strategies explained below. We chose

the ResNet architecture due to its repetitive building blocks allowing to easily investigate the

effect of varying depth of the view-fusion layer within the network. However, we argue that

our results are transferable to other architectures as the alterations introduced by view-fusion

do not depend on the underlying CNN architecture. We exemplify this statement by extending

a NASNet-A network by multi-view fusion within Section Application Scenario: Plant Species
Identification.

Next, we describe the different strategies for extending such single-view CNN architectures

into multi-view architectures. We use the fact that images x are organized in terms of collec-

tions XV, where each collection contains a number nV of distinct views. Hence, we reformulate

the classification task as

f : XV ! f1; . . . ; kg j XV ¼ fxð1Þ; xð2Þ; . . . ; xðnV Þg; ð1Þ

where x(v) represents one image from a specific view v 2 {1, . . ., nV}. Each image x(v) is pro-

cessed by a separate branch of the same CNN. Following the literature discussed in Section

Related Work, we systematically order the fusion strategies into early, late, and score fusion.

In early fusion, convolutional feature maps from the different CNN branches are stacked

and subsequently processed together. In contrast, late fusion relies on aggregating the output

of the last layer before the classification layer, or, in case of multiple fully connected layers at

the top, the classification block, as latent representation. At last, score fusion is based on ele-

ment-wise aggregation of the softmax classification scores per branch. Fig 2 provides an over-

view of the investigated view-fusion strategies and the related aggregation operations.

For early and late fusion, the original CNN is split into two parts, NN1 and NN2, and

extended by a view fusion layer between both parts. Each view v is forward propagated through

a separate branch, which is a duplicate of NN1. The layer weights of all branches are shared in

order to limit the number of network parameters. After forward propagating an input image

x(v), the output of each branch is an intermediate representation z(v) = NN1(x(v)). The task of

the view fusion layer vfl is to form an aggregated representation Ẑ ¼ vflðzð1Þ; . . . ; zðnV ÞÞ which

is further processed by NN2.
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Early fusion

The forward propagation of an image x(v) through each branch of NN1 yields a convolutional

feature map

zðvÞ ¼ NN1ðxðvÞÞ 2 R
H�W�D

; ð2Þ

where H, W, and D are the height, width, and depth (number of channels) of h(v). A view

fusion layer aggregates all feature maps of all nV branches into a stacked feature map

ZV ¼ ½zð1Þ; zð2Þ; . . . ; zðnV Þ� 2 RH�W�DnV : ð3Þ

NN2 consists of the remaining layers of the original CNN. Since the original CNN was pre-

trained on single images, NN2 expects inputs of dimension H × W × D. Hence, the depth DnV

of the stacked feature maps ZV has to be reduced to the depth D of a single-view feature map.

We consider two different approaches for depth reduction: (1) early fusion (max): max-

Fig 2. Considered multi-view fusion strategies: (a) general architecture of a deep multi-view CNN; (b) investigated fusion strategies; and (c)

fusion strategies mapped onto the ResNet-50 architecture. Vertical lines mark the insertion of a view-fusion layer.

https://doi.org/10.1371/journal.pone.0245230.g002
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pooling of the stacked feature map across the nV views; and (2) early fusion (conv): 1 × 1 con-

volution across the depth of the stacked feature maps.

The max-pooling operation in early fusion (max) computes at each spatial position and

channel H × W × D in the stacked feature map ZV the maximum value

ẐV ¼ max
v

ZV ð4Þ

across the feature maps of all nV views. The result is a fused feature map of dimension H × W ×
D in which correspondence between the different views is lost.

In early fusion (conv), we replace the max-pooling operation by a 1 × 1 convolution opera-

tion as inspired by “Network-in-Network” [27] and the fusion layer by Feichtenhofer et al.

[25]:

ẐVði; jÞ ¼ ZVði; jÞ � K þ b: ð5Þ

The 1 × 1 convolution operation in Eq 5 uses a stride s = 1, convolution kernels K of shape

1 × 1 × DnV × D and bias terms b 2 RD
. The kernels contain trainable weights for computing

weighted linear combinations of all DnV input channels and are shared for all spatial positions

(i, j). The kernel weights are optimized by applying gradient descent for the objective of mini-

mizing the classification loss, hence in the same way as any other trainable weights of the

CNN. Early fusion (conv) preserves the correspondence between feature maps of the different

views. Even more, the 1 × 1 convolution kernels will be trained for approximating the best

weighted combination of feature maps across all views. However, this comes at cost of increas-

ing model size, especially if the view fusion layer is inserted deep into the network. For exam-

ple, with an input image shape of 224 × 224 × 3 the feature maps returned by block 3 of the

ResNet-50 have a dimensionality of 7 × 7 × 2, 048, i.e., D = 2, 048 channels. Concatenation of

feature maps from three views creates a tensor with 6,144 channels. Hence, the kernel size of

the view fusion layer amounts to 1 × 1 × 6, 144 × 2, 048, i.e., 12,460,032 weights and 2,048 bias

values. In contrast, performing fusion early in the network requires less trainable parameters,

e.g., after block 0, the kernel size of the view fusion layer will be 1 × 1 × 768 × 256, hence

196,864 trainable parameters. However, early convolution features will only encode images’

low-level concepts and likely result in limited classification accuracy.

We systematically vary the position of the view-fusion layer for the early fusion (max) and

the early fusion (conv) variants. In detail, we sequentially incorporate the view-fusion layer at

four different positions in between the main blocks of the ResNet architecture (cp. Fig 2c). The

output ẐV of the view fusion layer is then fed into NN2, which contains all remaining layers of

the split original CNN.

Late fusion

In contrast to convolutional feature maps in early fusion, late fusion is performed using the

feature vector

zðvÞ ¼ NN1ðxðvÞÞ 2 R
1�D
; ð6Þ

of the network’s penultimate layer as image representation z(v) (cp. Fig 2b). NN2 consists then

merely of the classifier part of the original CNN. In case of the ResNet, the classifier part is

composed of one one fully connected layer with softmax activation. We consider two late

fusion approaches: (1) late fusion (max): max-pooling of the stacked feature vectors across the

nV views, and (2) late fusion (fc): concatenation and fully connected fusion.
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For late fusion (max) we stack the view’s nV feature vectors, analogous to the multi-view

CNN proposed by Su et al. [11], as

ZV ¼ ½zð1Þ; . . . ; zðnV Þ� 2 R1�D�nV ð7Þ

and apply max-pooling across them as defined in Eq 4. Again, this operation sacrifices the cor-

respondence between the different views.

For late fusion (conv), we concatenate the feature vectors of the nV branches, analogous to

[17, 21, 23, 24], as

ZV ¼ ½zð1Þ; . . . ; zðnV Þ� 2 R1�DnV ; ð8Þ

where D is the length of each feature vector The resulting combined representation is then

used as input for a fully connected layer of 1,024 neurons with ReLU activation and 50% drop-

out probability. This layer learns linear combinations of the features of all views in order to

minimize classification loss. Finally, the fused representation ẐV is used as input for NN2 that

merely consists of the last fully connected layer with softmax activation. Analogous to early

fusion (conv), the late fusion (fc) strategy introduces trainable parameters in the view fusion

layer. For the ResNet-50 architecture, the penultimate layer is a global average pooling layer

that returns feature vectors having 2,048 dimensions. Concatenation of these feature vectors

for, e.g., three views creates a vector of 6,144 dimensions, which is fully connected to the 1,024

neurons of the view fusion layer. Hence, the view fusion layer for the late fusion (fc) of three

views contains 6,292,480 trainable parameters. In general, the view fusion layer for late fusion

(fc) requires half the amount of trainable parameters compared to an early fusion (conv) after

block 3.

Score fusion

Score fusion is performed by element-wise aggregation of the softmax classification scores y(v)

per image view x(v) 2 XV separately propagated through NN (cp. Fig 1b). We study the follow-

ing aggregation functions [19, 22]:

• sum-score fusion: summation of scores across views

yV;� ¼
X

v

yðvÞ; ð9Þ

• product-score fusion: multiplication of scores across views

yV;� ¼
Y

v

yðvÞ; and ð10Þ

• max-score fusion: maximum of scores across views

yV;max ¼ max
v

yðvÞ: ð11Þ

Experimental procedure

We evaluate these fusion strategies and their respective aggregation and fusion operations in

multi-view classification tasks of image collections. The entirety of all fusion strategies spawns

a series of 14 experiments per dataset, i.e., 8× early fusion, 2× late fusion, 3× score fusion, and

single-view classification as baseline. In order to systematically compare the performance of

the different strategies we applied the following experimental procedure per dataset:
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1. Training of a general-purpose single-view CNN on randomly shuffled batches of the entire

training data. The single-view CNN acts as baseline for each experiment.

2. Initialization of the multi-view network by duplication of the NN1 part per view and addi-

tion of the respective view fusion layer and remaining NN2. The NN1 and NN2 parts are re-

used from the single-view classifier.

3. Freezing of all NN1 branches to ensure branches extract same features independent of the

fusion strategy. This ensures that any effect on classification performance results solely

from the fusion strategy.

4. Training of the multi-view networks on the multi-view image collections by optimizing the

weights of the view fusion layer and NN2.

Except for the size of the minibatches, we used the same hyper-parameters for all classifiers.

Classification loss is computed as categorical cross-entropy loss and optimization is performed

using Adam optimizer with an initial learning rate of 1e-4. Training was stopped once the vali-

dation loss stopped decreasing for ten epochs. For singe-view classification, we used a mini-

batch size of bs0 = 32 and trained the CNN by randomly alternating between images of

different views. Compared to corresponding single-view datasets, the size of each multi-view

dataset is factorized by the number of views. That is, a multi-view classifier for two views pro-

cesses twice as many training images per minibatch than a single-view classifier. Hence, for

multi-view fusion, training was performed on minibatches with size bs0/nV ensuring a con-

stant number of images per batch. Each single-view CNN was fine-tuned after initialization

with weights obtained from pre-training on the ILSVRC dataset [2]. To mitigate class-imbal-

ance, the loss per sample was weighted with the inverse normalized class frequency of the cor-

responding class. All experiments were conducted using Keras v2.1.6 [28] with TensorFlow

v1.8 backend [29].

Datasets and evaluation

Datasets

We evaluate the proposed view-fusion strategies on three benchmark datasets from different

domains. These datasets represent fine-grained classification problems, i.e., they are character-

ized by large inter-class visual similarity and low intra-class similarity. An example collection

of each dataset is shown in Fig 3. The CompCars dataset [30] contains web-nature and

Fig 3. Example collections of the three multi-view datasets: (a) CompCars, (b) PlantCLEF, and (c) AntWeb. Photographs of the ant specimen

CASENT0281563 by Estella Ortega retrieved from www.AntWeb.org [32].

https://doi.org/10.1371/journal.pone.0245230.g003
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surveillance-nature images of cars. Web-nature images are annotated with car make, car

model, year, and viewpoint. Each viewpoint is one of front, front-side, rear, rear-side, or side.

Per car model and year, we sample one image per viewpoint for obtaining collections. We

retain 601 car models represented by�10 collections irrespective of the model year resulting

in 8,183 collections in total. Since we had to ignore the model year in favor of sufficient train-

ing data, car models may be tested using imagery of model years not part of the training data.

The PlantCLEF 2016 dataset [10] consists of observations of plant specimen and provides

annotations in terms of organ, species, genus, and family. We select the subset of 1,839 collec-

tions that contain one image of the flower and one of the leaf. In order to have sufficient train-

ing data, i.e.,�20 collections per class, we aggregate species observations and use the plant

genus as class label. AntWeb [31] is an online database on ant biology providing structured

image collections for ant species. Per specimen, we follow the procedure described by Marques

et al. [5] and sample one image per dorsal, head, and profile view as one collection and retain

82 ant genera represented by�100 collections.

Dataset demographics

Table 2 compares the three datasets in terms of descriptive statistics. In order to assess and

compare the difficulty of the classification task associated with each dataset, we compute intra-

and inter-class distances across each datasets’ images. In detail, we compute the nearest neigh-

bor Euclidean distance

di ¼ min
j6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzi � zjÞ

q

ð12Þ

between the image representation zi of the i-th sample and the representations zj of all other

samples j belonging to the same class. The class-averaged mean across all samples per class is

reported as intra-class distance in Table 2. Likewise, we compute the inter-class distance to all

samples of any other class than the one of the i-th sample. Furthermore, we compute the sil-

houette score, an established metric comparing intra-class tightness to inter-class separation

[33]. The silhouette of the i-th sample is defined as

si≔
bi � ai

maxðai; biÞ
; ð13Þ

Table 2. Dataset demographics. Top-1 accuracy refers to the best reported result in previous single-view studies using comparable evaluation protocols.

Dataset PlantCLEF CompCars AntWeb

Number of images 3,678 40,915 116,742

Number of classes 53 601 82

Number of views 2 5 3

Number of collections 1,839 8,183 38,914

Intra-class distance 23.24 19.11 21.99

Inter-class distance 24.54 21.26 23.02

Distance ratio 0.95 0.9 0.96

Silhouette score -0.003 -0.014 -0.013

Previous top-1 accuracy 85.9%1 [3] 76.7%2 [30] 83%3 [5]

1 Evaluated across 516 plant genera (117,713 images) using Inception-ResNet-v2 network.
2 Evaluated across 431 car models (30,955 images) using Overfeat network.
3 Evaluated across 57 ant genera (128,832 images) using an ensemble of seven AlexNet networks.

https://doi.org/10.1371/journal.pone.0245230.t002
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where ai is the average Euclidean distance between the representations zi of the i-th sample

and the representations zj of all other images belonging to the same class as the i-th sample and

bi is the average Euclidean distance between the i-th sample and all representations zj of the

closest different class. The silhouette score in Table 2 is then computed as class-averaged mean

across all samples. Fig 4 shows distance matrices ordered by decreasing silhouette score per

class providing a visual overview across the datasets.

Previous studies demonstrated that pre-trained CNNs are well-suited for extracting

generic but discriminant image representations for downstream tasks and transfer-learning

approaches [34]. Hence, we infer all representations z as output of the mean average pooling

layer of a standard single-view ResNet-50 trained on the ImageNet ILSVRC dataset.

Apart from differing in the number of images, classes, and views, all datasets share high

intra- to inter-class distance ratios, i.e., 0.95 for PlantCLEF, 0.9 for CompCars, and 0.96 for

AntWeb. Such high ratios indicate a high inter-class resemblance accompanied by high intra-

class visual variability. Also the low silhouette scores show that the attribution of images to

their respective classes based on generic image representations is not distinct, and that samples

of other classes are visually very close. We attribute the low silhouette scores to the different

types of views these datasets contain. For example, different car models imaged from the side

are visually closer to each other compared to images of the same car model imaged from the

side and the front. Hence, low silhouette scores indicate that different views within a collection

contribute complementary visual information making the three datasets perfectly suited for

our study.

Evaluation protocol and metrics

Per dataset, we use 80% of the collections per class for training the single-view and multi-view

classifiers. The remaining 20% are used for testing and evaluation. We evaluate all experiments

in terms of top-1 and top-5 accuracy, averaged across all collections of the respective test data-

set. We compute top-k accuracy as fraction of test collections where the ground-truth class

label appears in the list of the first k predicted class labels when predictions are sorted by

decreasing classification score.

Results and discussion

In this section, we compare the results of our multi-view classification strategies against single-

view baseline experiments as well as against results of previous studies proposing multi-view

Fig 4. Distance matrices for the three datasets. Matrix diagonal elements refer to intra-class distance, off-diagonal

elements to inter-class distances. Elements are sorted from well-separable classes to less-separable classes as computed

from the class-wise silhouette scores.

https://doi.org/10.1371/journal.pone.0245230.g004
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classification. Our results across all datasets for all single view and view-fusion experiments are

summarized in Table 3. The distribution of class-averaged classification accuracy for the differ-

ent experiments is visualized in Fig 5.

Table 2 shows previous results across the three utilized datasets allowing for a comparison

with our results. In contrast to previous results we yield a lower accuracy on the PlantCLEF

dataset, which we attribute to the small number of training images (2,982 for 53 classes) in our

experiments as we had to restrict data to images in collections, while previous results were

based on the 32× bigger entire training set at genus level [3]. On the CompCars dataset, our

single view predictions yield the same top-1 accuracy as reported before by Yang et al. [30].

Please note that we classify among 601 car models rather than the reduced 431 models [30].

On the AntWeb dataset, our single view predictions slightly outperform the accuracy reported

by Marques et al. [5]. They used an ensemble of seven AlexNet models for classifying 57 ant

genera [5]. In our experiments, classification was performed across 82 ant genera. Overall, we

find average accuracy of the single view predictions to be plausible and comparable to previ-

ously reported results demonstrating the validity of our study.

Accuracy yielded by the different fusion strategies differs substantially in contrast to the

best single-view baseline. In detail, we observe that the accuracy of early fusion depends on

dataset size, especially if fusion is performed by 1 × 1 convolutions (cp. Fig 2b). If fusion is

performed early in the network, i.e., after block 0 and block 1, we found accuracy to be

reduced for all datasets in comparison to single view classification. However, the relative dis-

tances to the best single view decreases with increasing dataset size. Early fusion of block 3

features by 1 × 1 convolution achieved the highest average classification accuracy on the

AntWeb dataset. However, the number of misclassified classes is larger compared to late

fusion (cp. with Fig 5). The late fusion strategies generally allow for higher classification

Table 3. Multi-view classification results across the three datasets.

Method Layer top-1 [%] & δBL [%]

PlantCLEF CompCars AntWeb

Worst single view 65.80 65.29 79.34

Best single view 81.32 82.33 87.65

Avg. across single views 73.56 76.61 84.58

Early (max) block 0 65.80 -19:1 53.91 -34:5 77.79 -11:2

block 1 70.98 -12:7 73.95 -10:2 85.65 -2:3

block 2 83.62 2.8 93.64 13.7 89.73 2.4

block 3 85.34 4.9 95.11 15.5 92.28 5.3

Early (conv) block 0 42.82 -47:3 54.68 -33:6 87.31 -0:4

block 1 57.76 -29:0 74.44 -9:6 90.51 3.3

block 2 79.60 -2:1 94.13 14.3 92.35 5.4

block 3 89.37 9.9 95:11 15:5 95:16 8:6
Late (max) fc 90:23 11:0 92.82 12.7 93:93 7:2
Late (fc) fc 94:25 15:9 96:72 17:5 94:54 7:9
Score (�) softmax 89:66 10:3 95:74 16:3 91.43 4.3

Score (�) softmax 86.78 6.7 94.69 15.0 89.70 2.3

Score (max) softmax 85.34 4.9 92.88 12.8 89.48 2.1

Best methods are highlighted in 1st—green, 2nd—light green, 3rd—gray green font color. Red values indicate results worse compared to baseline results. Single view

accuracy results refer to the worst performing single view, the best performing single view, as well as to the average across all available views. δBL is calculated as relative

difference to the best single view result.

https://doi.org/10.1371/journal.pone.0245230.t003
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accuracy compared to single view experiments. Product-score fusion also allows for notable

improvements (10.3% on average) compared to the best single view predictions. Do et al.

also found product-score fusion to yield the highest classification accuracy in score fusion

experiments [19]. Comparing the late fusion strategies with each other, we conclude that the

element-wise max-operation on the image representations tend to confuse the classifier once

the number of views increases. In detail, on the CompCars dataset with five views per collec-

tion, classification accuracy of the late fusion (max) strategy reduces by -3.9% compared to

the accuracy achieved by late fusion (fc). Overall, the improvement in average classification

accuracy by the late fusion (fc) strategy was either the largest or among the largest. The distri-

bution of average classification accuracy per class in Fig 5 shows, that the median of the accu-

racy was the largest for late fusion (fc) and that the number of outlier classes was smaller

compared to other strategies.

Fig 5. Distribution of class-averaged top-1 classification accuracy for the single-view baseline and the multi-view classification strategies. White

dots indicate median accuracy whereas black bars display interquartile ranges. Thin black lines indicate lower and upper adjacent values at 1.5× the

interquartile range.

https://doi.org/10.1371/journal.pone.0245230.g005
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Table 4 shows top-5 classification accuracy for single- and multi-view classifications fused

by late (fc) fusion. Across datasets, for more than 99% of the test collections, the correct class

was within the top five predicted classes when using multi-view classification.

Considering dataset characteristics, the CompCars dataset has the smallest silhouette score

(cp. Table 2), indicating large visual variations across different views. Likewise, the relative

improvement compared to the best single view predictions is the highest (17.5%) for the

CompCars dataset. Some collections of the CompCars dataset were misclassified irrespective

of the classification and fusion strategy (cp. with outliers in Fig 5). We attribute this to model

years that were only part of the test set. The relative improvement was the smallest (8.6%) on

the AntWeb dataset, which is characterized by the largest intra- vs. inter-class distance ratio

among the three datasets.

Application scenario: Plant species identification

The results in Section Results and Discussion show that the late fusion (fc) strategy displays the

best compromise in classification accuracy. As this strategy is entirely independent from the

underlying network architecture, it can easily be used for extending other network architec-

tures for computing fused image representations (cp. Sec. Fusion Strategies for Multi-view
Image Classification). In this section, we aim to demonstrate the applicability and accuracy

gain that this multi-view classification strategy provides when applied to an existing and fully

trained single-view CNN. We use an existing classification model trained for the Flora Incog-

nita project [35]. The single view classifier uses a NASNet-A architecture [36] trained with 1.3

million images of wild-flowering plants growing in Germany. The data was collected from web

resources as well as through a citizen-science initiative using the Flora Capture [37] and Flora

Incognita smartphone applications [35]. These apps prescribe a collection-based sampling

strategy, i.e., every plant specimen is captured by multiple images depicting distinct plant

organs or perspectives. In total, 8,557 test image collections confirmed by human expert were

available at the time of this study. These collections represent 775 distinct plant species by

side-view images of their flowers and top-view images of their leaves (cp. Table 5). The intra-

vs. inter-class distance ratio of this dataset increased to 1.02 compared to the other datasets,

indicating very close visual resemblance of different plant species and a fine-grained classifica-

tion problem.

Following the procedure described in Section Fusion Strategies for Multi-view Image Classi-
fication, we used the trained single-view NASNet-A and extracted image representations from

the global average pooling layer prior to the fully connected classification layer. For each

image, a center crop retaining 50% of an image’s area was resized to 299 × 299 px and for-

warded through the network. Per image, only one representation was computed from the cen-

ter crop. Next, we constructed view-fusion networks consisting of a view fusion layer of the

respective strategy and a classification layer. We evaluate both late fusion strategies, i.e., by

max-pooling across views as well as concatenation and dense connection. In addition, we eval-

uate score fusion defined in Eqs 9–11 using the softmax class scores obtained by the single-

Table 4. Top-5 accuracy for single-view and multi-view classifications.

Method top-5 [%]

PlantCLEF CompCars AntWeb

Avg. across single views 93.39 91.56 97.31

Best single view 96.26 94.48 98.31

Late (fc) 99.71 99.02 99.29

https://doi.org/10.1371/journal.pone.0245230.t004
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view baseline model. The results of the single-view baseline and the multi-view networks are

summarized in Table 6 in terms of top-1 accuracy and relative improvement against the best

single-view accuracy. Single-view accuracy amounts to 89.74% for the best view. Applying the

late fusion (fc) strategy, classification accuracy increased to 96.07%.

Conclusion

We report a systematic evaluation of fusion strategies for multi-view image classification using

convolutional neural networks. Our results on three datasets from different domains show

that classification accuracy increases if fusion of latent representations is performed late in

the network. At cost of increased model size, trainable view fusion was generally found more

accurate compared to fusion by max-pooling of latent representations or score fusion using

different arithmetics. Among trainable view fusion strategies, late fusion by feature vector con-

catenation in combination with one fully connected layer yields the largest increase in classifi-

cation accuracy and requires merely half the parameters compared to deep feature map fusion

by 1 × 1 convolution. Furthermore, we demonstrate applicability and accuracy gain of late

view fusion by successfully transforming an already trained single-view NASNet-A model into

a multi-view classifier thereby gaining a substantial accuracy improvement.
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