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Abstract

Exercise has beneficial effects on metabolism and health. Although the skeletal muscle has

been a primary focus, exercise also mediates robust adaptations in white adipose tissue. To

determine if exercise affects in vivo adipocyte formation, fifty-two, sixteen-week-old C57BL/

6J mice were allowed access to unlocked running wheels [Exercise (EX) group; n = 13

males, n = 13 females] or to locked wheels [Sedentary (SED) group; n = 13 males, n = 13

females] for 4-weeks. In vivo adipocyte formation was assessed by the incorporation of deu-

terium (2H) into the DNA of newly formed adipocytes in the inguinal and gonadal adipose

depots. A two-way ANOVA revealed that exercise significantly decreased new adipocyte

formation in the adipose tissue of mice in the EX group relative to the SED group (activity

effect; P = 0.02). This reduction was observed in male and female mice (activity effect; P =

0.03). Independent analysis of the depots showed a significant reduction in adipocyte forma-

tion in the inguinal (P = 0.05) but not in the gonadal (P = 0.18) of the EX group. We report for

the first time that exercise significantly reduced in vivo adipocyte formation in the adipose tis-

sue of EX mice using a physiologic metabolic 2H2O-labeling protocol.

Introduction

Exercise has favorable effects on metabolic health, including improvements in glucose homeo-

stasis and cardiovascular outcomes. Skeletal muscle has been the primary focus in exercise

studies, as beneficial effects on insulin sensitivity and mitochondrial biogenesis are well-char-

acterized [1, 2]. However, exercise also mediates robust adaptations in other tissues, including

white adipose tissue (AT). A seminal study reported that the transplantation of subcutaneous

AT from exercise-trained mice to sedentary, insulin resistant mice resulted in improved glu-

cose homeostasis in the recipient mice [3], demonstrating that exercise-induced changes in

AT can have favorable effects on metabolism.

White AT is a dynamic organ that is characterized by changes in adipocyte volume, as well

as continual adipocyte formation (i.e. hyperplasia; adipogenesis) and death, which all regulate

AT mass. Studies in rodents [4] and humans [5, 6] have highlighted the significant link
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between adipocyte turnover (e.g. formation and death) and health outcomes, such as obesity

and related disorders. Although important adaptations of AT, such as changes in mitochon-

drial activity [7, 8], morphology [9–11] and endocrine function [10, 12], have been reported,

there is a paucity of data on the effects of exercise on in vivo adipogenesis and adipocyte

turnover.

In this study, we assessed in vivo adipogenesis using a metabolic labeling protocol [13] that

incorporates deuterium (2H), administered as 2H2O, into the DNA of adipocytes in the white

AT depots of mice that were sedentary (SED) or exercising via voluntary wheel running (EX)

for 4-weeks. Using this practical 2H2O approach, we report for the first time that exercise sig-

nificantly reduced new adipocyte formation (e.g. adipogenesis) in the AT of EX mice. These

findings suggest that decreased adipocyte formation may be an important exercise-induced

mechanism of AT remodeling.

Materials and methods

Animals

Fifty-two, twelve-week-old male (n = 26) and female (n = 26) C57BL/6J mice were purchased

(The Jackson Laboratory, Bar Harbor, ME) and housed at room temperature in the PBRC

comparative biology core. Mice were multi-housed (4 to cage) and fed a standard rodent chow

diet for 4 weeks. After the 4 weeks (16 weeks of maturation), body composition was measured

by nuclear magnetic resonance (NMR) as previously described [14], and mice were then single

housed in cages with locked running wheels for an adaptation period of one week.

2H2O labeling, body 2H2O enrichments, and exercise intervention

At the start of the study, all mice were given a bolus injection of 2H2O (35 ml/kg body weight

0.9% NaCl in 100% 2H2O) (Cambridge Isotope Laboratories, Andover, MA) to bring the 2H2O

content of the body water up to approximately 5% [13]. After the injection, mice were pro-

vided ad libitum access to 8% 2H2O drinking water and low-fat diet (10% fat) during the

4-week intervention period to maintain 2H2O content in the body water.

Mice were then randomly assigned to the SED and EX groups, with an equal number of

males and females in each group. Half of the mice were allowed access to unlocked running

wheels (EX group; n = 13 males, n = 13 females) or to wheels that remained locked to serve as

sedentary controls (SED group; n = 13 males, n = 13 females) for 4-weeks. Food intake

(grams) and body weight (grams) were measured weekly. Wheel running data was collected

weekly for total wheel revolutions and converted into kilometers. To evaluate the changes in

body composition (e.g. total fat mass (g) during the 4-week intervention period, NMR (Minis-

pec LF50 TD, Bruker) was performed again post-intervention, as previously described [14].

The Δ adipose tissue mass was calculated by subtracting the final total fat mass values at the

end of the study from the value prior to the intervention. Mice were euthanized by isoflurane

administration with cardiac puncture. Pennington Biomedical Research Center’s Institutional

Animal Care and Use Committee (IACUC) approved the protocol for animal care and use

(#1008).

The enrichment of 2H2O in body water (blood serum) in the mice was measured by isotope

ratio mass spectrometry. Serum samples were distilled, and the evaporated water (distillate)

was collected. The isotope enrichment in the distillate was directly analyzed with an H-Device

attached to a Delta V Advantage Mass Spectrometer. 2H2O enrichments were calculated by

comparison to standard curves generated by mixing 100% 2H2O with natural abundance
2H2O in known proportions.
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Adipose tissue analysis

Inguinal (iWAT) and gonadal (gWAT) adipose tissue depots were carefully dissected and

weighed prior to analysis.

Isolation of adipocytes. Adipose tissues were treated with a HEPES/type 1 collagenase

solution for ~1hr at 37˚C to isolate adipocytes and the stromal-vascular fraction (SVF). The adi-

pocytes were purified by incubation with a cocktail of antibodies against markers of endothelial

cells (CD31- eBioscience), hematopoietic cells (CD45- BioLegend), and mesenchymal stem cells

(CD34- eBioscience) for 15min at room temperature. Cells attached to these antibodies were

removed by magnetic nanoparticles (EasySep), while immuno-purified adipocytes were

retained. Adipocytes were flash frozen in liquid N2 and stored at -80˚C until DNA extraction.

Collection of bone marrow. After removing the femurs, the ends were cut to allow access

to the bone marrow. Each femur was placed in a 1.5 ml tube and centrifuged at 14,000 RPM

for 1 minute to acquire a marrow pellet for deoxyribose analysis from rapidly turning over

bone marrow cells [15].

Deozyribose analysis. DNA was isolated from the adipocytes and bone marrow using

DNEasy microDNA extraction kits (QIAGEN). After isolation, samples were hydrolyzed over-

night at 37˚C in an enzyme cocktail containing S1 nuclease and phosphatase enzymes. Follow-

ing hydrolysis, 100 μL of pentafluorobenzyl hydroxylamine hydrochloride (1 mg/mL) and

75 μL of glacial acetic acid were added to each sample followed by incubation at 100˚C for 30

minutes. After cooling, 2 mL of acetic anhydride and 100 μL of 1-methylimidazole were added

followed by 100˚C heat block for 5 minutes, then allowed to cool. Afterwards, 3 mL of

HyClone water was added to each sample, vortexed, and let sit for 10 minutes. Then, 2 mL

dichloromethane were added, and samples were vortexed vigorously for 15 seconds. After cen-

trifugation at 1500 RPM for five minutes, the bottom dichloromethane layer was transferred

into a clean 16 x 100 test tube, evaporated to dryness under nitrogen for 30 minutes, followed

by a 30 minute dry in a speed vacuum (Labconco, MO, USA) at room temperature.

Gas chromatographic and mass spectrometric analyses. Once dry, the samples were

resuspended in 150 uL of ethyl acetate for GCMS analysis using Agilent 6890N Gas Chroma-

tography system with a DB-17MS capillary column (30m, 0.25mm, 0.25 μm, J&W Scientific)

and a 5975B inert XL EI/CI MSD (Agilent, Santa Clara, CA, USA). Samples were analyzed via

negative chemical ionization using helium as the carrier gas and methane as the reagent gas.

Deoxyribose enrichment was measured using selective ion monitoring for molecular ions 435,

436, and 437 m/z corresponding to M0, M+1, and M+2. The samples were injected using

pulsed splitless with a constant flow of 1 mL/min and a run time of 16 minutes. Ion abun-

dances were analyzed using the Quantitative Mass Hunter Workstation (Agilent, Santa Clara,

CA, USA). Baseline (unenriched) DNA standards were measured concurrently to correct for

abundance sensitivity.

Calculation of the fraction of new adipocytes. The enrichment of the M1 ion above nat-

ural abundance in the adipocyte samples of interest (%EM1 enrichment in adipocytes) was

determined by subtracting the %M1 in unenriched DNA standard from the %M1 in the sam-

ple, as determined in each case by %M1 = M1 ion/(M0+M1+M2 ions). The theoretical maxi-

mum enrichment, %EM1, in adipose cells was calculated using MIDA equations based on the

body 2H2O exposure (serum) [15]. The fraction of new adipocytes (%), or the formation of

new adipocytes, as reported in the Results section, is calculated by the following:

Fraction of new adipocytes ð%Þ ¼
%EM1 enrichment in adipocytes

Theoretical maximum %EM1 enrichment
X 100
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Bone marrow from each mouse was collected and analyzed to represent a (near) completely

turned-over cell pulation. This measurement, used as a reference marker of 2H2O exposure,

serves to confirm calculations using the theoretical maximum enrichment based on the body
2H2O exposure measured post-mortem.

Statistical analysis

Independent and paired t-test and two-way ANOVA were utilized to analyze data where

appropriate (Prism, Graphpad, version 8 and JMP Pro version 14.2, SAS Institute Inc.). Multi-

ple pairwise comparisons were made by Holm-Sidak’s test. Main effects for activity were based

on activity (exercise vs. sedentary), adipose tissue depot (iWAT vs. gWAT), and sex (males vs.

females). To measure the fraction of new adipocytes, or the formation of new adipocytes, adi-

pose tissue samples were pooled (2–3 mice per sample). Statistical significance was declared at

P = 0.05. All data are reported as mean ±SEM.

Results

Fig 1 provides a schematic of the study design. The average body 2H2O enrichment, as measured

in the blood serum, was 4.2 ± 0.3% in the SED group and 4.1 ± 0.5% in the EX group, with no sig-

nificant difference between the groups (p = 0.53). Within the exercising (EX) group, there were

no significant differences in total voluntary wheel running (VWR) between male (179 ± 8.0 km)

and female (196 ± 9.9 km) mice (P = 0.06) (Fig 2A). When comparing pre- versus post-exercise

food intake (g/day), both male (3.28 ± 3.81 g/day; P = 0.0002) and female (2.91 ± 3.68 g/day;

P<0.0001) mice in the EX group significantly increased food consumption (Fig 2B and 2C).

There were no changes in food intake for mice in the SED group (males; P = 0.18 & females;

P = 0.62). Body weight measures over the 4 weeks did not differ between the EX and SED groups

within sexes (males, P = 0.32; females, P = 0.88), but as expected was different between sexes

(P<0.0001) regardless of activity (EX vs. SED) (Fig 3A). No significant differences in final body

weight were observed between SED and EX groups for male (27.9 ± 1.8 vs 26.8 ± 1.4 g; P = 0.07)

or female mice (21.1 ±0.8 vs. 21.3 ± 1.3 g; P = 0.63). There were no significant differences for the

ΔAT mass between male (P = 0.20) or female (P = 0.22) SED and EX mice (Fig 3B).

A two-way ANOVA of activity versus depot revealed that exercise significantly decreased the

fraction of new adipocytes, or adipocyte formation, in the AT of mice in the EX relative to the SED

group (activity effect; P = 0.02). Pairwise analysis of the inguinal (iWAT) and gonadal (gWAT)

depots (male and female) revealed a significant reduction in adipocyte formation in the iWAT (SED,

24.5 ± 6.2%; EX, 15.02 ± 7.6%; P = 0.05) but not in the gWAT (SED, 18.6 ± 5.6%; EX, 12.5 ± 6.6%;

P = 0.18) in the EX as compared to the SED group (Fig 4A). There was no significant difference in

the formation of adipocytes between iWAT and gWAT for EX (P = 0.54) or SED (P = 0.23) mice.

A two-way ANOVA of activity versus sex revealed that exercise significantly reduced new

adipocyte formation in male and female mice of the EX group as compared to the SED group

(activity effect; P = 0.03). Pairwise analysis of sex (iWAT and gWAT depots) showed that exer-

cise tended to decrease new adipocyte formation in males (SED, 21.2 ± 2.4%; EX, 12.8 ± 8.0%;

P = 0.08) and females (SED, 21.9 ± 9.3%; EX, 14.7 ± 6.5%; P = 0.13) of the EX group as com-

pared to the SED group, though not statistically significant (Fig 4B). There was no statistical

difference in new adipocyte formation between male and female mice for the EX (P = 0.67) or

the SED groups (P = 0.89).

Discussion

Adipocytes are constantly formed and replaced in rodents [4, 13, 16] and humans [17–19]. We

evaluated the effects of exercise on in vivo adipogenesis in mice using a practical 2H2O
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metabolic labeling approach and report for the first time using this methodology that volun-

tary wheel running resulted in reduced adipocyte formation. Prior studies have reported exer-

cise effects on the AT in the context of weight-loss [9, 20]; however, it is plausible that the

observed effects could be partially attributed to the weight loss as opposed to the exercise.

Moreover, the health benefits of exercise can occur without significant weight-loss [21]. Our

observation of no significant differences in changes in body weight or the loss of AT mass

between sedentary and exercising mice is a strength of this study.

Many studies have shown that AT remodeling during exercise is associated with metabolic

improvements [2, 5, 8, 22], including reduced adipocyte size and triacylglycerol content [9–11,

23]. Mitochondrial enzyme activity is also increased in the AT of exercise-trained rodents [7,

8, 24, 25] and humans [26, 27], which may be associated with increased fat oxidation. Exer-

cise-induced changes in AT has also been associated with improvements in glucose metabo-

lism and protection against inflammation in rodents [24, 28, 29]. Histological analysis of

iWAT from exercised mice revealed the presence of multilocular cells with increased vasculari-

zation [30], supporting studies that demonstrate “beiging” of white AT [3, 31].

Fig 1. Study design schematic. In vivo adipocyte formation was examined in fifty-two male (n = 26) and female (n = 26) C57BL/6J mice. Twelve-

week old mice were fed a standard chow diet until 16 weeks of age. Mice were then switch to single housed cages with locked running wheels. After an

adaptation period of one week, all were given a bolus injection of 2H2O (35 ml/kg body weight 0.9% NaCl in 100% 2H2O) and provided 8% 2H2O

drinking water and low-fat diet (10% fat). Body composition was measured by NMR at week 16 and week 20. Half of the mice were then allowed

access to unlocked running wheels (EX group; n = 13 males, n = 13 females) or to wheels that remained locked to serve as sedentary controls (SED

group; n = 13 males, n = 13 females) for 4-weeks.

https://doi.org/10.1371/journal.pone.0244804.g001
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Adipocyte turnover is an essential function that affects systemic metabolism [6, 32, 33]; yet,

the impact of exercise on this AT feature has not been extensively explored. Only one other

study reported that exercise could attenuate the proliferation and differentiation potential of

adipose cells in transgenic male mice using bromodeoxyuridine (BrdU) and green fluorescent

protein (GFP) to label cells expressing PPARγ [20]. Our present study utilized a distinct 2H2O-

labeling approach that has been validated to provide physiological, quantitative measures of in
vivo adipocyte formation in rodents and humans. Though informative in rodents, the use of

BrdU and GFP labelling, as used in Zeve et al. [20], involve several limitations, including toxic-

ity and biochemical complications and, therefore, are not applicable for use in humans. More-

over, it is well-known that PPARγ expression is not adipocyte specific and present in other

cells, including macrophages. By utilizing a practical in vivo assessment of adipogenesis, we

Fig 2. Effects of exercise on wheel running kilometers and food intake in male and female mice. Singly housed male and female mice were monitored for

4-weeks following a bolus injection of 2H2O to achieve ~5% body water enrichment. Mice were provided ad libitum access to 8% 2H2O drinking water (to

maintain body water enrichment) and switched to low fat diet at start of the intervention. During the 4-week intervention period, half of the mice were allowed

access to an unlocked running wheel (EX group; n = 13 males, n = 13 females), while the other mice had access to wheels that remained locked to serve as

sedentary controls (SED group; n = 13 males, n = 13 females). Wheel running (2A) and food intake (2B-C) were measured weekly in male (n = 13) and female

(n = 13) mice. g, grams; VWR, voluntary wheel running; EX, Exercise group; SED, Sedentary group. All data are presented as Mean ± SEM.

https://doi.org/10.1371/journal.pone.0244804.g002
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demonstrate that exercise attenuates new adipocyte formation in a sex-independent manner.

Further studies are needed to determine how reduced adipocyte formation contributes to exer-

cise-induced improvements in metabolism, as this was not investigated in our current experi-

ment. Nevertheless, our findings suggest that decreased adipocyte formation may be an

important exercise-induced mechanism of AT remodeling and provide the foundation for

Fig 3. Changes in body weight and fat mass during the 4-week intervention period. (A) Body weight was measured weekly in the mice during the study period. (B)

NMR was performed to measure adipose tissue mass prior to the exercise period (baseline) and post-intervention. The change (Δ) in adipose tissue mass during the

intervention period was calculated as ‘AT mass post-intervention–AT mass baseline’. n = 13/group. g, grams. All data are presented as Mean ± SEM.

https://doi.org/10.1371/journal.pone.0244804.g003

Fig 4. New adipocyte formation is reduced in exercising mice. New adipocyte formation was compared between SED and EX mice in the iWAT and gWAT (main

effect for activity; p = 0.02) and in males and females (main effect for activity; p = 0.03). Additional independent pairwise analyses by depot (4A) and sex (4B) were

conducted comparing new adipocyte formation in SED versus EX mice. n = 13/group. iWAT, inguinal white adipose tissue; gWAT, gonadal white adipose tissue;

EX, exercise; SED, Sedentary. All data are presented as Mean ± SEM.

https://doi.org/10.1371/journal.pone.0244804.g004
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further sophisticated studies in rodents and humans with obesity and related disorders using

this in vivo approach.

At a steady state in AT mass, adipocyte turnover represents adipocyte formation and death.

Our findings are consistent with recent studies reporting that lower adipocyte formation, or

turnover, in humans is observed in conditions of more favorable metabolic health [33, 34]-

results that are contrary to the AT expandability hypothesis [5, 6]. It could be speculated that

increased adipogenesis and turnover reflect adipocyte fragility and death, which can lead to

recruitment of macrophages, unfavorable remodeling and inflammation [35].

This study was conducted in lean, healthy mice. Hence, we do not report data on exercise-

induced improvements in metabolism, and our observations are not generalizable to mice

with metabolic dysfunction. Further studies in an obesogenic environment are necessary to

understand the effects of exercise on adipocyte turnover during periods of energy surplus. Our

findings report exercise-mediated effects on adipocyte formation, independent of a significant

loss in body weight and fat mass during the 4-week intervention period. Nevertheless, the

long-term effects of exercise on adipocyte turnover and how this impacts prospective energy

balance, body weight, and adipose tissue mass cannot be determined from this study and

require interventions that are longer in duration (than 4 weeks). Another limitation of the

study is that we did not measure changes in triglyceride kinetics (via the 2H2O method), adipo-

cyte morphology (fat cell size), or the expression of genes related to adipocyte metabolism in

this initial observation, due to a limited amount of available AT. Future studies will include a

more comprehensive assessment of other cell populations and facets of adipose tissue remodel-

ing that occur in response to exercise.

Conclusions

We demonstrate the feasibility to measure in vivo adipogenesis in the AT of exercising and

sedentary mice using a metabolic 2H2O-labeling approach. Our observations provide evidence

of a reduction in the formation of new adipocytes in response to exercise. Future studies are

necessary to further elucidate the role of adipose turnover in mediating the effects of exercise

on metabolism and health.
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