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Abstract

In this study, an extension of the generalized Lindley distribution using the Marshall-Olkin

method and its own sub-models is presented. This new model for modelling survival and life-

time data is flexible. Several statistical properties and characterizations of the subject distri-

bution along with its reliability analysis are presented. Statistical inference for the new family

such as the Maximum likelihood estimators and the asymptotic variance covariance matrix

of the unknown parameters are discussed. A simulation study is considered to compare the

efficiency of the different estimators based on mean square error criterion. Finally, a real

data set is analyzed to show the flexibility of our proposed model compared with the fit

attained by some other competitive distributions.

1 Introduction

Recently, many researchers have suggested new generalization for life time distributions used

in statistics and possess flexibility in applications. Although the wide range of applications of

the Lindley distribution [1] has a wide range of applications, it does not provide a good fit for

modeling phenomenon with non-monotone failure rates, such as bathtub upside down failure

shaped. For this lack of flexibility, many authors proposed a new generalizations of the tradi-

tional Lindley distribution by adding one or more shape parameters to add more flexibility to

the PDF and the hazard rate function. Extended generalized Lindley (EGL) distribution is a

very important lifetime and survival distribution which can be used as an effective alternative

to the well known distributions such as generalized Lindley (GL), Lindley (L) and exponential

distributions. It has different applications in modelling various types of data including eco-

nomics and actuarial sciences data because its hazard rate can be increasing, decreasing, upside

down bathtub shaped and unimodal. In addition, this model presented a better fit to data

resulting in accurate results and predictions, which should facilitate better public policy in a

wide range of areas including medicine, genetics, environmental health, reliability, survival

analysis and actuarial sciences data because its hazard rate can be increasing, decreasing,

upside down bathtub shaped and unimodal. Several types of lifetime model distribution have

been proposed in literature. Zakerzadah and Dolati [2] presented GL distribution and studied

its statistical properties and applications. Also, Oluyede and Yang [3] introduced a new class of

GL distributions with applications. Nadarajah et al. [4] introduced GL distribution with shape
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and scale parameters γ, λ, respectively, the probability density function (PDF) is given by

f ðxÞ ¼
gl

2

1þ l
ð1þ xÞe� lx 1 �

1þ lþ lx
1þ l

e� lx
� �g� 1

; x > 0; ðl; g > 0Þ ð1Þ

and cumulative distribution function (CDF) is

FðxÞ ¼ 1 �
1þ lþ lx

1þ l
e� lx

� �g

; x > 0; ðl; g > 0Þ: ð2Þ

On the other hand, Marshall and Olkin [5] proposed a method of adding a new shape

parameter to any well-known distribution whose cdf denoted by F(x), as follows

G x; dð Þ ¼
FðxÞ

1 � ð1 � dÞ�FðxÞ
; x 2 R; d > 0; �d ¼ 1 � d: ð3Þ

where δ> 0. Many new distributions have been proposed in the literature by considering F(x)

to be normal distribution by Ghitany et al. [6], Birnbaum-Saunders distribution by Lemonte

[7]. The Marshall- Olkin (M-O) extended distributions have an interesting failure rate func-

tion facilitating its use in modeling real situations in a better manner than the basic distribu-

tion. For more details see Cordeiro and Lemonte [8], Okasha and kayid [9] and Okasha and

Al-Shomrani [10]. The supplemental parameter δ involved in the transformed distribution

described in Eq (3) is called the “tilt parameter”. In fact, the failure rate functions h(x) and r(x)

corresponding to the transformed distribution and the initial distribution are such that, for all

x� 0, one has h(x)�r(x) if δ> 1 and h(x)�r(x) if 0< δ� 1. This means that the failure rate of

the new distribution is shifted below (respectively above) when δ> 1 (respectively when 0< δ
� 1). Many authors used Marshall and Olkin’s (1997) method to generate a new continuous

distribution by taking the baseline F(x) of any known distribution. Okasha et al. [11] intro-

duced a detailed study of M-O Extended inverse Weibull which can be obtained as a mathe-

matical propery with estimation of the maximum Likelihood and stress-strength parameter.

Benkhelifa [12] also proposed properties and applications for the M-O extended generalized

Lindley distribution. Okasha and Shrahili [13] obtained various results on the M-O Burr type

XII Distribution in the context of reliability properties and survival analysis. In this paper we

propose a new extension of the GL distribution called the M-O Extended Generalized Lindley

Distribution and study some of its properties. The present work is organized as follow: (1) defi-

nition of the probability density function, cumulative distribution function and survival func-

tion of the EGL distribution. (2) presentation of the obtained values of some properties of the

new distribution such as (reversed) failure rate, (reversed) mean residual lifetime, quantiles,

moments, order statistics and stochastic ordering. (3) discussion of maximum likelihood esti-

mates (MLEs) and asymptotic confidence intervals from the Fisher information matrix (FIM)

of the model parameters. (4) An application of the extended distribution to waiting times (in

minutes) before service of 100 bank customers is given showing that the present model pro-

vides a better fit to the real data than some other known distributions. Finally, conclusions and

remarks of the current and future research are presented.

2 New family and its own sub-models

This section proposes the new family distribution and derives density and survival functions

from this family.
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2.1 New family description

Let Λ = (λ, γ, δ) and inserting Eq (2) in Eq (3), a new distribution denoted as EGLD (x;Λ) can

be obtained. Then, the CDF of the EGLD can be obtained as;

G x;Lð Þ ¼
k

1 � �dð1 � kÞ
; x > 0; L > 0; ð4Þ

where k ¼ 1 �
ðlþlxþ1Þe� lx

lþ1

� �g
.

The corresponding survival function (SF) and the PDF are defined by

�G x;Lð Þ ¼
dð1 � kÞ

1 � �dð1 � kÞ
; x > 0; L > 0; ð5Þ

and

gðx;LÞ ¼
l

2
gd

lþ 1

k1� 1
g

ðdþ �dkÞ
2

 !

ðxþ 1Þe� lx: x > 0: L > 0; ð6Þ

respectively. The next proposition presents the behavior of the pdf of the EGLD (x;Λ) with var-

ious choices of parameters.

Proposition 2.1. Let X* EGLD (x;Λ), then:

1. If γ< 1, then X has a decreasing pdf.

2. If γ� 1, then X has an increasing pdf.

3. If γ� 1, then X upside-down bathtub shaped.

Fig (1) shows the various shapes of the PDF of the EGLD given by Eq (6) by choosing

the scale parameter, λ, to be 2.90 in all the cases and different values of the shape parame-

ters. Fig (1) indicates that the proposed distribution is suitable to model the right skewed

data.

2.2 Special models of the new family

The next example shows that the new family contains the GL and L distributions as special

cases.

Special cases 1. Let X* EGLD(x;Λ), then

1. If δ = 1 in Eq (6), then X* GLD(x;λ, γ).

2. If δ = γ = 1 in Eq (6), then X* LD(x;λ).

3 Reliability and statistical properties

In this section, reliability and some statistical properties of the EGLD are presented, especially

quintile function, moments, (reversed) failure rate, mean residual life, order statistics and sto-

chastic orderings.
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3.1 Failure rate and mean residual life

Let T� 0 be a continuous random variable with cdf F(t) and pdf f(t), the failure rate (FR) func-

tion of the EGLD is defined as

hðtÞ ¼ lim
Dt!0

PðT < t þ DtjT > tÞ
Dt

¼
gðtÞ
�GðtÞ

: ð7Þ

For the EGLD, the failure rate function h(t) is

hðt; dÞ ¼
l

2
g

ðlþ 1Þ

ðt þ 1Þkg� 1e� lt

ðkg � 1Þðdðkg � 1Þ � kgÞ
; ð8Þ

where

k ¼ 1 �
ðlþ lt þ 1Þe� lt

lþ 1
ð9Þ

Proposition 3.1. Let h(t) be the failure rate function of a random variable T distributed
according to EGLD (Λ). Then

1. h(t) is increasing for λ< 1 and γ> 1.

2. h(t) is bathtub shaped for λ> 1 and γ> 1.

Fig 1. Plots PDF of the EGLD with λ = 2.9. Figure (1) shows the various shapes of the PDF of the EGLD given by Eq

(6) by choosing the shape parameter, λ, to be 2.90 in all the cases and different values of the shape parameters. Figure

(1) indicates that the proposed distribution is suitable to model the right skewed data.

https://doi.org/10.1371/journal.pone.0244328.g001
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3. h(t) is decreasing for λ< 1 and γ< 1.

The mean residual life (MRL) can be obtained by general formula (see Navarro et al. [14])

M
T
tð Þ ¼ E T � tjT > tð Þ ¼

1

�GðtÞ

Z 1

t

�GðxÞdx: t > 0: ð10Þ

Lemma 3.2. Let T* EGLD (t;Λ), then the MRL function of a lifetime random variable is
given by:

M
T
tð Þ ¼

ðd � 1Þkg � d

dðkg � 1Þ
Eðt; l; g; dÞ; ð11Þ

where

Eðt;LÞ ¼
dð1þ lÞ

l

X1

k;i;j¼0

kþ 1

j

 !
gj

i

 !
ð� 1Þ

j
ð1 � dÞ

keið1þlÞ

ðið1þ lÞÞiþ1

�Gðiþ 1; ið1þ lþ ltÞÞ;

ð12Þ

and

Gða; yÞ ¼
Z 1

y
ya� 1e� ydy: ð13Þ

be the upper incomplete gamma, for more details, see Wall [15].

Fig (2) shows the different shapes of its FR and MRL for some selected parameters values

with scale parameter one. This Figure indicates that the EGLD FR can be monotonically

increasing and MRL can be monotonically decreasing.

3.2 Reversed failure rate and mean inactivity time

For a continuous distribution with pdf, g(t), and CDF, G(t), the failure rate function, also

known as the reversed failure rate (RHR) function, is defined as

rðtÞ ¼ lim
Dt!0

PðT > t � DtjT � tÞ
Dt

¼
gðtÞ
GðtÞ

: ð14Þ

For the EGLD, the reversed failure rate function r(t) is

rðt; dÞ ¼
l

2
gd

ðlþ 1Þ

ðt þ 1Þe� lt

kð�dkg þ dÞ
: ð15Þ

For a continuous distribution with pdf g(t) and cdf G(t), the mean inactivity time (MIT)

function is defined as

mðtÞ ¼
1

GðtÞ

Z t

0

GðxÞdx; t > 0: ð16Þ

For the EGLD, the mean inactivity time function m(t) is

mðtÞ ¼
kg

1 � ð1 � dÞð1 � kgÞ
Dðt; l; g; d; 1Þ; ð17Þ
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Fig 2. Plots FR and MRL of the EGLD with λ = 2.9. Figure (2) shows the different shapes of its FR and MRL for some

selected parameters values with scale parameter one. This Figure indicates that the EGLD FR can be monotonically

increasing and MRL can be monotonically decreasing.

https://doi.org/10.1371/journal.pone.0244328.g002
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where

Dðt;L; aÞ ¼
X1

k;i;j¼0

k

j

 !
gðjþ 1Þ � 1

i

 !
l

1þ l

� �iþa� 2
ð� 1Þ

iþj
ð1 � dÞ

keið1þlÞ

ðilÞiþa

�fGðiþ a; ið1þ lÞÞ � Gðiþ a; ið1þ lþ ltÞÞg;

ð18Þ

For a continuous distribution with pdf g(t) and CDF G(t), the strong mean inactivity time

(SMIT) function is defined as

m� tð Þ ¼
1

GðtÞ

Z t

0

2xGðxÞdx: t > 0: ð19Þ

For the EGLD, the strong mean inactivity time function m� is

m�ðtÞ ¼
2kg

1 � ð1 � dÞð1 � kgÞ
D t;L; 2ð Þ � D t;L; 1ð Þð Þ: ð20Þ

Fig (3) shows the different shapes of its RHR and MIT for some selected parameters values

with scale parameter one. This Figure indicates that the EGLD RHR can be monotonically

decreasing and MIT can be monotonically increasing.

3.3 Renyi entropy

Entropy has been used in areas like physics (sparse kernel density estimation), medicine

(molecular imaging of tumors) and engineering (measure the randomness of systems). The

entropy is a measure of variation of the uncertainty of a random variable X with density func-

tion f(x). The Rényi entropy (RE) [16] of order b is defined as

Hb ¼
1

1 � b
log

Z 1

� 1

gðxÞbdx
� �

; b > 0; b 6¼ 1: ð21Þ

For the EGLD(x;Λ) in (6) can be obtained as

Hb ¼
b

1 � b
log

l
2
g

dðlþ 1Þ

� �

þ
1

1 � b
log

X1

j¼0

d � 1

d

� �j
1þ l

l
C0;b;bðl; gÞ

( )

:

Table 1 present the critical points of the reliability functions of the EGLD. These values can

be determined numerically using R and Maple14.

3.4 Quantiles and moments

Lemma 3.3. Let X* EGLD (x;Λ). Then, the qth quantile function, denoted bt (xq)EGL, is given
by

ðxqÞEGL ¼ ln
1þ l

1þl
ðxqÞEGL

1 �
dq

1� qð1� dÞ

� �1
g

2

6
4

3

7
5

1
l

: ð22Þ

Remark 3.4
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Fig 3. Plots RHR and MIT of the EGLD with λ = 2.9. Figure (3) shows the different shapes of its RHR and MIT for

some selected parameters values with scale parameter one. This Figure indicates that the EGLD RHR can be

monotonically decreasing and MIT can be monotonically increasing.

https://doi.org/10.1371/journal.pone.0244328.g003
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• The median of the EGLD (x;Λ) as

MedGLEðXÞ ¼ ln
1þ l

1þl
MedGLEðXÞ

1 � d

1þd

� �1
g

2

6
4

3

7
5

1
l

: ð23Þ

• The qth quantiles of the GL (x;λ, γ) model as

MedGLðXÞ ¼ ln
1þ l

1þl
MedGLðXÞ

1 � 1

2

� �1
g

2

4

3

5

1
l

: ð24Þ

• The qth quantiles of the L(x;λ) model as

MedLðXÞ ¼ ln 2 1þ
l

1þ l
MedLðXÞ

� �� �1
l

: ð25Þ

The next lemma are need in the noncentral moment of the EGLD.

Lemma 3.5. For λ> 0 and γ> 0. Let

Cr;u;pðl; gÞ ¼
l

1þ l

Z 1

0

xrð1þ xÞpe� ulx 1 �
1þ lþ lx

1þ l
e� lx

� �gðkþuÞ� u

dx;

we have

Cr;u;pðl; gÞ ¼
X1

j¼0

X1

i¼j

Xp

l¼0

ð� 1Þ
i
gðkþ uÞ � u

i

 ! i

j

 ! p

l

 !
l

1þ l

� �jþ1

�
Gðr þ jþ l þ 1Þ

ðulðjþ 1ÞÞ
rþjþlþ1

:

Table 1. Critical points of reliability functions for selected values of λ = 2.90 and γ = 3.00 at t = 0.5.

δ 030 0.50 0.65 0.80 0.95 1.00

HR 2.93562 2.31981 2.00445 1.76457 1.57597 1.52176

MRL 0.354484 0.398896 0.428236 0.454937 0.479475 0.487237

RHR 1.94233 2.55815 2.8735 3.11338 3.30198 3.3562

MIT 0.2035 0.18559 0.178116 0.173002 0.169276 0.168248

SMIT 0.149169 0.138466 0.133869 0.130681 0.128335 0.127684

Renyi entropy 0.625869 0.739825 0.794179 0.835126 0.867617 0.877068

From Table 1 we have the following observations:

1. For fixed λ and γ, the HR, MIT and SMIT of the different parameters decrease as δ increases.

2. For fixed λ and γ, the MRL and RHR of the different parameters increases as δ increases.

https://doi.org/10.1371/journal.pone.0244328.t001
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Proposition 3.6. Let X* EGLD (x;Λ). Then, the noncentral moment of X has the following
form:

m
0

r ¼
lg

d

X1

k¼0

d � 1

d

� �k

ðkþ 1ÞCr;1;1ðl; gÞ ð26Þ

assuming that Λ> 0.

Based on proposition (3.6), the following measures hold for every Λ> 0 of the EGLD (x;Λ).

m2ðx;LÞ ¼
lg

d

X1

k¼0

d � 1

d

� �k

ðkþ 1ÞC2;1;1ðl; gÞ; ð27Þ

and the variance of the EGLD (x;Λ) as

s2 ¼
lg

d

X1

k¼0

d � 1

d

� �k

ðkþ 1ÞfC2;1;1ðl; gÞ � C2

1;1;1
ðl; gÞg: ð28Þ

The measures of skewness and kurtosis are computed using the following expressions:

Skewness ¼
m
0

3
� 3m

0

2
mþ 2m3

ðm
0

2
� m2Þ

3

2

;

Kurtosis ¼
m
0

4
� 4m

0

3
mþ 6m

0

2
m2 � 3m4

ðm
0

2
� m2Þ

2
:

Table 2 lists the first six moments, variance, skewness and kurtosis for the EGLD (x;Λ) for

some selected values for δ by choosing the scale and shape parameters to be one in all cases.

3.5 Order statistics

Order statistics have various applications in many different areas of statistical theories and

applications such as quality control testing and reliability. Let X1, . . ., Xn be a random sample

Table 2. Moments of the EGLD for some parameter values, λ = 2.90 and γ = 3.00.

m
0

r δ = 0.30 δ = 0.65 δ = 0.80 δ = 1.00

m
0

1
0.518682 0.679073 0.727784 0.782748

m
0

2
0.40514 0.65132 0.735537 0.835731

m
0

3
0.450433 0.828127 0.968904 1.1432

m
0

4
0.669297 1.33013 1.59089 1.92291

m
0

5
1.2536 2.59797 3.1476 3.86051

m
0

6
2.82781 5.98913 7.30897 9.04088

Variance 0.13611 0.190179 0.205868 0.223037

Skewness 1.97349 1.53782 1.4339 1.32789

Kurtosis 9.26325 6.76956 6.28049 5.82284

From Table 2 we have the following observations:

1. For fixed λ and γ, the Skewness, and Kurtosis of the different parameters decrease as δ increases.

2. For fixed λ and γ, the moments and Variance of the different parameters increases as δ increases.

https://doi.org/10.1371/journal.pone.0244328.t002
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of size n from the EGLD (x;Λ). The PDF of the ith order statistic, Xi: n, is defined by

fi:nðxÞ ¼
l

2
gd

n� iþ1

ð1þ lÞBði; n � iþ 1Þ

ki�
1
gð1 � kÞ

n� i

ðdþ �dkÞ
nþ1

ð29Þ

where B(.,.) is the beta function. Also, the joint pdf of the (i, j)th order statistic, Xi: n, Xj: n and 1

� i� j� n, is defined by

fi:j:nðxi; xjÞ ¼ ε½FðxiÞ�
i� 1
½FðxjÞ � FðxiÞ�

j� i� 1
½1 � FðxjÞ�

n� jf ðxiÞf ðxjÞ

¼ ε
l

2
g

1þ l

� �2
d
n� iþ1
ðkikjÞ

1� 1
gð1 � kjÞ

n� j
ðkj � kiÞ

j� i� 1

ðdþ �dkiÞ
j
ðdþ �dkjÞ

n� iþ1

�ð1þ xiÞð1þ xjÞe� ðxiþxjÞl;

ð30Þ

where ks ¼ 1 �
1þlþlxs
lþ1

e� lxs
� �g

and ε ¼ n!

ði� 1Þ!ðj� i� 1Þ!ðn� jÞ! :

3.6 Stochastic orderings

Stochastic orders has many applications in different fields such as income, actuarial science,

wealth inequality, engineering, medical and biological sciences, lifetime, queuing theory and

reliability analysis (Shaked and Shanthikumar [17]). Let X1 and X2 be univariate random vari-

ables with distribution functions G1(x) and G2(x) and reliability functions �G1ðxÞ and �G2ðxÞ,
respectively, with corresponding probability densities g1(x), g2(x).

• If G1(x)�G2(x), 8x, then X1�st X2 (stochastically ordering).

• If g1(x)�g2(x), 8x, then X1�lr X2 (likelihood ratio ordering).

• If h1(x)�h2(x), 8x, then X1�hr X2 (hazard rate ordering).

• If m1(x)�m2(x), 8x, then X1�mrl X2 (mean residual life ordering).

• If G1(x)/G2(x) is decreasing, 8x, then X1�rhr X2 (reversed hazard rate ordering).

From the last stochastic orders, the following implications are satisfied (Shaked and

Shanthikumar [17]):

X1�rhrX2 ( X1�lrX2 ) X1�hrX2 ) X1�stX2 ) X1�mrlX2: ð31Þ

The next theorem propose the EGLD are ordered with respect to the strongest likelihood

ratio ordering when suitable assumptions are satisfied.

Theorem 3.7. Let X and Y be univariate random variables such that X* EGLD(λ, γ, δ1)

and Y* EGLD(λ, γ, δ2) If δ1 < δ2, then

X�lrYðX�hrY;X�rhrY;X�stYÞ: ð32Þ
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4 Maximum likelihood estimates

Let x = (x1, x2, . . ., xn) of a random sample of size n from EGLD with three parameters (Λ = (λ,

γ, δ)). The log-likelihood function (LLF) takes the form

cðX1; :::;XnjdÞ ¼
Xn

i¼1

log ðxi þ 1Þ �
Xn

i¼1

log ð� lþ lð� xiÞ þ ðlþ 1Þelxi � 1Þ

� 2
Xn

i¼1

log dþ ð1 � dÞ 1 �
ðlþ lxi þ 1Þe� lxi

lþ 1

� �g� �

þ n log ðdÞ

þn log ðgÞ þ 2n log ðlÞ þ g
Xn

i¼1

log 1 �
ðlþ lxi þ 1Þe� lxi

lþ 1

� �

:

ð33Þ

The MLEs of the unknown parameters λ, γ and δ can be obtained by solving the

Cl ¼
@c

@l
¼

2n
l
�
Xn

i¼1

xiððlþ 1Þelxi � 1Þ þ elxi � 1

ðlþ 1Þðelxi � 1Þ � lxi

þ
Xn

i¼1

ð _viÞl
vi
� 2
Xn

i¼1

ðd � 1Þð _viÞl
ðd � 1Þvi � d

;

ð34Þ

Cg ¼
@c

@g
¼
n
g
þ
Xn

i¼1

ð _viÞg
vi
� 2

Xn

i¼1

ð1 � dÞð _viÞg
ð1 � dÞvi þ d

; ð35Þ

Cd ¼
@c

@d
¼
n
d
� 2

Xn

i¼1

1 � vi
dþ ð1 � dÞvi

: ð36Þ

These equations can be solved numerically by using statistical software. The asymptotic

confidence intervals (CIs) for the parameters of EGLD(Λ) distribution are given according to

the asymptotic distribution of the maximum likelihood estimates (MLEs) of the parameters.

For more details about the maximum likelihood estimates see for example Dong et al. [18],

Chen et al. [19] and Chen et al. [20]. The second derivatives of the LLF of EGLD with respect

to Λ are given in the Appendix part [B], from Eqs (41)–(46). The estimators are approximately

bi-variate normal with mean Λ and the observed information matrix is given by

InðLÞ ¼ �
@

2
c

@L@L
¼ �

Cll Clg Cld

Cgl Cgg Cgd

Cdd Cdg Cdd

2

6
6
6
4

3

7
7
7
5

l¼l̂ ;g¼ĝ ;d¼d̂

ð37Þ

The 100(1−ϑ)% approximate two-sided confidence intervals (CIs) for the parameters λ, γ
and δ are

l̂ � ZW
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðl̂Þ
q

; ĝ � ZW
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĝÞ

p
and d̂ � ZW

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðd̂Þ
q

respectively, where ZW
2

is the upper W

2

� �
th percentile of the standard normal distribution and

Varðl̂Þ, VarðĝÞ and Varðd̂Þ are given by the diagonal elements of I−1(Λ) and it’s called the var-

iance of l̂, ĝ and d̂.
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5 Simulation study

In this section, a simulation study by considering different parameters values and different

samples sizes is conducted to decide which estimation method provides the best estimates in

terms of minimum mean square error (MSE). The samples sizes are selected to be 30, 50, 70,

100, 150 and the parameters values are selected to be (λ, γ, δ) = (2.90, 3.00, 0.70)and(0.20, 2.70,

0.90). The process is replicated 1000 times for each setting and the average estimates,the aver-

age Bias and the average MSEs are computed. For more details about the MSEs see for example

Zeng et al. [21], Zeng et al. [22], Zeng et al. [23] and Zeng et al. [24]. These values are tabulated

in Table 3. The results in these tables show that the four estimation methods provide an

asymptotically unbiased estimates where the estimates tend to the true parameters values as

the sample size increases. Also it is noted that the MSEs decreases in all the cases for the differ-

ent estimates as the sample size increases. In addition, the simulation results shows that the

LSEs have the smallest MSEs in most of the cases.

6 Application: Waiting time

The next data set studied the service of 100 bank customers and waiting times (in minutes).

These data were considered by Ghitany et al. [25] and given by Table 4.

To show the applicability of the proposed distribution and the different estimators pre-

sented in the previous sections one real data set is analyzed and shows the significance of our

Table 3. Simulated average estimates (AEs) (first row), mean squared errors (MSEs) (second row) and bias estimates (third row) under different settings

parameters.

EGLD(λ, γ, δ) n Estimates λ γ δ

EGLD(2.90,3.00,0.70) 30 Est. 3.32791 2.96355 1.21411

MSE 2.74349 1.89877 2.61318

Bais 0.42791 -0.03645 0.51411

50 Est. 3.19317 2.82378 1.13280

MSE 0.92870 1.12008 1.93396

Bais 0.29317 -0.17622 0.43280

70 Est. 3.06135 2.92424 0.96370

MSE 0.65713 0.84221 1.01533

Bais 0.16135 -0.07576 0.26370

100 Est. 3.04659 2.86435 0.93394

MSE 0.48586 0.58779 0.73386

Bais 0.14660 0.13565 0.23394

150 Est. 2.99243 2.95314 0.84701

MSE 0.30126 0.36852 0.32648

Bais 0.09243 0.04687 0.14709

EGLD (0.20,2.70,0.90) 50 Est. 0.21920 2.63306 1.71376

MSE 0.00315 0.75398 3.20126

Bais 0.01920 -0.06694 0.81376

100 Est. 0.21147 2.61271 1.40693

MSE 0.00191 0.37813 1.45407

Bais 0.01147 -0.08729 0.50693

150 Est. 0.20638 2.68321 1.21072

MSE 0.00101 0.24497 0.79587

Bais 0.0064 -0.01679 0.31072

https://doi.org/10.1371/journal.pone.0244328.t003
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new distribution. We compare the results of the EGLD with GL and L distributions. We first

use the maximum likelihood method to estimate the unknown parameters of the competitive

distributions. These estimates are displayed in Table 5.

The observed information of the data and the asymptotic covariance matrix of MLEs,

respectively, are

I0ðl̂; ĝ; d̂Þ ¼

7510:98 � 578:926 � 1036:28

� 578:926 70:0194 89:0158

� 1036:28 89:0158 155:088

0

B
B
B
B
B
@

1

C
C
C
C
C
A

; ð38Þ

and

I� 1
0
ðl̂; ĝ; d̂Þ ¼

0:00174401 � 0:00146198 0:0124924

� 0:00146198 0:0540601 � 0:0407976

0:0124924 � 0:0407976 0:113337

0

B
B
B
@

1

C
C
C
A
: ð39Þ

Therefor, 95% two-sided asymptotic confidence intervals for the parameters λ, γ, and δ
respectively, are [0.161736,0.183251], [1.40029, 1.52008] and [0.374721, 0.548166]. Some

goodness of fit measures are displayed in Table 6. From this table we can note the following:

• According to maximum log-likelihood criterion for goodness of fit and −logL, the order of

best fit for the above models is: Best EGLD) GLD) LD Worst.

• To compare the different models with the EGLD we obtain the Kolmogorov-Smirnov (K-S)

statistic as well as its p-value. These statistics are displayed also in Table 7 for the data set.

From these results, we can conclude that the EGLD has the K-S value 0.040985 and the high-

est p-value 0.956357 among all other competitive models, therefore it can be selected as the

best model.

Table 4. The data set of waiting time presented.

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2 3.3 3.5

3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9

5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1

7.1 7.4 7.6 7.7 8.0 8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6

9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4 12.5 12.9 13.0

13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0

19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5.

https://doi.org/10.1371/journal.pone.0244328.t004

Table 5. The estimates of parameters corresponds to data set.

Distribution parameter MLEs

l̂ ĝ d̂

EGLD 0.172494 1.46019 0.461444

GLD 0.210779 1.27729 -

LD 0.186571 - -

https://doi.org/10.1371/journal.pone.0244328.t005
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• According to A and W, the order of best fit for the above models is: Best GLD) LD)

EGLD Worst.

• According to these statistics, the EGLD model fits the current data set better than the other

models.

In order to see how well the EGLD fits this data, we introduce the hypotheses test statistic as

well as its p-value. The hypotheses are as follows:

H0 : F ¼ F
EGLD

versus H1 : F 6¼ F
EGLD

:

Furthermore, likelihood ratio test (LRT) has been used to determine the appropriateness of

the model. The hypotheses are as follows:

According to these statistics, the calculated LRT statistic is greater than the critical point for

this test, which is 9.210; also, the p-value is small. furthermore, we conclude that this data fits

the EGLD much better the GL and L distributions. Fig (4) shows plots of the estimated cumula-

tive and estimated densities of the fitted models for the data data described below.

Table 6. Goodness-of-fit statistics corresponds to data set.

Distribution −logL K−S A W
(p-value) (p-value) (p-value)

EGLD 317.155 0.040985 0.129516 0.0185372

(0.956357) (0.991705) (0.982528)

GLD 317.803 0.0471189 0.240452 0.037585

(0.855563) (0.784184) (0.721155)

LD 319.037 0.0495455 0.267223 0.0419412

(0.799012) (0.706235) (0.645525)

https://doi.org/10.1371/journal.pone.0244328.t006

Table 7. Likelihood ratio test and its p-value corresponds to data set.

Distribution Null hypothesis (H0) Alternative hypothesis (H1) LRT (p-value)

GL H0: δ = 1(GL) H1: δ 6¼ 1(EGLD) 19.5512 9.79415×10−6 < 0.05)

L H0: δ = 1, γ = 1(L) H1: δ 6¼ 1, γ 6¼ 1(EGLD) 4.9492 0.0261028 < 0.05)

https://doi.org/10.1371/journal.pone.0244328.t007

Fig 4. Plots estimated CDF and PDF of models for the data set. Figure (4) shows plots of the estimated cumulative

and estimated densities of the fitted models for the data data described below.

https://doi.org/10.1371/journal.pone.0244328.g004
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Concluding remarks

Introducing a new model of the EGLD is the main goal of this article. This model has the char-

acteristic of being capable of failure criteria and modeling various shapes of aging. The pro-

posed distribution contains one scale and two shape parameters. The distributions GL, L and

among others are sub-models of the EGLD and studied in this article. Some statistical proper-

ties of the new distribution are discussed. estimation methods are used to estimate the

unknown parameters of the proposed distribution. The efficiency of the different estimators

are compared via simulation study in terms of minimum mean square errors. The simulation

study shows that the least square estimates perform better than other proposed methods.

Finally, two real data sets are analyzed showing that the new distribution is very competitive as

compared to some well known distribution with three or more than three parameters. A future

work is to estimate procedures of stress-strength reliability for Generalized Lindley Distribu-

tion. Another future work is to study and compare the Bayesian estimation based on maxi-

mum likelihood and based on maximum product of spacing to estimate the stress-strength

reliability of Generalized Lindley Distribution.

Appendix

[A] Proofs of lemma and theorem.

Proof of Lemma 3.5

Cr;u;pðl; gÞ ¼
l

1þ l

Z 1

0

xrð1þ xÞpe� ulx 1 �
1þ lþ lx

1þ l
e� lx

� �gðkþuÞ� u

dx

¼
l

1þ l

X1

i¼0

gðkþ uÞ � u

i

 !

ð� 1Þ
i
Z 1

0

xrð1þ xÞpe� ðuþiÞlx

� 1þ
l

1þ l
x

� �i

dx

¼
X1

i¼0

Xi

j¼0

Xp

l¼0

ð� 1Þ
i
gðkþ uÞ � u

i

 ! i

j

 ! p

l

 !
l

1þ l

� �jþ1

�

Z 1

0

xrþjþle� ulðjþ1Þxdx:

¼
X1

i¼0

Xi

j¼0

Xp

l¼0

ð� 1Þ
i
gðkþ uÞ � u

i

 ! i

j

 ! p

l

 !
l

1þ l

� �jþ1

�
Gðr þ jþ l þ 1Þ

ðulðjþ 1ÞÞ
rþjþlþ1

:

By changing
P1

i¼0

Pi
j¼0

to
P1

j¼0

P1

i¼j, in the last equation and hence, the proof is

completed.

Proof of Theorem (3.7)

First note that

f ðxÞ
gðxÞ

¼
d1

d2

d2 � ðd2 � 1ÞvðxÞ
d1 � ðd1 � 1ÞvðxÞ

� �2

: ð40Þ
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Since, δ1 < δ2,

d
dx

f ðxÞ
gðxÞ

� �

¼
2l

2
gd1ðd2 � d1Þðxþ 1ÞvðxÞððd2 � 1ÞvðxÞ � d2Þ

d2ðlþ lx � ðlþ 1Þelx þ 1Þððd1 � 1ÞvðxÞ � d1Þ
3

< 0:

where

vðxÞ ¼ 1 �
ðlþ lxþ 1Þe� lx

lþ 1

� �g

:

Hence, f(x)/g(x) is decreasing in x. That is X�lr Y. The remaining statements follows from

the implications Eq (31).

[B] The entries of the FIM for EGL distribution with respect to λ, γ and δ are given by the

following equations:

Cll ¼
@

2
c

@l
2
¼ � g

Xn

i¼1

x2
i ð2lþ ðl

2
þ 2l � 1Þðlþ 1Þ

2elxi þ 1Þ þ lðlþ 1Þ
3x2

i e
lxi

ðlþ 1Þ
4e2lxi v

2
g

i

þ
Xn

i¼1

ðelxi � 1Þ
2
þ xiðelxiðxiðlðlþ 2Þ þ lðlþ 1Þxi � 1Þ � 2Þ þ xi þ 2Þ

ðlþ 1Þ
2e2lxi v

2
g

i

� 2
Xn

i¼1

gð1 � dÞxiv
g� 2
g

i e� 2lxi

ðlþ 1Þ
4
ðdþ dð� viÞ þ viÞ

2
fl

2
gðd � 1Þvixiðlþ ðlþ 1Þxi þ 2Þ

2

� l
2
ðg � 1Þxiððd � 1Þvi � dÞðlþ ðlþ 1Þxi þ 2Þ

2
þ ððd � 1Þvi � dÞ

�ððlþ 1Þðelxi � 1Þ � lxiÞxiðl
3
þ 3l

2
þ lþ ðlþ 1Þ

2
lxi � 1Þ � 2g

� g
Xn

i¼1

2ðlþ 1Þðelxi � 1Þ

ðlþ 1Þ
4e2lxiv

2
g

i

�
2n
l

2
;

ð41Þ

Cgg ¼
@

2
c

@g2
¼ 2

Xn

i¼1

ðd � 1Þd½ð _viÞg�
2

viðd � ðd � 1ÞviÞ
2
þ

n
g2
; ð42Þ

Cdd ¼
@

2
c

@d
2
¼ 2

Xn

i¼1

ð1 � viÞ
2

ðdþ ð1 � dÞviÞ
2
þ

n
d

2
; ð43Þ

Clg ¼
@

2
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¼

1

g
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ð _viÞl
vi
þ

2

g
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2

; ð44Þ

Cld ¼
@

2
c

@l@d
¼ 2

Xn

i¼1

ð _viÞl
ðd � ðd � 1ÞviÞ

2
; ð45Þ

Cgd ¼
@

2
c

@g@d
¼ 2

Xn

i¼1

ð _viÞg
ðd � ðd � 1ÞviÞ

2
; ð46Þ
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where

vi ¼ viðl; g; dÞ ¼ 1 �
ðlþ lxi þ 1Þe� lxi

lþ 1

� �g

;

ð _viÞl ¼ �
lgxiðlþ lxi þ xi þ 2Þ 1 �

elð� xiÞðlþlxiþ1Þ

lþ1

� �g

ðlþ 1Þðlþ lxi � ðlþ 1Þelxi þ 1Þ

ð _viÞg ¼ 1 �
elð� xiÞðlþ lxi þ 1Þ

lþ 1

� �g

log 1 �
elð� xiÞðlþ lxi þ 1Þ

lþ 1

� �
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