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Abstract

In this study, optical technology is considered as SA issues’ solution with the potential ability

to increase the speed, overcome memory-limitation, reduce power consumption, and

increase output accuracy. So we examine the effect of bio-data encoding and the creation of

input images on the pattern-recognition error-rate at the output of optical Vander-lugt corre-

lator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to

minimize output noises of cross-correlating data. As a case study, we adopt the proposed

coding approach within a correlation-based optical architecture for counting k-mers in a

DNA string. As verified by the simulations on Salmonella whole-genome, we can improve

sensitivity and speed more than 86% and 81%, respectively, compared to BLAST by using

coding set generated by GAC method fed to the proposed optical correlator system. More-

over, we present a comprehensive report on the impact of 1D and 2D cross-correlation

approaches, as-well-as various coding parameters on the output noise, which motivate the

system designers to customize the coding sets within the optical setup.

1. Introduction

Sequence alignment is one of the basic bioinformatics tools for studying and analyzing biologi-

cal data. Sequence aligners compare two or more genetic sequences (DNA, RNA, or protein),

to discover their similarities and differences. The alignment of genetic sequences is adopted in

various applications, such as DNA sequencing, DNA fingerprinting, pathogen detection, gene

detection, tracing disease and cancer, tracing ancestry and evolutionary, and drug designation

[1–3]. The aforementioned variety of applications alongside the ever-increasing requirement

in sequencing high volume of large biological data has led to the importance of designing a

fast, accurate, and scalable sequence alignment tool.

So far, various alignment tools have been developed utilizing various methods differing in

terms of input sequence size, level of achieved similarity, gap and mutation treatment, type of

alignment (either global or local), speed, and accuracy [4]. So far, almost all proposed align-

ment algorithms can be categorized into four groups [5, 1]; (1) Dynamic Programing (DP)-

based algorithms (e.g. Smith–Waterman method [6]), (2) hash table-based algorithm for k-

mers (e.g. PSI-BLAST [7]), (3) suffix trees-based algorithm (e.g. MUMmer [8]), and (4) cross-

correlation-based algorithms (e.g. MAFFT [9], modified MAFFT [10], and Satsuma [11]).
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All the above-mentioned methods meet a trade-off between efficiency (speed, memory

usage, processing equipment and etc.) and accuracy to achieve an applicable and accurate

method for large genome data. Implementing various algorithms using computer processors,

especially in the case of massive database applications, enforces usage of a large number of

robust processing cores, high CPU runtime, and expensive hardware equipment consuming

vast amount of electrical energy. As the side effects of high energy consumption of electrical

systems, we require strong cooling fans that, in addition to financial cost, are associated with

environmental degradation.

Fortunately, solving all aforementioned issues can be achieved by introducing an emerging

processing technology, i.e. optical technology, which offers two intrinsic features: 1) ultra-high

speed, and 2) inherent parallel processing capabilities [12]. Moreover, due to the parallel pro-

cessing and simplified implementation of many complex mathematical operations (e.g. calcu-

lating Fourier transforms of an image only by passing light through a convex lens), it can

reduce the memory requirements of many algorithms. Reduced runtime, along with the ultra-

low power consumption of optical processing leads to much less energy consumption in opti-

cal systems compared to their alternative electrical counterparts [13].

Specifically, recent studies have proposed optical correlators for performing biological

sequence alignment [4, 14, 15]. It is worth noting that implementation of an optical correlator

is not only helpful in the field of molecular biology, but also can ease data comparison within

various signal processing areas, such as speech recognition, computer science [16], and image

recognition (e.g. face detection [17], fingerprints detection [18], diagnosis of diseases and

tumors [19], and industrial and technical applications).

To design sequence alignment architecture, two choices should be made: 1) data encoding

and 2) algorithm. Although a few studies [20, 21] compare various data encoding schemes in

terms of accuracy of sequence alignment, they simply adopt numerical calculation through

electrical computers. Moreover, evaluating sequence similarities based on hamming distance,

the aforementioned studies miss recently proposed alignment methods, taking advantages of

cross-correlation [4]. Therefore, in this paper, we investigate the impact of data encoding on

the accuracy of cross-correlation-based methods. Moreover, considering various encoding

parameters affecting accuracy of cross-correlation, we present a novel optical code generating

method. The proposed code generator, referred GAC (Genetic Algorithm based Code genera-

tor), takes advantages of genetic algorithm to generate suitable optical pattern customized for

various bio-sequence analyses. As the key advantages of GAC, it is capable of producing optical

patterns with different sizes in 1D or 2D formats for several numbers of letters to meet the

trade-off between SNR of the cross-correlation output and the input coding efficiency Specifi-

cally, it can generate optimized codes for various bio data, such as DNA sequences (with a set

of 4 letters) or protein sequence (with a set of 20 letters). In summary, key contributions of

GAC method are listed as follows.

1. Generating optimal 1D and 2D encoding sets, with flexible size and parameters, targeted at

the cross-correlation based pattern detectors.

2. Creating a meaningful peak value at the output of cross-correlation based pattern detectors

useful for measuring the corresponding mutation rate at the input.

3. Providing 95% accuracy improvement of substring detection within the inout sequences

compared to alternative methods, like BLAST, especially in the case of high mutation rates

(e.g. 60%).

4. Ultra-high speed optical sequence comparison, alongside improved output accuracy, com-

paring to alternative methods, like BLAST.
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The rest of the paper is organized as follows; at first, Section 2 reviews related works and

analyzes their key advantages and drawbacks. In Section 3, basic concepts, problem statement,

and our proposed solution, i.e. GAC algorithm, are discussed. Finally, in Section 4, we evaluate

functionality and accuracy of GAC algorithm in terms of its runtime and resultant error rate

at the output image. It is worth noting that performance appraisal is performed in two ways:

simulating synthetic data, as well as, realistic benchmark data.

2. Related work

Generally, in order to encode bio data, various numerical representation approaches can be

adopted, which are categorized as follows: 1) single-value sequence mapping (e.g. integer, 2-bit

binary, and 4-bit binary), which uses a one-dimensional value to display each nucleotide, 2)

multidimensional sequence mapping (e.g. VOSS, and Z-Curve), which maps each nucleotide

to a two-(or more) dimensional vector, and 3) cumulative sequence mapping, who combines

two aforementioned mapping strategies for each nucleotide, and provide a cumulative struc-

ture by aggregating each nucleotide value in the string using a random walk model (e.g. DNA

walk, and Z-Curve) [20].

Bio data encoded by either of above schemes can be sequentially processed through mathe-

matical operations (such as Fourier transform and wavelet transformation [21]) or goes

through parallel image processing [22] by optical processors [12]. Considering the latter

approach, various graphical encoding methods have been developed, each targeting one of

three above categories as a means of optical image processing.

As a single-value sequence mapping, in [23], the cross-correlation technique is adopted to

find the degree of similarity between two images, while it provides a simple tool for facilitating

motifs exhaustive search within DNA sequences. Although this method misses a sequence

alignment algorithm to exactly locate indels and mutations, the simple structure facilitates its

implementation. Specifically, it converts each nucleotide to a two-dimensional image made by

its alphabet symbol, and hence, output accuracy considerably depends on the resolution of

optical devices. Distinguishing nucleotides’ coding appearance, especially "C" and "G", by this

method is so hard and has been attempted to partially solve this by substituting "X" symbol to

"C" in [24]. Unfortunately, both methods proposed in [23, 24] requires large input screen for

big data encoding. However, Spatial Light Modulator (SLM), as the optical pattern generator,

has limited space. Hence, to feed long sequences represented by “A”, “X”, “G”, and “T” letters,

they must be splitted and placed on SLM through consequence cycles.

To increase coding efficiency and reduce size of the input pattern, in [14, 4], single value

nucleotide coding has been proposed. In these papers, a 4-bit binary coding and integer coding

of bio data are proposed, respectively, to minimize size of the input pattern on SLM. However,

the latter coding efficiency comes at the cost of reduced output accuracy in terms of peak loca-

tion and their heights. So, there is a trade of between output accuracy and input size on SLM.

As a cumulative sequence mapping, in [12], two-dimensional vectors, each produced by a

multi-dimensional encoding scheme, resemble each nucleotide. It is worth noting that this

encoding method can exactly locate the indels with the aid of a multi-stage algorithm. As the

main drawback of this method, large input patterns are produced to be fed to the input SLM.

Although this coding approach suffers from various problems, such as loss of information,

degeneracy, the difficulty of observing the coded curves, and difficulty of visualizing long

DNA sequences, it can exactly locate the indels, while the multi-stage algorithm limit its

applicability.

All aforementioned studies address wavelength domain modulation of bio-data. However,

unlike electrical domain, which only enables binary encoding of bio data, optics can encode
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the data in four different domains, i.e. phase, amplitude, polarization, and wavelength per a spa-

tial mode [25]. As discussed in [4, 1], choosing among four aforementioned coding domains

can affect SNR of the correlation output, and hence, output accuracy. For example the study

presented in [15] utilizes the wavelength spectrum, while the one in [26] uses amplitude, phase,

and polarization of the signal all together to encode nucleotides. The later complexity of nucleo-

tide encoding arises from the complex optical setup and customized processing scenarios for

similar tandem nucleotides. However, effectiveness of the optical pattern generated for bio data

through the cross-correlation approach is not addressed so far. So, in this work, we examine the

impact of several coding methods on the output of amplitude-based cross-correlation, as one of

the most commonly used similarity measurement approaches used so far.

3. Methodology

3.1 Optical implementation of cross-correlation operation

In signal processing, cross-correlation is a measure of similarity among two series of functions

with relative displacement. This method is capable of applying on 1D, 2D, and 3D signals for

any kind of pattern recognition application. According to Fig 1, the correlation function, either

Fig 1. a) 1D cross-correlation, b) 2D cross-correlation.

https://doi.org/10.1371/journal.pone.0245095.g001
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1D or 2D, takes its maximum value when an exact replica of the query exists in the reference

sequence (cross-correlation mathematics is discussed in S1 File in more details). The Cross-

correlation operation in frequency domain can be implemented optically with the help of Fou-

rier transformation property of lenses and filters. Taking advantage from parallel processing

nature of optics, the Fourier transform of the whole 2D pattern would be acquired in real-time

through a lens. Optical setups for both 1D and 2D correlators based on the well-known Vander

lugt set-up [27] are similar and mainly lenses type may differ (1D correlator needs cylindrical

lenses [28]). The general schema of these systems is shown in Fig 2. According to these figures,

two SLMs, SLMref and SLMq, are required for putting on encoded reference and query

sequences on them. As shown in Fig 2, FT of encoded reference sequence is put on SLMref and

encoded query sequence is put on the SLMq. Given the fact that the reference sequence is kept

constant in process time, without making a bottleneck during processing, FFT of reference can

be computed by means of computer only once and put on the SLM. This will reduce the com-

plexity of the optical setup.

After putting on encoded data on SLMs and installing components according to the

designed setups, computations start by means of the light coming from the laser beam. Light

in its path initially illuminates SLMq and then passes through the lens L1. The FT of q (data on

the SLMq), which is calculated by the lens L1, will be generated at its focal distance on the

SLMref. On the other hand, SLMref contains R, so the Dot Product of Q and R would be pro-

duced just after SLMref. Finally to calculate the correlation of these two sequences, inverse FT

of R.Q pattern on SLMref is computed by light passage through lens L2 and result is detected

by the CCDdetector in its focal plane. All presented steps are shown in Fig 2 for the 2D optical

correlator. In this example, encoding method of [24] is applied on input data.

3.2 Proposed coding scheme for optical cross-correlation

3.2.1 Problem statement. As noted earlier, factors such as real-time operation and low

power consumption have led us to use optical cross-correlations to solve the alignment prob-

lem. Despite determined structure of optical correlator, its various sections can still be opti-

mized. In the following, we consider the input encoding and its effect on device performance

Fig 2. Optical setup of 2D cross-correlator for reference sequence “ATTGCCCA” and query sequence “TGCC”.

https://doi.org/10.1371/journal.pone.0245095.g002

PLOS ONE Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture

PLOS ONE | https://doi.org/10.1371/journal.pone.0245095 January 15, 2021 5 / 27

https://doi.org/10.1371/journal.pone.0245095.g002
https://doi.org/10.1371/journal.pone.0245095


for both types of 1D and 2D correlators. In cross-correlation devices, we deal with three types

of possible noises including:

1. Overlap noise: It is the accumulated junk peaks that are produced by partial overlap of

nucleotides’ coding.

2. System noise: Peaks in output may vary from their expected length by a positive error value,

potentially leading to large accumulated errors in output.

3. Neighbor noise: It shows up when it is not possible to distinguish each peak in its exact

location on SLM due to neighbors with nearly equal length.

In Fig 3 some example of these three noise types are shown. According to this figure, some

facts regarding the encoding effect on the quality of results become clear. For example, 2D

codes, same as Fig 3B, by providing distance between successive informative peaks can control

neighbor noise, but they also cause partial overlaps, leading to overlap noise. So, encoding

method may have some effect on the performance of the cross-correlator.

In general, according to Fig 3 examples, the more differentiation among codes make the

output noise lesser. The exact and mathematical expression of this problem can be found in

Problem 1. It should be noted, however, that this problem is more evident in 2D encoding

since in both dimensions the codes are overlapping. In 1D cross-correlation, finding an answer

to design codes’ pattern is similar. In this way, problem 1 is given for 2D encoding methods,

for the more general structure of the problem. It should be noted that if the SLM width is less

than the length of the encoded sequence, the sequence is divided into subsequences and these

parts are placed under each other. Therefore, in the 2D mode, in addition to the horizontal

overlaps that are created naturally by staying on alphabets side by side in the sequence, vertical

overlaps also arise from putting on subsequences underneath each other.

Problem 1. Assume that Cd,K is a set of K codes with size d × d. According to Eq (1), this set

is optimized for Overlap noise, if in addition to the maximum two-by-two differentiation, for

all pairs, the highest overlap of all possible placement of alphabets in i × j rectangle, with each

i– 1 × j– 1 rectangle is minimized; i; j 2 N � f1g. Fig 4 illustrates some states of an example of

Fig 3. Three types of output noises; a) Overlap noise: code overlapping as the result of DV-Curve encoding method results in output peaks which mislead to sequence

matching, b) System noise: output peak value decreases when realistic condition is simulating, c) Neighbor noise: adjacent peaks (as the result of either valid peaks or

high-altitude noises) avoids proper indel locating.

https://doi.org/10.1371/journal.pone.0245095.g003
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this issue for C3, 4, i = 3 and j = 2.

8i; j�N � f1g; 1 � m; n � jCd;K j; cm�Cd;K :

Mi�j ¼ ½cm�i�j
Ni� 1�j� 1 ¼ ½cn�i� 1�j� 1

X2i� 1�2j� 1 ¼ Mi�j � Ni� 1�j� 1

optimal Cd;K $ minimizeðxs;rÞ;

1 � s � 2i � 1; 1 � r � 2j � 1;

s; r 6¼
hd
2

and are odd

ð1Þ

� is cross-correlation operand

Problem 1 can be reduced to a simpler structure with less number of states as in problem 2.

Problem 2. Similar to Eq (2), problem 1 is true if and only if problem 1 holds for i = 2 and

j = 2.

8i; j�f2g; 1 � m; n � jCd;K j; cm�Cd;K :

Mi�j ¼ ½cm�i�j
Ni� 1�j� 1 ¼ ½cn�i� 1�j� 1

X2i� 1�2j� 1 ¼ Mi�j � Ni� 1�j� 1

optimal Cd;K $ minimizeðxs;rÞ;

1 � s � 2i � 1; 1 � r � 2j � 1;

s; r 6¼
hd
2

and are odd

ð2Þ

� is cross-correlation operand

Proof. According to the definition of the cross-correlation in (S1a in S1 File) and the linear-

ity of integral, cross-correlation has the ability to decompose into smaller sections to calculate

a cross-correlation result matrix. On the other hand, as demonstrated as an Example in Fig 5,

grids with dimensions i> 2 and j> 2 can be divided into 2 × 2 grids. The sum of the multipli-

cation of the larger grids can be obtained by summing multiplication of sub-grids.

We define c-grid a 2 × 2 array of codes with a structure like [[c1, c2], [c3, c4]] where ci is in

{0, 1}(d × d) to represent an encoded nucleotide, and i is in {1, 2, 3, 4}, as shown in Fig 5A. So,

Fig 4. a) Example of coding patterns, b) 16 sample states of all possible 1024 states of problem 1 for C3, 4, assuming i = 2 and j = 2, where C3, 4 is a coding set containing

4 characters that each of them is a 3 × 3 matrix, i and are width and height, respectively, of a grid of codes that contains all combination of C3, 4. So, multiplying 44

possible states, required for creating this grid, by 4 states for each code leads to 45 or 1024 states. Exact matched pattern of single codes and multiple codes overlaps are

shown with a green stroke rectangle.

https://doi.org/10.1371/journal.pone.0245095.g004
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with the assumption that the maximum sum of multiplication (SOM) value of each ci with

2 × 2 grids [[ck, cl], [cm, cn]] are minimized, their summation is also the lowest possible value.

Because if this were not true and there existed an SOM lower than the obtained value, it meant

that at least one of the sub-grids’ SOM values could be still minimized and this is in contradic-

tion with the initial assumption.

In next sections, we will propose parameters for 2D codes which put a certain upper bound

on ratio of partially overlapping peaks to informative full peaks in order to control Overlap

noise. These parameters will also create a margin for System noise and neighbor noise to help

extracting every information from informative peaks.

3.2.2 GAC (Genetic Algorithm based Code generator) coding algorithm. We assume

that each ci code has N ones; so, by sliding a single nucleotide over a c-grid, maximum length

of resulted peak would be N that we call it "full peak" or "informative peak". Accurate full peak

detection requires significant difference between expected length of full peak, and non-full

peaks as a safety margin for System noise. We represent this difference by E. Acceptable set of

codes for nucleotides should produce no peak longer than N–E by sliding any nucleotide on

anyone of 256 c-grids obtained from that set (where each ci is one of the proposed d × d arrays

for A, C, T, or G). Such a peak is considered as an invalid peak. An example of an invalid peak

is shown in Fig 6 for Set of four codes with N = 4, d = 3 and acceptance threshold E = 1.

Fig 5. a) Example of coding set, b) problem 1 with i = 3, j = 2, and K = 3 for one step of cross-correlation; if in the left side, the sum of inner product of two

grids for the shown spatial relative place of them will be calculated, its result (= 5) was equal to the sum of inner product of right side elements (right side

elements are sub-grid of left side grids (= 5).

https://doi.org/10.1371/journal.pone.0245095.g005

Fig 6. (a) Set of four codes with N = 4, d = 3. (b) a c-grid (2 × 2 grid) with an overlap noise of length four, so if E = 1

will be chosen. This coding set is unacceptable (because size of peak in this example is 4 too and 4—E (= 1) is the

maximum acceptable noise); overlap noise location is marked with a green border.

https://doi.org/10.1371/journal.pone.0245095.g006
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Obviously, there would be a full peak when sliding nucleotide matches itself on c-grid, which

is not only valid, but also our main target.

Given problem 2 and defined parameters d, N and E, in order to evaluate different answers

and ultimately obtaining the appropriate answer, we need to aggregate the parameters in a

metric; this metric is indeed a cost-function which could be considered as the number of

invalid peaks for a specific set of four codes and a pre-determined value of E. The minimum

value of this cost-function would yield the best set of four-codes.

Summarizing above discussion, our problem can be considered as an optimization problem,

and thus could be solved using the well-known optimization algorithms. However, while there

exist various optimization algorithms, each of them is compatible with a specific type of problem

within a field application [29, 30], and they cannot be necessarily interchanged for solving another

problem. It should be noted that the choice is made after a comprehensive study of machine learn-

ing (ML) methods, to conclude that our problem cannot be interpreted as a solvable ML’s prob-

lem or other optimization algorithms. In this paper, we propose a code generation method based

on genetic algorithm, as a compatible optimization algorithm with our choice of problem, which

is finding a coding set with least value of the defined cost-function for the given inputs values of

N, E, and d. Choosing inputs for different applications and devices may vary according to their

requirements. This approach is functional even for large values of d, and Ns; or with numerous

types of biological alphabets like amino acids in protein sequence. Although it is time-consuming,

it needs to be executed only once before main application; thus, it is useful.

Canonical form of Genetic Algorithm needs an initial population of encoded individuals.

In every evolution cycle, two individuals are selected from the generation to be the parents,

based on a specific criterion. After applying crossover function on parents, a mutation occurs

on two new individuals with a particular probability, and they may join the next generation.

The cycle continues to repeat until termination condition has not been met [31]. In this work,

we alter some of these steps and elements to apply constraints, and prevent population from

deterioration [32].

1. Population, and individuals. Each individual (I) represents unique location of ones in corre-

spondent set of four codes; thus I is in {1,. . ., d2}{4N × 1}, and has four chunks: I[1:N], I[N+-

1:2N], I[2N+1:3N], and I[3N+1:4N]. Initial population is developed from a random initial

individual by repeated mutations. In order to obtain possibly better population, initial indi-

vidual can be specifically highly fitted.

2. Mutation. Mutation should preserve the aforementioned features for mutating individuals.

So, it has the following steps:

i. Choosing from a random chunk,

ii. Picking a random entry in the chunk,

iii. Changing the selected entry to a number in {1,. . ., d2} which is not already in the

chunk.

This approach ensures that each chunk will have N unique entries representing locations

inside a d × d code.

3. Fitness evaluation. Objective function is defined to be -1 × cost-function; thus, individuals

with less value of cost-function have higher fitness.

4. Selection, and crossover. Selection occurs by choosing two individuals with highest fitness

from current generation. Crossover only happens between chunks to maintain critical

characteristics described for individuals. Offspring individuals join the next generation
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only if both have higher fitness compared to worst member of current generation; other-

wise parents remain unaffected, and crossover does not change generation in current

cycle [31].

So, after initiating population, evolution begins, and continues until an individual with a fit-

ness of zero is produced. In this way, we define a new term called as “zero-score coding” as fol-

lows, to be used in cost function calculation through the proposed algorithm.

Definition 1: Zero-score coding: Coding set with the peak noise value of N—E.

The overall procedure is summarized in Algorithm 1.

4. Simulation results and analysis

This section evaluates GAC method from three different points of view; a) its runtime, b) effec-

tiveness of coding sets genereted by GAC method on cross-correlation output noise, and

finally, c) accuracy of DNA string matching by adopting GAC method for realistic bio data

encoding. Of course, in order to evaluate our work, we also conducted more experiments,

such as checking the accuracy in counting patterns and optic effect on output by doing optical

simulation with zemax, which is discussed in Section 4.3.5.

4.1 Runtime analysis

As a usual trend for reporting runtime of the genetic algorithms, we calculate and report its

average runtime for various input data sets. Runtime variation for both code sizes, i.e. 1D and

2D, is depicted in Figs 7 and 8, respectively. According to these figures, larger code size leads

to slower population generation, but speedup the evolution. Accordingly, generation phase

considerably impacts time complexity, especially as code size increases. Figs 7 and 8 show that

the runtime of genetic algorithm increases linearly and quadratically with the code size in the

case of 1D and 2D output patterns, respectively.

4.2 GAC algorithm parameters analysis

In this section, we addresses how different choices of code features; i.e. d, N, and E, affect out-

put noise of the cross-correlation. Details of these evaluations are reported in a Section entitled

as "GAC algorithm parameters analysis” of the S1 File.

Fig 7. Evolution and generation runtimes during search for various sizes of zero-scored 1D code.

https://doi.org/10.1371/journal.pone.0245095.g007
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Finally, efficient ratio depends on devices and their applications; thus, choice of suitable

parameters for the algorithm depends on existing tradeoffs between length of sequences and

required ratio for accurate analysis of device output. For example, one criterion for choosing E

is system noise amount in device. Considering ε as the least upper bound for system noise in

the longest possible peak on output surface, so 2ε becomes a lower bound for E; because least

difference between two encoded strings, i.e. a single mutation, should be confidently detect-

able. A lower bound on E restricts choice of size, and target ratio. Of course, for d> 10 and

small values of N, the random mode of generating codes will often receive an acceptable score.

It might seem that there is no need to use the GAC method, but the point is, in fact, we pay the

area-cost of occupying more space on SLM by larger coding instead of the time-cost of the

GAC method. However, by doing this, we increase execution time of the cross-correlation due

to the more number of data switching on SLM in the case of long sequences, and so, random-

ized coding sets do not necessarily meet the time limitations.

Concluding the section, Table 1 summarizes the impact of each parameter, i.e. relative

threshold, N, and d, on different metrics evaluating a proper coding set. It must be noted that

some metrics for parameter analyzing are defined in S1 File that one of them that is mentioned

here is Relative threshold as defined in Definition 2.

Definition 2—Relative threshold: Since the absolute value of peak acceptance threshold (E)

depends on the size and number of 1 bits of each coding set, the relative threshold is defined as

the ratio of E to N to eliminate this dependency.

By defining relative threshold, all codings with any values of triple d, N, and E become

comparable.

Fig 8. Evolution and generation runtimes during search for various sizes of zero-scored 2D code.

https://doi.org/10.1371/journal.pone.0245095.g008

Table 1. Effectiveness of optimizing triple parameters (i.e. relative threshold, E, and N) and coding metrics.

Metrics Relative threshold N d

Overlap noise Inverse Small N: Inverse, Large N: direct Inverse

Neighbor noise Inverse Small N: Inverse, Large N: direct Inverse

Number of zero-score coding sets Inverse Small N: direct, Large N: Inverse Direct

Population time Direct Small N: Inverse, Large N: direct Direct

Evolution time Direct Small N: Inverse d, Large N: direct Inverse

https://doi.org/10.1371/journal.pone.0245095.t001
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4.3 Evaluation and comparison

To clarify the impact of optimized optical coding set on the accuracy of pattern recognition

and alignment process of biological data, in this section, we evaluate GAC method against

alternative coding methods. Specifically, we introduce evaluation metrics to compare accuracy

of DNA string matching utilizing the coding sets generated by GAC method against those of

alternative approaches.

4.3.1 Overall view of coding methods’ features. Table 2 summarizes coding features of

the aforementioned methods. According to this table, a suitable coding method is the one that:

1) uses SLM’s 2D space efficiently to fill it with more data, 2) makes size, shape, and value of

coding set flexible according to the limitations of the optical system(like detector resolution),

3) generates customized alphabets set with flexible size for various input data (e.g. DNA with 4

alphabets, RNA with 4 alphabets, and protein with 20 alphabets), 4) minimizes overlap noise

among optical codes for reducing cross-correlation overall noise, and finally, 5) while it pro-

duce sharp peaks at the output of cross-correlation, it results in more useful data at the output

image, such as peak lengths, meaningful for more post-processing.

To provide various desirable features of an appropriate coding method, as listed in Table 2,

we propose GAC, Genetic Algorithm-based Code generator, as a code generator tool based on

genetic algorithm. GAC can generate 1D and 2D (square-shape) coding sets with arbitrary

symbol size (features 1 and 2) and arbitrary number of valuable bits (feature 2 and 5) for vari-

ous ranges of alphabet set size (feature 3). Moreover, GAC cost function targets minimizing

overlap noise among various coding symbols (feature 4).

As follows, we illustrate efficiency of GAC method to reduce overlap noise and produce

meaningful peak at the output of a pattern recognition system built upon either electrical or

optical cross-correlation approach. For this purpose, we evaluate two of our proposed coding

sets, generated by GAC method, utilizing evaluation benchmarks of [33], and compare accu-

racy of our results against that of [33] and BLAST method.

4.3.2 Preliminaries of evaluation. For efficiency comparison, we encode the whole-

genome of Salmonella with access code NC_003198.1 in NCBI database. Its genome, contain-

ing 4,809,037 bp, is divided into 481 scenes each with a size of 100 × 100 bp2. However, it is

worth noting that in [33], only a single section of one million bp is used, leading to smaller

searching space compared to ours. As the next step, 303 randomly chosen subsequences with

the length randomly chosen in the range of 50 bp to 4500 bp are selected from this genome.

Nucleotide substitution with the rate up to 60% (with step-size of 10%) manipulates these 303

sequences; so 2121 sequences are created with randomly located substitutions. Finally, cross-

correlation is used as a pattern recognition tool to compare all 481 scenes with all 2121 gener-

ated sequences as queries. Fig 9 briefly show all step of evaluation GAC method.

Table 2. Related methods’ features summary.

Coding

Methods

Coding sets Features

SLM

usage

adaptable with optical setup

limitations�
scalability of the coding

set

Overlap

noise

Meaningful

Peak

[23, 24] Alphabet symbols 2D No Yes� Yes No

[33] Integers in the range of 0–255 2D No Yes� No No

[14] 1×4 cell arrays with a single entry

equal to one

2D No Yes� Yes Yes��

[12] Double DV-curves 1D No No� Yes Yes

� While these papers do not discuss scalabilty of their coding set, it can be elicited they might offer this feature

�� Depending on the scaling method adopted, this coding approach might produce meaningful peaks at the output.

https://doi.org/10.1371/journal.pone.0245095.t002
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For encoding Salmonella genome, we choose two zero score coding sets generated by GAC;

one with the size of 3 × 3 with three bits equal to 1 and E equal to 0, and another one with the

size of 9 × 9 with 32 bits equal to 1 and E equal to 11.

To evaluate accuracy of the alignment methods proposed in [33], four metrics are defined

as follows; 1) Sensitivity (Se) to measure correct diagnosis of queries’ existence, 2) Specificity

(Sp) to measure correct diagnosis of queries’ absent, 3) Exactitude (Ex) to measure correct

diagnosis (both present and absent), and 4) Error (Er) to measure incorrect diagnosis (both

present and absent). Their formulas as represented by Eqs (3) to (6) are utilized for reporting

our results.

Se ¼
TP

TP þ FN
ð3Þ

Sp ¼
TN

TN þ FP
ð4Þ

Ex ¼
TP þ TN

n
ð5Þ

Er ¼
FPþ FN

n
ð6Þ

Where TP (True Positive) represents the number of existing queries identified correctly;

TN (True Negative) is the number absent queries identified correctly; FP (False Positive) rep-

resents the number of absent queries mistakenly identified as existing queries; FN (False Nega-

tive) is the number of existing queries mistakenly identified as absent queries; and finally, n is

the size of search-space.

To evaluate accuracy of various detection methods based on above aforementioned metrics,

some test scenarios, including two types of correct (positive) or incorrect (negative) answers,

are designed. It should be noted that since the true answer for each test scenario is pre-known,

Fig 9. Evalution steps.

https://doi.org/10.1371/journal.pone.0245095.g009
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going through various detection metrics, we can precisely specify which metric leads to accu-

rate pattern detection at the output. Specifically, the "sensitivity" metric defines the percentage

of positive answers correctly diagnosed as positive; thus, the most accurate detection method

should result in sensitivity value of 100%.

Moreover, in addition to full detection of positive cases, an accurate detection method must

be able to specify negative cases, and label them as negative. This capability is quantized by

"Specificity" metric. This metric is defined as the percentage of negative answers correctly diag-

nosed as negative; thus, the maximum value of Specificity equals 100%. Considering above dis-

cussion, we can conclude that measurement of both metrics, i.e. sensitivity and specificity, is

necessary for precise evaluation of a detection method. Finally, "Exactitude" metric provides

an overview of output accuracy and accurate diagnosis percentage of the method, while

"Error" metric measures the percentage of wrong answers produced by the detection method.

Therefore, 100% is the best value of "Exactitude" metric, while 0% is the best "Error" value. As

follows, we discuss our comparative simulation study.

4.3.3 Quadruple metrics. As discussed before, 303 queries are manipulated with various

substitutions rate in the range of 0 to 60%, while pattern recognition is performed by cross-

correlating each category with the reference sequence. We can compute the aforementioned

Quadruple evaluating metrics for each substitution rate separately, as listed in Table 3.

According to these results, all metrics verify ideal pattern recognition up to mutation rate of

40%, beyond which error value (represented as er) slightly increases, while it is still negligible.

Specifically, although the error rate increases with mutation rate increment, its growth rate not

noticeable.

Analyzing error cases, we can conclude that error rate increases for short queries. Specifi-

cally, increasing the mutation rate increases the probability of erroneously locating the true

peak within the short queries. On the other hand, it should be noted that as the mutation rate

increases, the maximum query length that may not be identified correctly also increases.

According to this fact, we can conclude that a coding set with higher signal to noise ratio (as

represented by "E" in the GAC method) improves the maximum length of a query correctly

identified for a specific mutation rate, noting that the maximum length is decreased for larger

mutation rate. In this manner, we verify the aforementioned conclusion, and rerun the simula-

tion scenarios for searching cases and encoding queries with a larger coding set (I.e. zero-

scored coding set with size 9 × 9, 32 bits one and E equals to 11). The evaluation results are

depicted in Table 4. As expected, using a coding set with higher E, and so higher signal to

Table 3. Quadruple evaluating metrics for different mutation rates (%)– 3 × 3 coding set.

noise 0 10% 20% 30% 40% 50% 60%

Se 100 100 100 100 99.34 97.69 86.47

Sp 100 100 100 100 99.998 99.995 99.972

Ex 100 100 100 100 99.997 99.990 99.944

Er 0 0 0 0 0.0027 0.0096 0.0563

https://doi.org/10.1371/journal.pone.0245095.t003

Table 4. Quadruple metrics under different mutation rates (%)– 9 × 9 coding set.

noise 0 10% 20% 30% 40% 50% 60%

Se 100 100 100 100 100 99.340 95.380

Sp 100 100 100 100 100 99.999 99.990

Ex 100 100 100 100 100 99.997 99.981

Er 0 0 0 0 0 0.0027 0.0192

https://doi.org/10.1371/journal.pone.0245095.t004
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noise ratio, leads to more accurate peak value detection, and hence less cross correlation error.

According to this table, larger coding sets leads to negligible error rate assuming mutation rate

up to 50%.

4.4 Comparative studies

In this section, we compare the accuracy and speed of the proposed optical cross-correlation

system fed by the coding sets generated by GAC method, optical cross-correlation that uses

[33] integer coding set, and finally, BLAST (2.9.0+.BLAST version). All simulations are per-

formed within MATLAB 2016a simulation environment on a system with 2.20 GHz Intel(R)

Core(TM) i7-2670QM CPU.

4.4.1 Accuracy. Although the aforementioned evaluating metrics behave similarly in the

case of integer coding [33], the proposed integer coding achieves high processing speed at the

cost of reduced output sensitivity; specifically, in the case of 60% mutation rate, the output sen-

sitivity reduces to zero. Table 5 summarizes cross-correlation accuracy, in terms of previously

defined evaluation metrics, under various mutation ranges.

As follows, we compare the accuracy of the optical cross-correlation system assuming four

different input pattern generation approaches: a) GAC approach with with 3 × 3 code sets, b)

GAC approach with 9 × 9 coding sets, c) integer coding set, and d) BLAST method to clarify

GAC advantages. According to the small number of true positive cases, compared to the search

space size, sensitivity is the most meaningful metric to evaluate, and hence, we choose it for

comparing various coding approaches. Output sensitivity of an optical correlator with integer

coding set vs. BLAST is reported in [33]. On the other hand, as shown in Table 6 and Fig 10,

sensitivity values of an optical correlator fed by coding sets generated by GAC method slightly

change with the mutation rate, while the integer coding method, as well as the BLAST coding

approach lead to considerably reduced sensitivity with mutation rate growth. Finally, as dis-

cussed before, 9 × 9 coding sets also outperforms 3 × 3 ones at the cost of larger input image.

It is worth noting that the considerable outperformance of GAC method to provide ultra-

high sensitive optical correlation, over the alternative approaches, is a result of its cost-function

keeping a constant number of bits 1 in each code-word. Specifically, GAC cost-function is tar-

geted to decrease overlap noises among symbols’ code-word, so it can increase signal to noise

ratio at the output of a cross-correlation system. On the other hand, constant number of bits 1

in each code-word facilitates threshold value determination to locate output peaks. Specifically,

Table 5. Quadruple metrics under different mutation rates for integer coding [33] (%).

noise 0 10% 20% 30% 40% 50% 60%

Se 99.01 98.35 97.69 95.05 88.12 42.52 0

Sp 98.99 99.98 99.98 99.98 99.98 99.99 99.98

Ex 99.98 99.96 99.96 99.93 99.86 99.42 98.98

Er 0.02 0.04 0.04 0.04 0.14 0.58 1.02

https://doi.org/10.1371/journal.pone.0245095.t005

Table 6. Sensitivity (%) of three methods.

noise 0 10% 20% 30% 40% 50% 60%

Correlator–GAC coding set– 3 × 3 100 100 100 100 99.34 97.69 86.47

Correlator–GAC coding set– 9 × 9 100 100 100 100 100 99.34 95.38

Correlator–integer coding set 99.01 98.35 97.69 95.05 88.12 42.52 0

BLAST 2.9.0+ 100 98.68 54.46 3.30 0 0 0

https://doi.org/10.1371/journal.pone.0245095.t006

PLOS ONE Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture

PLOS ONE | https://doi.org/10.1371/journal.pone.0245095 January 15, 2021 15 / 27

https://doi.org/10.1371/journal.pone.0245095.t005
https://doi.org/10.1371/journal.pone.0245095.t006
https://doi.org/10.1371/journal.pone.0245095


the peak value is the product of query length by the number of bits 1. In this manner, when

some mutations occur within the query string, we expect the peak value reduces by the ratio of

"1—mutation rate". Therefore, for query length of L, mutation rate of M, and coding set with

N bits 1 in each coded symbol, the peak value can be computed by Eq (7). Of course, since

coded patterns of bits 1within two non-matched encoded alphabets might overlap, the cross

correlation of non-matched alphabets can result in non-zero output. Hence, to address these

undesirable noises at the output, Eq (8) modifies Eq (7) to include their average value as fol-

lows.

Peak valuezero for mutation ¼ L� N � ð1 � MÞ ð7Þ

NormPeak valuezero for mutation ¼ N � ð1 � MÞ ð7� 1Þ

Peak valuereal ¼ Peak valuezero for mutation þ L� C �M ð8Þ

NormPeak valuereal ¼ N � ð1 � MÞ þ C �M ð8� 1Þ

In Eq (8), the parameter C is defined as a specific constant for each coding set. In fact, as

represented in Eq 6, the mutated nucleotide increases the peak value by an amount neither

equal to N nor 0, but by a fraction of N depending on signal to noise ratio of the corresponding

coding set (i.e. parameter E in GAC method), which is predictable. For example, it is equal to

1.2 for the 3 × 3 coding set, while its value for the 9 × 9 coding set equals 13.5.

To clarify the proposed formula of Eq (8), which computes the meaningful peak value of

the cross-correlation output, Table 7 compares peak to L values of the cross-correlation output

computed by Eq (7) and Eq (7) against normalized average values and their variance obtained

from all simulation studies under various mutation rates. On the other hand, we normalize

Eqs (7) and (8) by L, so that Eqs (7-1) and (8-1) are obtained, whose values are mentioned as

coefficient (7) and coefficient (8) within Table 7, respectively. Also, we normalize meaningful

peak values, computed in each simulation scenario of the mutation rates, by dividing them

with L, and also compute their average and variance values as reported in Table 7. Considering

various metrics listed in Table 7 for varying mutation rates, we can conclude that Eq (8)

Fig 10. Snetivity and mutation rates for three method; BLAST, cross-correlator based on integer coding set

(CPO), and cross-correlator based on GAC coding set (XC-GAC).

https://doi.org/10.1371/journal.pone.0245095.g010
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precisely predicts normalized peak value for each mutation rate, and hence, it can be adopted

for meaningful peak detection in the proposed optical system.

Summarizing above simulation studies, we can conclude that GAC coding method facili-

tates automatic threshold definition at the output of a cross-correlation system to exactly locate

the peaks.

According to the best of our knowledge, GAC coding method is the first coding approach

leading to meaningful peaks at the output of the cross-correlation system. While for those cod-

ing methods proposed in [33], and similar works [23, 24], peak values at the output pattern

cannot locate the best query match, and in some cases may cause mistake in detecting peak val-

ues. For example, according to the coding method proposed in [33], with coding set (A = 65,

C = 130, G = 195, and T = 255), auto-correlation of "A" leads to peak value of 4225 (= 65 × 65),

while its cross-correlation with another symbol leads to larger peak. In this manner, false-posi-

tive query matching is probable, as a result of non-deterministic threshold value for peak diag-

nosis. For instance, for specifying threshold values, authors in [33], simulate cross-correlation

for queries with various lengths, and choose minimum peak values. However, as reported in

[30], this strategy causes matching error in some cases.

4.4.2 Speed comparison for a small test case. The simulation study reported in [33] com-

pares run time of integer coding method with that of BLAST assuming 303 query sequences

and a reference with 100 scenes. Total run time includes the time consumed for loading 303

query sequences, encoding them, and comparing them against 100 scene images. It is worth

noting that since loading and encoding reference sequence is performed once, it is not consid-

ered for comparison. It is worth noting that although we include and report the codification

time of the proposed optical sequence comparison method, they can be ignored if we store

coded DNA sequences.

At first, we simulate loading and encoding 303 random sequences with a random length in

the range of 50 bp to 4500 bp for 10 times, and report their average run time and its variance

in Table 8.

Afterwards, run time of the proposed optical setup is computed as well. Going through all

comparison scenarios, we compare each scene, chosen among 303 query scenes, and against

reference scenes, we perform 306936 comparisons, which equals to the total number of

Table 7. Cross-correlation peak to L ratio for the 3 × 3 coding set.

Mutation rate Coefficient (7) Coefficient (8) Coefficient (simulation)

Average Variance

0 3 3 2.996928591 0.000030826

10% 2.7 2.82 2.814457584 0.000101088

20% 2.4 2.64 2.634281527 0.000133612

30% 2.1 2.46 2.451105554 0.000355068

40% 1.8 2.28 2.269366973 0.000305616

50% 1.5 2.1 2.091384926 0.00069193

60% 1.2 1.92 1.911885424 0.001049829

https://doi.org/10.1371/journal.pone.0245095.t007

Table 8. Average run time for loading and encoding 303 query sequences.

Integer coding set [33] 3 × 3 coding set (GAC) 9 × 9 coding set (GAC)

Loading time Codification time Loading time Codification time Loading time Codification time

Average (Sec) 0.213694977 4.29756985 0.210760335 5.04183531 0.228442311 13.0823206

Variance 0.000133958 0.12966862 0.000265731 0.06291734 0.000164504 0.35283883

https://doi.org/10.1371/journal.pone.0245095.t008
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pairwise comparisons among 784 scenes (303 + 481). It is worth noting that the authors in

[33] compare each query scene against 100 scenes as the reference scene, while we consider the

whole genome. Runtime of all those comparisons depends on the display technology of the

optical setup. Specifically, for an optical system utilizing Digital Micro-mirror Devices

(DMD), display switching rate approximately equals to 20 kHz (and the optical processing

takes 15.3468 Sec, while with holographic disc with switching rate of 2.44 MHz [34], optical

processing takes 0.1258 Sec.

Assuming that the aforementioned optical correlation setup can be fed by either of GAC or

integer [33] coding method, Table 9 compares whole run time of the optical DNA comparison

methods as the sum of coding and loading run time (listed in Table 9) and 0.1258 Sec, as the

optical processing time. This table also compares the optical approach with BLAST, as a well-

known electrical method, in term of processing speed.

According to above discussion, codification time and time required for loading data are

performance bottlenecks of our method, nonetheless, all three optical processing approaches,

mentioned in Table 9, are faster than BLAST. It is worth noting that although various display

devices like SLM, DMD, and holographic disc have more coding capacity compared to SLM

used in [33], for a fair comparison, we assume the same coding capacity and display space as

assumed in [33]. Of course, adopting faster technologies, as well as full utilization of display

space, we can reduce runtime considerably. Summarizing runtime comparison, reported in

Table 9, we can conclude that adopting 3 × 3 coding set for optical DNA coding in the pro-

posed optical setup, runtime increases by about 16% compared to [33] and reduces by more

than 81% compared to BLAST. It is worth noting that according to Table 6, the proposed cod-

ing approach increases sensitivity from 0 to more than 86% (in the case of worst simulation

scenario with mutation rate of 60%). In case of adopting 9 × 9 coding set, sensitivity increment

is more than 95% at the cost of increased runtime.

4.4.3 Speed comparison for a large test case. Notwithstanding above description of

speed improvement with the proposed optical setup, as follows, we compare it with two high-

speed versions of BLAST methods; i.e. HS-BLASTN and MegaBLAST. For this purpose, we

consider a realistic assessment with big data used in [35] whose assumptions and methods’

conditions are summarized in Table 10. To assure the generality of this assessment, alongside

a reference sequence, two query sets are considered; one with short length queries and another

one with long length queries. In this manner, HS-BLASTN, MegaBLAST, and the proposed

method search for the query sequences within the reference sequence.

HS-BLAST and MegaBLAST which are multi-thread based methods ran on a Linux server

with two six-core Intel Xeon E5-2620 CPUs with more than 16 GB of RAM. Their runtime for

these assessments, considering various number of threads, are reported in [35] which is also

shown in Table 11.

As noted in Table 10, in this study, CAG considers 3 × 3 coding set for sequence encoding,

so as the first step of runtime estimation of CAG method, we should compute the number of

Table 9. Run time taken to process 303 query SEQUENCES IN 100 reference scenes.

Optical Comparison Electrical

Comparison

Run time

(Sec)

Cross-correlation (integer coding set)

[33]

Cross-correlation (GAC-3 × 3 coding

set)

Cross-correlation (GAC-9 × 9 coding

set)

BLAST 2.9.0+

Loading 0.2137 0.2108 0.2284 -

Encoding 4.2976 5.0418 13.082 0

Comparison 0.1258 0.1258 0.1258 29.0529

Total 4.6371 5.3784 13.4366 29.0529

https://doi.org/10.1371/journal.pone.0245095.t009
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nucleotides filling an input image. According to the size of each input image, i.e. 4K, this value

can be obtained from Eq (9) as follows.

#nucleotides in each scene ¼
scenewidth

codingwidth
�

sceneheight
codingheight

� �

¼
4096� 2160

3� 3

� �

¼ 982800 ð9Þ

In the next step, by means of Eq (10), we compute the minimum number of input images

required for coding each of query and reference sequences within the optical setup, as depicted

in Fig 2.

#scenes ¼
length

#nucleotides in each scene

� �

! #scenesreference ¼
3099734149

982800

� �

¼ 3154

! #scenesshortqueries ¼
2000000� 500

982800

� �

¼ 1017

! #sceneslong queries ¼
870000� 4000

982800

� �

¼ 3541

ð10Þ

And finally, according to Eq (11), we estimate the runtime of the optical setup.

searching speed ¼
#scenesquery �#scenesreference

switching speed

searching speedshort ¼
1017� 3154

2440000
¼ 1:31 Sec

searching speedlong ¼
3541� 3154

2440000
¼ 4:58 Sec

ð11Þ

Table 10. Assumptions of speed comparison assessment.

Parameters Value

Query set 1 (short queries) Homo Sapience

#queries = 2000000

100� length� 500 bps

Query set 2 (long queries) Homo Sapience

#queries = 870000

800� length� 4000 bps

Reference sequence Genome Reference Consortium Human Build 38

Length = 3099734149 bps

Optical setup Scene size = 4K (4096 × 2160 pixel)

Switching speed = 2.44 MHz

Coding set: d = 3, N = 3, E = 0, score = 0

https://doi.org/10.1371/journal.pone.0245095.t010

Table 11. Runtime (second) taken to search long and short query sequence in human genome.

Program HS-BLASTN MegaBLAST Optical comparison

CPU threads 1 2 3 4 1 2 3 4 -

Data set 1 (short queries) 430 138 85 68 5384 2136 1649 1495 1.31

Data set 2 (long queries) 600 185 110 85 6680 2400 1730 1537 4.58

https://doi.org/10.1371/journal.pone.0245095.t011
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It should be noted that for an accurate runtime comparison, worst case estimation is con-

sidered for the optical processing method, considering the longest query sequences. Nonethe-

less, according to Table 11, the optical method, taking advantages of inherent capability of

light for parallel processing leads to the best runtime compared to the fastest current methods.

4.5 Assessment by real applications

To emphasize the importance of optimized coding through optical processing of bio data, we

address k-mers counting (i.e. sequences with length of k bps), as the main step of applications

like motif finding, and setup a simulation study in two parts; a) nucleotides are coded with a

random 2D pattern, where, d = 3, N = 2, E = 0, and score = 1280, and b) nucleotides are coded

with 2D pattern generated with the proposed code generator (GAC), where, d = 3, N = 2, E = 0

and score = 0.

Considering two aforementioned coding approaches, we encode Homo sapiens GRCh38.

p12 [36], as a reference whole genome of a humane, and feed it to the proposed optical cross-

correlator to find the motifs. Addressing motif finding problem within the DNA sequence, we

search for all possible motifs with the length between 1 to 4 nucleotides among the first 1260

bp of chromosomes 1 to 12. In this manner, 340 possible subsequences are searched within 12

sequences considering both coding approaches; random and optimized coding. These assump-

tions are also shown in Table 12. To evaluate the coding performance, Eq (12), as follows, com-

putes average motif finding errors in both cases.

Relative error ¼
jNreal � Nfindj

Nreal
ð12Þ

where, Nreal is the actual number of motifs within a sequence and Nfind is the number of motifs

found by the cross-correlation based motif finding approach considering either random or

optimized input coding. In the following sections, we address both behavioral and optical sim-

ulations in MATLAB and ZEMAX [37] simulation environments, respectively.

4.5.1 Behavioral simulation. In this section, the coherence theory of optic is not consid-

ered and the ideal FFT calculation is adopted. Specifically, as the simulation results illustrate,

we just utilize fft2 function of MATLAB and, while not considering realistic optical parameters

of the system. Fig 11 depict average motif finding errors adopting both random and optimized

coding approaches.

As shown in this figure, motifs detection error is considerably reduced while adopting GAC

approach, compared to the case that input data is randomly coded. Specifically, in average,

motif finding relative error in the latter case (with average error equal to 34%) is about 28%

more than the former one (with average error equal to 5.8%).

It should be noted that through the simulation steps, due to the different positions of a

sequence at several rows of the input image, the patterns at the end of each line may not be

counted in the current method. So, a relative error, called as cutoff error, occurs. Cutoff error

mostly arises when cross correlating similar patterns leads to missing string match. As an

Table 12. Assumptions of k-mer counting assessment.

Parameters Values

Coding sets‘ features d = 3, N = 2, E = 0, score = 1280

d = 3, N = 2, E = 0, score = 0

Sequence access ID Homo sapiens GRCh38.p12 the first 1260 bp of Chr 1 to 12

K-mer size K 2 N; 1 � k � 4

https://doi.org/10.1371/journal.pone.0245095.t012
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example shown in Fig 12, placement of “AA” part of the pattern “AATC” at the end of first line

of the coded reference sequence and “TC” part at the beginning of the second line misses the

full peak. While locating “AATC” at the third line leads to a full peak at the output of cross-cor-

relator. In this manner, 50% relative error is reported. To address the issue, as a future work,

we will propose a novel algorithm for data coding to avoid string breaks. For now, for a fair

evaluation, we assume fix number of symbols columns (equal to 42 columns) throughout the

simulation.

4.5.2 Optical simulation. For simulating realistic condition of the optical system, we

define optical parameters within the ZEMAX simulation environment. ZEMAX use pupils for

characterizing imaging system. Pupils are virtual apertures that are divided into two parts; the

Fig 11. Average relative errors of cross-correlating all encoded sequences with length 1 to 4 with first 1260 bp of first 12 chromosomes of Homo sapiens GRCh38.

p12 data.

https://doi.org/10.1371/journal.pone.0245095.g011

Fig 12. Effect of lens choice on FFT noise of sequence "ATCG" coded with coding set with d = 3, N = 2, E = 0 and score equal to 0. a) Input and output patterns,

note halo created around each code at the output pattern, b) Different peak values for various coding.

https://doi.org/10.1371/journal.pone.0245095.g012
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entrance pupils collecting light from the object, and exit pupils from which the collected light

exits on its way to form an image. The pupils are images of the physical elements within the

optical system, known as the aperture stops, which limit the collection of light. For example, in

our optical system, the lens utilized for computing inverse Fourier transform is considered as

its aperture stop.

Simulating our optical system necessitates definition of three parameters; laser wavelength

(λ), the distance from exit pupil (zxp), and diameter of exit pupil (Dxp). These parameters are

used for computing coherent cutoff frequency (f0), as shown in Eq (13), where, f0 is the fre-

quency limitation beyond which the transfer function of the system is zero. In fact, f0 corre-

sponds diffraction limit to resolution [37].

f0 ¼
Dxp

2lzxp
ð13Þ

In our system, zxp is the focal length of lens and Dxp equals their diameter. We assume

wavelength of HeNe laser to be 632.8 nm, zxp = 4 mm cm, and Dxp = 80 mm for our simulation

study.

Moreover, there exist other sampling parameters to be defined; physical sample interval

(Δu), number of samples (M), and side length (L), whose actual values are usually chosen

lower than their theoretical upper-bounds, defined as follows. Eq (14) defines the upper bound

of Δu depending on the pupil parameters and laser wavelength. As shown in this equation,

maximum value of Δu is obtained assuming ideal system condition. Using this equation and

the relation L = MΔu, we can calculate the image dimensions to be used in the optical system

by Eq (15). For simulating the realistic condition, Δu and L value are considered 5% less than

their upper-bound to consider the system error.

Du �
lzxp
2Dxp

ð14Þ

L � M
lzxp
2Dxp

ð15Þ

Values of aforementioned parameters considerably impact system resolution and output

Fig 13. Example of cutoff error; a) coding set, b) "TAGGAATCGGACAATCCC" as the reference sequence is splitted

into 3 lines with 6 codes, while "AATC" is th equery sequence. End of line 1 and begining of line 2 contain query

sequence which is breaked from middle and it cannot be detected by the cross-correlation process.

https://doi.org/10.1371/journal.pone.0245095.g013
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noise of the cross-correlator. This effect is well observable in Fig 13A; this image is the result of

the inverse Fourier of Fourier transform of sequence "ATCG", coded by coding set generated

by GAC, with d = 3, N = 2, E = 0, and score = 0. As can be seen, a halo is created around each

of the nucleotide code depending on their shape, which indeed generates undesirable noise at

the output. According to Eqs (13) to (15), the greater ratio of the lens diameter to its focal

length, which represents the lens’s ability to absorb light, reduces halo in output. However, this

feature is limited by manufacturing technology of the lens. On the other hand, according to

Fig 13B, in addition to the produced noise around each optical code, the height of their peaks

can also vary from the expected value depending on the shape. Specifically, in Fig 13B, the

peak values of cross-correlating various nucleotides were expected to be equal but some diago-

nal structures (occurs for C and G nucleotide codings) within the coded pattern have reduced

their peaks values.

Unfortunately, the difference between peak values of cross-correlating various nucleotides,

as well as, their surrounding haloes arise serious problems for recognition of full peaks. Specifi-

cally, for the purpose of pattern matching, we should specify a threshold value, while the out-

put values greater than it represent full peaks. However, according to above discussion, the

output noise prevent determining threshold value. As a key solution to this problem, we pro-

pose inserting free space between adjacent coding patterns of consequent nucleotides on the

SLM. It should be noted that longer distance length reduces coding efficiency while improving

output noise. To illustrate this trade-off, we simulate a realistic optical system assuming two

coding scenario; a) each 2D optical code devotes a free boundary, with the width of two pixels,

around itself, and b) each 2D optical code devotes a free boundary, with the width of 10 pixels,

around itself. It should be noted that in both cases the same coding set of 3 × 3 codes is

adopted, and 42 columns are considered for each symbol line in SLMs. The coding pattern

and the corresponding cross-correlation results are shown in Fig 14.

As depicted in Fig 14, larger free space among consequent codes improves relative error.

Specifically, average relative error in the case of two-pixel-width boundary around optical

codes equals 7.2% (as shown in Fig 14A), while this value reduces to 5.8% (as shown in Fig

14B) in the case of 10-pixel-width boundary around optical codes. Moreover, larger free space

around optical codes simplifies threshold value determination. As an important point in Fig

14B, both ideal and real case matches behave similarly with an average relative error equal to

5.8%. As discussed in previous Section, this amount of relative error, named as cutoff error,

arises from the string breaks at the end of line. However, as depicted in Fig 14B, considering a

free boundary, with the width of 10 pixels, around each nucleotide code leads to the same sim-

ulation results for realistic and ideal system simulations.

Finally, to investigate the impact of code size on the output noise, we also simulated the

optical system assuming 2D optical codes with attributes d = 10, N = 30, E = 12, and zero-

score to As illustrated by the simulation results in Fig 15, large optical pattern, in addition to

reducing coding efficiency, complicates threshold selection, and thus, increases the relative

error.

5. Conclusion and future works

Sequence alignment is one of the important bioinformatics tools with a lots of design chal-

lenges such as speed, accuracy, and length limitation of comparable sequences. Utilizing opti-

cal technology and applying optical pattern recognition techniques, such as cross-correlation,

we are able to address the aforementioned issues. For this purpose, it is necessary to design dif-

ferent levels of system hierarchy including input data coding, as well as, optical implantation.

In this paper, we investigate the effect of optimized input coding on the output noise, and
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provide a solution for generating customized codes for textual data (such as DNA). For this

purpose, we present a genetic algorithm-based code generator, called GAC, which is capable of

generating 1D and 2D optical codes for various coding sizes under varied conditions. To eval-

uate the impact of these codes on the output of a pattern recognition system, we perfomed

various simulations on Homo sapiens genome (GRCh38.p12) and Salmonella genome

(NC_003198.1 in NCBI) to show that GAC method improves all four reported metrics (i.e.

Sensitivity, Specificity, Error, and Exactitude) to improve pattern detection quality. To the

extent that using GAC coding set with size 3 × 3 in an optical correlator increases sensitivity

and runtime speed more than 86% and 81%, respectively, in high-mutated genome state (60%

mutation) in comparison to BLAST method. Of course, this trend is preserved by increasing

size and relative threshold value as the inputs of GAC method. Specifically, our simulation

results confirm that optical implementation of GAC coding set with size 9 × 9 increases sensi-

tivity and runtime speed by more than 95% and 50%, respectively, compared to BLAST

method.

Finally, we would like to mention that although the proposed cross-correlation-based opti-

cal method is customized for genome comparison, without loss of generality, adopting a

Fig 14. Average relative errors of cross-correlating all motifs with length 1 to 4 with first 1260 bp of first 12 chromosomes of Homo sapiens GRCh38.p12 data

(sequences are encoded using coding set with d = 3, N = 2, E = 0 and score equal to 0, while each line of SLM cosist of 42 columns). On the left, a part of the coded

reference sequence is shown, while on the right, average relative errors resulted from optical simulation is compared with that of bahaviolral simulationconsidering free

boundary of width a) 2 pixels and b) 10 pixels around each nocletide code.

https://doi.org/10.1371/journal.pone.0245095.g014
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compatible encoding method, it can be utilized for cross-correlation based text analysis.

Hence, development of the proposed optical encoding and comparison approach, as the first

step of an ultra-fast sequence analysis method, is not stopped here; it will be improved and

adopted to a wide range of pattern detection problems. Moreover, as the future works, we plan

to improve speed of GAC method, as well as accuracy of the proposed optical cross-correlation

setup, and customize it for essential applications, such as SNP discovery studies and compari-

son of eukaryote whole-genome sequences. And finally, more details of the optical processing

setup will be released.
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