
RESEARCH ARTICLE

Covariance matrix filtering with bootstrapped

hierarchies

Christian BongiornoID
☯*, Damien Challet☯
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Abstract

Cleaning covariance matrices is a highly non-trivial problem, yet of central importance in the

statistical inference of dependence between objects. We propose here a probabilistic hierar-

chical clustering method, named Bootstrapped Average Hierarchical Clustering (BAHC),

that is particularly effective in the high-dimensional case, i.e., when there are more objects

than features. When applied to DNA microarray, our method yields distinct hierarchical

structures that cannot be accounted for by usual hierarchical clustering. We then use global

minimum-variance risk management to test our method and find that BAHC leads to signifi-

cantly smaller realized risk compared to state-of-the-art linear and nonlinear filtering meth-

ods in the high-dimensional case. Spectral decomposition shows that BAHC better captures

the persistence of the dependence structure between asset price returns in the calibration

and the test periods.

Introduction

Covariance matrix estimation is a cornerstone of dependence inference between objects.

Unfortunately, this kind of matrix becomes very noisy when the number of objects is similar

to the number of features, a phenomenon known as the curse of dimensionality. Even worse,

unfiltered covariance matrices are pathological when the number of features exceeds the num-

ber of objects, i.e., in the so-called high dimensional case. This case is frequent e.g. in biological

data and in multivariate dynamical systems such as financial markets in which only the most

recent history is likely to be relevant.

Given its importance, covariance matrix filtering has a long history. A popular approach is

to obtain a filtered covariance matrix from the corresponding correlation matrix. Two types of

approaches stand out: i) spectral methods, e.g. Random Matrix Theory, Rotationally Invariant

Estimators [1], and Shrinkage [2, 3]; ii) ansatz for the correlation matrix, e.g. block-diagonal

[4] or hierarchical [5].

The usual setting is to have n objects and t features and to compute the correlation matrix

between these n objects. Recent results on Rotationally Invariant Estimators [6] propose algo-

rithms able to correct the eigenvalue spectrum of covariance matrices optimally without filter-

ing its eigenvectors: the inversion of the QuEST function [7], the Cross-Validated (CV)
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eigenvalue shrinkage [8] and the IW-regularization [1], the latter being valid only in the low

dimensional regime q = n/t< 1, i.e., when there are more features than objects. Direct eigen-

vector filtering is more complex. An indirect way to filter both eigenvectors and eigenvalues is

to use ansätze for the shape of the true correlation matrix, which also impose constraints on

the structure of both the eigenvectors and the eigenvalues. A good ansatz should be simple

enough to clean noise but flexible enough to account for fine relevant details. The popular

hierarchical clustering ansatz (HC thereafter) is indeed simple: it assumes that correlations are

nested [5, 9], which is equivalent to assume that dependencies are described by a dendrogram

(a tree).

An obvious problem of HC occurs when the structure is more complex than a tree: for

example, the non-diagonal blocks in Figs 1 and 2 are erased by a hierarchical ansatz. As a con-

sequence, a non-negligible part of the dependence structure is left out. In these cases, the tree

inferred by a hierarchical ansatz is fragile with respect to small data perturbations such as boot-

straps. The fragility itself was noted for example in Ref. [10] which showed that only a subset

of links of a minimum spanning tree associated to a HC are reliable when data are perturbed

by bootstraps. In practice, it is hard to find statistically-validated hierarchical structures [11]

when the fitted hierarchical structure is highly sensitive to small variations of data.

Fig 1. Correlation matrix from tissue-gene micro-array data of patients affected by lung cancer. The upper left plot is the sample correlation matrix,

the upper right plot is the result of hierarchical and average-linkage averaging (HCAL). The bottom left plot is the difference between the two: it still has

evident structure unaccounted for by HCAL.

https://doi.org/10.1371/journal.pone.0245092.g001

Fig 2. Correlation matrix of US equities price returns in the 2008-01-23 to 2008-11-04 (left plot) and in the 2008-11-05 to 2009-08-24 period

(right plot). The elements of both panels are ordered according to the in-sample HCAL dendrogram of the first period.

https://doi.org/10.1371/journal.pone.0245092.g002
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Here, we introduce a more flexible method able to capture more of the structure of the

eigenvectors. The idea is to create many bootstrapped copies of the original data and to apply

hierarchical clustering average linkage (HCAL) [5] filtering to each of them. We then average

all these HCAL-filtered matrices. We call our method BAHC, which stands for Bootstrapped

Average Hierarchical Clustering, and define it for covariance and correlation matrices. A

BAHC-filtered matrix is a sum of multiple hierarchical structures weighted by their fre-

quency. A single hierarchical structure will only emerge if all the bootstrap realizations lead to

the same dendrogram. Thus, this method is particularly adapted to data that is well-described

by a hierarchical structure in a first approximation [12] but avoids selecting a single fragile

structure.

We illustrate the power of our method with data from two relevant fields. First, in bioinfor-

matics, DNA micro-array gene expression dependence in tissues is frequently characterized by

correlation matrices. Hierarchical clustering and its variants are commonly used [13, 14],

which helps simplify the covariance matrix by linkage averaging [15] (see Fig 1). When there

are several different candidates of hierarchical structure, this approach only selects a single

one, which neglects possibly crucial information held by alternative structures. Comparing

unfiltered correlation matrices with the filtering yielded by hierarchical clustering and average

linkage (HCAL) [5] (Fig 1) makes it clear first that (i) hierarchical clustering does capture

some of the structure and (ii) a substantial part of the structure is lost (see the bottom plot).

This is because hierarchical clustering imposes too strict a structure, which erases out an

uncontrolled amount of information.

Another domain in which covariance matrix filtering plays a central role is risk manage-

ment in many areas. Broadly speaking, the problem amounts to minimize future uncertainty

by determining the fraction of resources to allocate to every possible choice. Risk in this partic-

ular context is due to fluctuations of the future value of the choices. The usual procedure con-

sists in minimizing a suitable risk measure in the calibration window and hoping that the

future, realized, risk will bear some relationship with the calibrated risk.

The simplest approach consists in defining risk as the variance of the weighted sum of

choices’ values and to minimise it. This is known as global minimum-variance portfolios, a

subfield of quadratic portfolio optimization which has a wide range of applications: investment

into technologies [16], energy sources mix for countries [17, 18], wind farm locations [19],

and capital allocation in finance [20]. We shall focus on financial risk because data are abun-

dant, which makes it possible to compare the out-of-sample performance of filtering methods.

In addition, the high-dimensional regime is particularly relevant in finance: there are many

assets to choose from and the speed with which the dependence structure between asset price

returns may change asks for an as short as possible calibration period [21].

In an inference or descriptive context such as DNA microarray data analysis, filtering corre-

lation matrices is meant to bring estimated covariance matrices closer to the ground truth. In a

dynamical context, especially for non-stationary systems such as financial markets, what mat-

ters is the part of the ground truth that most likely persists after the calibration period, i.e.,

when one uses the allocation weights computed from the filtered covariance matrix. Thus,

ideally, the filtered covariance matrix should contain as much of the persistent structure as

possible. The nature of the most likely persistent structure is of course unknown from the cali-

bration window only. Fig 2 shows that there are indeed strongly persistent dependence struc-

tures of asset price returns between two non-overlapping periods. Similarly to correlation

matrices of DNA microarray data, while a pure HC does capture a sizeable part of the useful

structure, the non-diagonal correlation patterns blocks e.g., around (x, y) = (140, 600) indicate

that HC itself is not sufficient.
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Methods

Datasets description

We consider the daily close-to-close returns from 1992-02-03 to 2020-03-31 of US equities,

adjusted for dividends, splits, and other corporate events. More precisely, the dataset consists

of 1295 assets taken from the union of all the components of the Russell 1000 from 2010-06 to

2020-03. The number of stocks with data varies over time: it ranges from 151 in 1992-06-22 to

1172 in 2018-01-17 (see S1 File for a code to download the data).

DNA microarray data [22] can be downloaded from [23]. It consists of gene expression

intensity of 327 tissues of patients affected by pediatric acute lymphoblastic leukemia and a

subset of 271 genes.

Numerical simulations with financial data

All the simulations are carried out in the same way: each point of each plot is an average over

10, 000 simulations, each of which includes an in-sample window of length tin and an out-of-

sample window of length tout = 42 days (about two trading months) unless otherwise specified;

it starts from a random day uniformly chosen in the available dataset. To have meaningful in-

and out-of-sample windows given the maximum tin considered, the first day of the out-of-

sample must be after 01-01-2000; each simulation selects n = 100 assets at random among the

assets with no missing value in both in- and out-of-sample windows.

BAHC algorithm

Given matrix R 2 Rn�t
, our method prescribes to create a set of m (feature-wise) bootstrap

copies of R, denoted by {R(1), R(2), � � �, R(m)}. A single bootstrap copy of the data matrix

RðbÞ 2 Rn�t
has elements rðbÞij ¼ risðbÞj

, where s(b) is a vector of dimension t obtained by

random sampling with replacement of the elements of vector {1, 2, � � �, t}. The vectors s(b),

b = 1, � � �, m are independently sampled.

The Pearson correlation matrix of each bootstrapped data matrix R(b) is then computed and

denoted by C(b); in turn the latter is filtered with the hierarchical clustering average linkage

(HCAL) proposed in [5], which yields C(b)<. In short, HCAL uses two ingredients: the distance

D = 1 − C to agglomerate cluster in a hierarchical way, and the averaging of the correlation

between clusters (see S1 Appendix for more details).

Finally, the filtered correlation matrix CBAHC is the average of the HCAL-filtered matrices

C(b)<

CBAHC ¼
1

m

Xm

b¼1

CðbÞ<:

To build a BAHC-filtered covariance matrix, we estimate the standard deviation of ri,

denoted by σii, and obtain the element of the BAHC-filtered covariance matrix as

sBAHC
ij ¼ cBAHC

ij
ffiffiffiffiffiffiffiffiffiffi
sii sjj
p

:

Source code. We have written a BAHC package for both R and Python, available from

CRAN and PyPI, respectively.
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Frobenius norms

We use rescaled Frobenius norms to account for the fact that the number of assets in our data-

set depends on time, defined as

k X kSF¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Xn�n

i;j

x2
ij

n2

s

: ð1Þ

In addition, because CV, LW and QuEST methods do not guarantee the identity on the

diagonal of filtered correlation matrices (contrarily to BAHC), we do not include the diagonal

elements in the metric and thus define

k X kC
F¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn�n

i>j

2 x2
ij

nðn � 1Þ

s

: ð2Þ

We found that the performance of CV, LW, QuEST-based correlation estimators is slightly

improved by replacing cij with
cijffiffiffiffiffiffiffi
cii cjj
p , which also ensures that the diagonal elements equal one,

and thus have used this modification in our analysis.

Results

Microarray DNA

We first apply the BAHC method to DNA microarray data [22] where the objects are n = 327

tissues of patients affected by pediatric acute lymphoblastic leukemia and features are the

expression intensities of t = 271 genes (q’ 1.21). Classifying leukemia subtypes based on their

gene expression profile is crucial to correct prognosis and risk assessment. However, the sim-

plistic classification obtained from a single tree could lose relevant information coming from

more complex dependence structures.

To show the new insights brought by BAHC compared to a simple hierarchical clustering,

we kept the dendrograms of all the bootstraps used to compute the BAHC-filtered correlation

matrix and produced a bidimensional t-SNE projection [24] using the pairwise cophenetic

correlation coefficient as a distance. In this map, each point corresponds to a bootstrapped

copy of the original data. Two such copies are represented nearby if the cophenetic correlation

between their HC-filtered dendrogram is high—in simple words, if they are similar. If two ran-

domly chosen bootstrap dendrograms differ only due to sample size error, we should expect

such bi-dimensional mapping scattered around an average dendrogram. However, two main

clusters of dendrograms appear. They essentially differ by the topmost branches, as shown by

the tanglegram of the centroids of these two clusters (right plot of Fig 3). This means that in

this dataset, a small perturbation not only affects the lower levels of the dendrograms, whose

composition is based on the stability single or pairs of correlation coefficients that are neces-

sarily highly affected by sample size error, but also the highest aggregate levels, which should

be more robust to sample size noise. In other words, the appearance of two clear clusters of

dendrograms shows that a single dendrogram fails to account for the real dependence between

gene expression intensity. In addition, clades that are distant on the sample dendrogram may

be much closer in both of these clusters.

This shows that even a large distance between two sub-groups of elements (cancers, in this

case) may not be stable with respect to small perturbation of the data. Thus, if one wishes to

cluster genes, one should generate bootstrapped dendrograms and then apply a clustering

PLOS ONE Covariance matrix filtering with bootstrapped hierarchies

PLOS ONE | https://doi.org/10.1371/journal.pone.0245092 January 14, 2021 5 / 13

https://doi.org/10.1371/journal.pone.0245092


method adapted to trees, as we did above. If one needs a filtered covariance matrix, one should

use BAHC instead of a HC.

Risk minimization

Given the n × (t + 1) matrix of values of choice i at time k, pi,k, and the value returns ri,k = pi,k/

pi,k−1 − 1, one must determine the fraction of investment given to each choice i, the i-th com-

ponent of vector w. The risk is measured by the standard deviation of the portfolio return,

denoted by vP, with v2
P ¼ wTSw, where S is the n × n covariance matrix of the matrix of

returns R. If the weights can be negative, the optimal weights ~w ¼ S� 1 �1
1T �S� 1 �1

, with the condition ∑i

wi = 1 in order to avoid the trivial solution w = 0. This situation is called long-short portfolio

in the following. In some situations, e.g., when choosing one’s portfolio of energies or prod-

ucts, only positive weights are allowed, in which case one has to solve a quadratic program-

ming problem; we refer to this situation as long-only portfolio.

The realized (out-of-sample) risk is the relevant performance measure. Using the out expo-

nent, the realized risk is

vout
P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~wÞySout ~w
q

;

where ~w are computed from the in-sample covariance matrix, filtered or not, and X† is the

transpose of matrix X.

All the results reported below use the simulation setup described in the Methods section: in

short, we perform 10,000 simulations of n = 100 random assets in random periods. We com-

pare the out-of-sample risk computed from BAHC and several other well-known methods: the

classic Ledoit and Wolf linear shrinkage method (LW henceforth) [2] and the more recent

nonlinear shrinkage approach based on the inversion of the QuEST function (QuEST) [7]. We

also include the Cross-Validated eigenvalue shrinkage (CV) [8] and HCAL [5], denoted by<.

Fig 4 shows that BAHC outperforms all the alternative methods for tin ≲ 200, i.e., for

q ¼ n=t≳ 1

2
, which includes all of the high-dimensional regime q> 1. In particular, for the

long-only portfolios, the BAHC method reaches the absolute minimum out-of-sample risk

over all tin and all methods for tin’ 200, i.e., q’ 1/2. The right-hand-side plots of Fig 4 report

the probability that BAHC outperforms each alternative method when q> 1/2, which

Fig 3. Bidimensional t-SNE projection of the cophenetic distance between the dendrograms of 1000 bootstraps of DNA microarray data [22].

Two main clusters emerge, with further subclusters, corresponding to distinct potential hierarchies of dependence that are compatible with data. The

red crosses indicate the centroids of the two largest clusters whose structure differences appear in the tanglegram of right plot.

https://doi.org/10.1371/journal.pone.0245092.g003
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confirms that BAHC is better than all the other methods not only with respect to the average

realized risk, but also in probability in this region.

Finally, we vary the length of the test window, tout. We report the probability that the

BAHC method outperforms all its competitors as a function of both tin and tout in Fig 5. Our

approach achieves lower realized risk with in more than half the simulations than any other

method tested here as soon as tin < 177 (q> 1/1.17) for every tout in the considered range.

Remarkably, as tout increases, the calibration length below which BAHC has better than 50%

chances to outperform all its competitors only weakly increases. We interpret this result by the

fact that our method is able to extract the right kind of persistent structure in that particular

data, which is confirmed below by spectral analysis. We found similar results for the Hong

Kong equity market (see S1 Appendix). We also report in the S1 Appendix an alternative anal-

ysis where the out-of-sample standard deviations are used to compute the portfolio composi-

tions. This analysis aims to isolate the effect of correlation filtering approaches providing a

lower bound for risk minimization. However, we did not observe any qualitative differences.

Spectral properties

In order to understand why and when our method has a better performance than the other

methods based on spectral clustering, it is instructive to compare the in- and out-of-sample

persistence of the eigenvalues and eigenvectors produced by all the filtering methods

Fig 4. Left plots: Realized risk for different estimators; right plots: Fraction of time the realized risk of BAHC is smaller than the one obtained

with alternative estimators. 10, 000 independent simulations per point; tout = 42 days, n = 100 assets, US equities.

https://doi.org/10.1371/journal.pone.0245092.g004
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considered here. The spectral decomposition of correlation matrix C is denoted by C = U† ΛU,

where U is a n × n matrix formed by the eigenvectors of C and Λ is the diagonal matrix

obtained from the corresponding eigenvalues.

Eigenvectors stability. A simple way to characterise the overall eigenvectors stability is to

compare the empirical out-of-sample correlation matrix Cout with the Oracle correlation esti-

mator defined as Xin
C ¼ UinyZinUin where Zin ¼ diagðUinyCoutUinÞ is the Oracle eigenvector esti-

mator, the idea being that Xin
C ¼ Cout if the in- and out-of-sample eigenvectors coincide (see S1

Appendix). The Oracle estimator for the covariance matrix, denoted by Xin
S

, is defined in a sim-

ilar way.

Fig 6 reports the Frobenius distances (see the Methods section) k Cout � Xin
C k

C
F and

k Sout � Xin
S
kSF as a function of tin for n = 100 assets. Note that CV, LW and QuEST methods

all use the in-sample eigenvectors and thus we do not need to report separate results. Gener-

ally, our method yields more stable correlation and covariance matrices not only in the high-

dimensional case, but also up to (q’ 3), i.e. tin < 300. The difference is due to the fact that the

eigenvectors obtained by our method are more stable than the vanilla in-sample eigenvectors,

which mechanically improves the Oracle estimator.

Fig 6 also shows that the probability that the eigenvectors of BAHC-filtered correlation

matrices are more stable than those provided by the alternative filtering methods grows as tin

becomes smaller. The same applies to the comparison between BAHC -filtered and empirical

covariance matrices, while HCAL, denoted by <, has better performance in about a 20% of

samples almost independently of tin. In short, as soon as q> 1/3 in this dataset, the BAHC

method likely yields more persistent eigenvectors than all the other filtering methods consid-

ered here.

Eigenvalues stability. Since both the covariance S and precision S−1 matrices are relevant

to minimum-variance optimization, we measure two types of residues that focus on large and

small eigenvalues, defined as

�hi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðli � ziÞ
2

s

ð3Þ

Fig 5. Fraction of time BAHC yields a smaller realized risk than all the alternative methods. Left plot: portfolios with positive and negative weights;

right plot: portfolios with only positive weights. The dotted line corresponds to q = t/n = 1, and the level curve to a 50% probability. 10, 000 independent

simulations per point; tout = 42 days, n = 100 assets, US equities.

https://doi.org/10.1371/journal.pone.0245092.g005
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�low ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

1

li
�

1

zi

� �2

;

s

ð4Þ

where λi = (Λ)ii is the i-th (ranked) eigenvalue of the in-sample estimator and zi = (Zin)ii comes

from the Oracle estimator computed with the respective filtered eigenvector matrix and i is the

respective rank of these eigenvalues. The residue measure �hi mainly accounts for the discrep-

ancy between the largest eigenvalues and the residue measure �low attributes more weight to

the discrepancy between the smallest eigenvalues.

Fig 7 plots the residues of the correlation and covariance matrices respectively as a function

of tin. We compare our approach with the sample estimator, HCAL-filtered matrix, and the

Cross-Validated (CV) eigenvalue distribution. While CV method outperforms all the other

methods when tin ≲ 1000 (q> 0.01), the eigenvalues produced by our method are still much

closer to the Oracle than those of the raw sample estimator when tin ≲ 500.

Fig 6. Frobenius distance between the out-of-sample matrices and the Oracle estimators obtained with the in-sample eigenvectors (in), the in-

sample BAHC-filtered eigenvectors (BAHC) and the in-sample HCAL-filtered eigenvectors (<). Upper panels refer to correlation matrices C, lower

panels to covariance matrices S. The left panels are the Frobenius norm of the difference between the estimator and the out-of-sample realization; the

right panels are the fraction of time BAHC outperforms the alternative estimators. 10, 000 independent simulations per point; tout = 42 days, n = 100

assets, US equities.

https://doi.org/10.1371/journal.pone.0245092.g006
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Filtered correlation and covariance matrices

The ultimate test is of course to compare filtered in-sample matrices with out-of-sample matri-

ces. Fig 8 reports the Frobenius distance between the filtered in-sample and out-of-sample cor-

relation and covariance matrices for all the tested methods. Expectedly, BAHC outperforms all

the other ones for tin ≲ 300. Fig 8 plots the fraction of times the Frobenius norm of our method

is lower than the other methods, which confirms the superiority of BAHC for q� 2 and also

shows that BAHC method HCAL filtering for every tin. Once again, this emphasizes that a

strict hierarchical structure is not sufficient to capture the stable structure of eigenvectors fully.

Conclusions

Filtering covariance and correlation matrices requires to take care of O(n2) coefficients. Focus-

ing on O(n) variables, for example by tweaking the eigenvalues or using a single hierarchical

ansatz, works to some extend. Making further progresses requires to filter more variables, if

possible while keeping an O(n) ansatz. This is what the BAHC method achieves: by using m
bootstraps and applying an O(n) structure, BAHC allows some additional flexibility, while

keeping the overall structure simple.

Fig 7. Average residue �hi and �low over 10, 000 simulations with random calibration windows and a random selection of n = 100 assets. The upper

panel refers to the correlation matrix, the lower panel refers to the covariance matrix. 10, 000 independent simulations per point; tout = 42 days, n = 100

assets, US equities.

https://doi.org/10.1371/journal.pone.0245092.g007
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Our method both filters out estimation noise and improves the stability of the eigenvectors

in a dynamical context. Indeed, the spectral decomposition of BAHC-filtered correlation

matrices is close to the optimal CV method with respect to the eigenvalue distribution. Fur-

thermore, in the dynamical context investigated here, the eigenvectors produced by our

method have a higher overlap with the out-of-sample ones than the unfiltered in-sample eigen-

vectors for reasonably small q = n/t. This is why our method leads to better minimum-variance

portfolios than all the competing filtering methods when the calibration window is small. In

particular, if no short selling is allowed, our approach produces, on average, the lowest-risk

portfolio.

Future work is needed to characterize the average dependence structure produced by

BAHC better, from both theoretical and empirical points of view. In addition, BAHC may still

be too strict in some cases and thus leave out valuable information, hence, further refinements

of the ansatz will need to be investigated.
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Fig 8. Left plots: Frobenius distance between out-of-sample matrices and filtered in-sample matrices; upper panels refer to correlation matrices C,

lower panels to covariance matrices S. Right plots: Fraction of time the Frobenius distance of BAHC-filtered matrices is smaller than the alternative

estimators. 10, 000 independent simulations per point; tout = 42 days, n = 100 assets, US equities.
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